llvm-6502/lib/Target/ARM/ARMRegisterInfo.cpp
Evan Cheng 1606e8e4cd Fix some significant problems with constant pools that resulted in unnecessary paddings between constant pool entries, larger than necessary alignments (e.g. 8 byte alignment for .literal4 sections), and potentially other issues.
1. ConstantPoolSDNode alignment field is log2 value of the alignment requirement. This is not consistent with other SDNode variants.
2. MachineConstantPool alignment field is also a log2 value.
3. However, some places are creating ConstantPoolSDNode with alignment value rather than log2 values. This creates entries with artificially large alignments, e.g. 256 for SSE vector values.
4. Constant pool entry offsets are computed when they are created. However, asm printer group them by sections. That means the offsets are no longer valid. However, asm printer uses them to determine size of padding between entries.
5. Asm printer uses expensive data structure multimap to track constant pool entries by sections.
6. Asm printer iterate over SmallPtrSet when it's emitting constant pool entries. This is non-deterministic.


Solutions:
1. ConstantPoolSDNode alignment field is changed to keep non-log2 value.
2. MachineConstantPool alignment field is also changed to keep non-log2 value.
3. Functions that create ConstantPool nodes are passing in non-log2 alignments.
4. MachineConstantPoolEntry no longer keeps an offset field. It's replaced with an alignment field. Offsets are not computed when constant pool entries are created. They are computed on the fly in asm printer and JIT.
5. Asm printer uses cheaper data structure to group constant pool entries.
6. Asm printer compute entry offsets after grouping is done.
7. Change JIT code to compute entry offsets on the fly.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66875 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-13 07:51:59 +00:00

1498 lines
52 KiB
C++

//===- ARMRegisterInfo.cpp - ARM Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMInstrInfo.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMRegisterInfo.h"
#include "ARMSubtarget.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
static cl::opt<bool> ThumbRegScavenging("enable-thumb-reg-scavenging",
cl::Hidden,
cl::desc("Enable register scavenging on Thumb"));
unsigned ARMRegisterInfo::getRegisterNumbering(unsigned RegEnum) {
using namespace ARM;
switch (RegEnum) {
case R0: case S0: case D0: return 0;
case R1: case S1: case D1: return 1;
case R2: case S2: case D2: return 2;
case R3: case S3: case D3: return 3;
case R4: case S4: case D4: return 4;
case R5: case S5: case D5: return 5;
case R6: case S6: case D6: return 6;
case R7: case S7: case D7: return 7;
case R8: case S8: case D8: return 8;
case R9: case S9: case D9: return 9;
case R10: case S10: case D10: return 10;
case R11: case S11: case D11: return 11;
case R12: case S12: case D12: return 12;
case SP: case S13: case D13: return 13;
case LR: case S14: case D14: return 14;
case PC: case S15: case D15: return 15;
case S16: return 16;
case S17: return 17;
case S18: return 18;
case S19: return 19;
case S20: return 20;
case S21: return 21;
case S22: return 22;
case S23: return 23;
case S24: return 24;
case S25: return 25;
case S26: return 26;
case S27: return 27;
case S28: return 28;
case S29: return 29;
case S30: return 30;
case S31: return 31;
default:
assert(0 && "Unknown ARM register!");
abort();
}
}
unsigned ARMRegisterInfo::getRegisterNumbering(unsigned RegEnum,
bool &isSPVFP) {
isSPVFP = false;
using namespace ARM;
switch (RegEnum) {
default:
assert(0 && "Unknown ARM register!");
abort();
case R0: case D0: return 0;
case R1: case D1: return 1;
case R2: case D2: return 2;
case R3: case D3: return 3;
case R4: case D4: return 4;
case R5: case D5: return 5;
case R6: case D6: return 6;
case R7: case D7: return 7;
case R8: case D8: return 8;
case R9: case D9: return 9;
case R10: case D10: return 10;
case R11: case D11: return 11;
case R12: case D12: return 12;
case SP: case D13: return 13;
case LR: case D14: return 14;
case PC: case D15: return 15;
case S0: case S1: case S2: case S3:
case S4: case S5: case S6: case S7:
case S8: case S9: case S10: case S11:
case S12: case S13: case S14: case S15:
case S16: case S17: case S18: case S19:
case S20: case S21: case S22: case S23:
case S24: case S25: case S26: case S27:
case S28: case S29: case S30: case S31: {
isSPVFP = true;
switch (RegEnum) {
default: return 0; // Avoid compile time warning.
case S0: return 0;
case S1: return 1;
case S2: return 2;
case S3: return 3;
case S4: return 4;
case S5: return 5;
case S6: return 6;
case S7: return 7;
case S8: return 8;
case S9: return 9;
case S10: return 10;
case S11: return 11;
case S12: return 12;
case S13: return 13;
case S14: return 14;
case S15: return 15;
case S16: return 16;
case S17: return 17;
case S18: return 18;
case S19: return 19;
case S20: return 20;
case S21: return 21;
case S22: return 22;
case S23: return 23;
case S24: return 24;
case S25: return 25;
case S26: return 26;
case S27: return 27;
case S28: return 28;
case S29: return 29;
case S30: return 30;
case S31: return 31;
}
}
}
}
ARMRegisterInfo::ARMRegisterInfo(const TargetInstrInfo &tii,
const ARMSubtarget &sti)
: ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
TII(tii), STI(sti),
FramePtr((STI.useThumbBacktraces() || STI.isThumb()) ? ARM::R7 : ARM::R11) {
}
static inline
const MachineInstrBuilder &AddDefaultPred(const MachineInstrBuilder &MIB) {
return MIB.addImm((int64_t)ARMCC::AL).addReg(0);
}
static inline
const MachineInstrBuilder &AddDefaultCC(const MachineInstrBuilder &MIB) {
return MIB.addReg(0);
}
/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void ARMRegisterInfo::emitLoadConstPool(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, int Val,
unsigned Pred, unsigned PredReg,
const TargetInstrInfo *TII,
bool isThumb,
DebugLoc dl) const {
MachineFunction &MF = *MBB.getParent();
MachineConstantPool *ConstantPool = MF.getConstantPool();
Constant *C = ConstantInt::get(Type::Int32Ty, Val);
unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);
if (isThumb)
BuildMI(MBB, MBBI, dl,
TII->get(ARM::tLDRcp),DestReg).addConstantPoolIndex(Idx);
else
BuildMI(MBB, MBBI, dl, TII->get(ARM::LDRcp), DestReg)
.addConstantPoolIndex(Idx)
.addReg(0).addImm(0).addImm(Pred).addReg(PredReg);
}
const TargetRegisterClass *ARMRegisterInfo::getPointerRegClass() const {
return &ARM::GPRRegClass;
}
/// isLowRegister - Returns true if the register is low register r0-r7.
///
bool ARMRegisterInfo::isLowRegister(unsigned Reg) const {
using namespace ARM;
switch (Reg) {
case R0: case R1: case R2: case R3:
case R4: case R5: case R6: case R7:
return true;
default:
return false;
}
}
const unsigned*
ARMRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
static const unsigned CalleeSavedRegs[] = {
ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
static const unsigned DarwinCalleeSavedRegs[] = {
ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4,
ARM::R11, ARM::R10, ARM::R9, ARM::R8,
ARM::D15, ARM::D14, ARM::D13, ARM::D12,
ARM::D11, ARM::D10, ARM::D9, ARM::D8,
0
};
return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs;
}
const TargetRegisterClass* const *
ARMRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
static const TargetRegisterClass * const CalleeSavedRegClasses[] = {
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass,
&ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
&ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass,
0
};
return CalleeSavedRegClasses;
}
BitVector ARMRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
// FIXME: avoid re-calculating this everytime.
BitVector Reserved(getNumRegs());
Reserved.set(ARM::SP);
Reserved.set(ARM::PC);
if (STI.isTargetDarwin() || hasFP(MF))
Reserved.set(FramePtr);
// Some targets reserve R9.
if (STI.isR9Reserved())
Reserved.set(ARM::R9);
return Reserved;
}
bool
ARMRegisterInfo::isReservedReg(const MachineFunction &MF, unsigned Reg) const {
switch (Reg) {
default: break;
case ARM::SP:
case ARM::PC:
return true;
case ARM::R7:
case ARM::R11:
if (FramePtr == Reg && (STI.isTargetDarwin() || hasFP(MF)))
return true;
break;
case ARM::R9:
return STI.isR9Reserved();
}
return false;
}
bool
ARMRegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const {
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
return ThumbRegScavenging || !AFI->isThumbFunction();
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
///
bool ARMRegisterInfo::hasFP(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
return NoFramePointerElim || MFI->hasVarSizedObjects();
}
// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
// not required, we reserve argument space for call sites in the function
// immediately on entry to the current function. This eliminates the need for
// add/sub sp brackets around call sites. Returns true if the call frame is
// included as part of the stack frame.
bool ARMRegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
const MachineFrameInfo *FFI = MF.getFrameInfo();
unsigned CFSize = FFI->getMaxCallFrameSize();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// It's not always a good idea to include the call frame as part of the
// stack frame. ARM (especially Thumb) has small immediate offset to
// address the stack frame. So a large call frame can cause poor codegen
// and may even makes it impossible to scavenge a register.
if (AFI->isThumbFunction()) {
if (CFSize >= ((1 << 8) - 1) * 4 / 2) // Half of imm8 * 4
return false;
} else {
if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
return false;
}
return !MF.getFrameInfo()->hasVarSizedObjects();
}
/// emitARMRegPlusImmediate - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in ARM code.
static
void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg, int NumBytes,
ARMCC::CondCodes Pred, unsigned PredReg,
const TargetInstrInfo &TII,
DebugLoc dl) {
bool isSub = NumBytes < 0;
if (isSub) NumBytes = -NumBytes;
while (NumBytes) {
unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
assert(ThisVal && "Didn't extract field correctly");
// We will handle these bits from offset, clear them.
NumBytes &= ~ThisVal;
// Get the properly encoded SOImmVal field.
int SOImmVal = ARM_AM::getSOImmVal(ThisVal);
assert(SOImmVal != -1 && "Bit extraction didn't work?");
// Build the new ADD / SUB.
BuildMI(MBB, MBBI, dl, TII.get(isSub ? ARM::SUBri : ARM::ADDri), DestReg)
.addReg(BaseReg, false, false, true).addImm(SOImmVal)
.addImm((unsigned)Pred).addReg(PredReg).addReg(0);
BaseReg = DestReg;
}
}
/// calcNumMI - Returns the number of instructions required to materialize
/// the specific add / sub r, c instruction.
static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes,
unsigned NumBits, unsigned Scale) {
unsigned NumMIs = 0;
unsigned Chunk = ((1 << NumBits) - 1) * Scale;
if (Opc == ARM::tADDrSPi) {
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
NumMIs++;
NumBits = 8;
Scale = 1; // Followed by a number of tADDi8.
Chunk = ((1 << NumBits) - 1) * Scale;
}
NumMIs += Bytes / Chunk;
if ((Bytes % Chunk) != 0)
NumMIs++;
if (ExtraOpc)
NumMIs++;
return NumMIs;
}
/// emitThumbRegPlusImmInReg - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code. Materialize the immediate
/// in a register using mov / mvn sequences or load the immediate from a
/// constpool entry.
static
void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, bool CanChangeCC,
const TargetInstrInfo &TII,
const ARMRegisterInfo& MRI,
DebugLoc dl) {
bool isHigh = !MRI.isLowRegister(DestReg) ||
(BaseReg != 0 && !MRI.isLowRegister(BaseReg));
bool isSub = false;
// Subtract doesn't have high register version. Load the negative value
// if either base or dest register is a high register. Also, if do not
// issue sub as part of the sequence if condition register is to be
// preserved.
if (NumBytes < 0 && !isHigh && CanChangeCC) {
isSub = true;
NumBytes = -NumBytes;
}
unsigned LdReg = DestReg;
if (DestReg == ARM::SP) {
assert(BaseReg == ARM::SP && "Unexpected!");
LdReg = ARM::R3;
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R12)
.addReg(ARM::R3, false, false, true);
}
if (NumBytes <= 255 && NumBytes >= 0)
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
else if (NumBytes < 0 && NumBytes >= -255) {
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes);
BuildMI(MBB, MBBI, dl, TII.get(ARM::tNEG), LdReg)
.addReg(LdReg, false, false, true);
} else
MRI.emitLoadConstPool(MBB, MBBI, LdReg, NumBytes, ARMCC::AL, 0, &TII,
true, dl);
// Emit add / sub.
int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr);
const MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl,
TII.get(Opc), DestReg);
if (DestReg == ARM::SP || isSub)
MIB.addReg(BaseReg).addReg(LdReg, false, false, true);
else
MIB.addReg(LdReg).addReg(BaseReg, false, false, true);
if (DestReg == ARM::SP)
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R3)
.addReg(ARM::R12, false, false, true);
}
/// emitThumbRegPlusImmediate - Emits a series of instructions to materialize
/// a destreg = basereg + immediate in Thumb code.
static
void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, unsigned BaseReg,
int NumBytes, const TargetInstrInfo &TII,
const ARMRegisterInfo& MRI,
DebugLoc dl) {
bool isSub = NumBytes < 0;
unsigned Bytes = (unsigned)NumBytes;
if (isSub) Bytes = -NumBytes;
bool isMul4 = (Bytes & 3) == 0;
bool isTwoAddr = false;
bool DstNotEqBase = false;
unsigned NumBits = 1;
unsigned Scale = 1;
int Opc = 0;
int ExtraOpc = 0;
if (DestReg == BaseReg && BaseReg == ARM::SP) {
assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!");
NumBits = 7;
Scale = 4;
Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
isTwoAddr = true;
} else if (!isSub && BaseReg == ARM::SP) {
// r1 = add sp, 403
// =>
// r1 = add sp, 100 * 4
// r1 = add r1, 3
if (!isMul4) {
Bytes &= ~3;
ExtraOpc = ARM::tADDi3;
}
NumBits = 8;
Scale = 4;
Opc = ARM::tADDrSPi;
} else {
// sp = sub sp, c
// r1 = sub sp, c
// r8 = sub sp, c
if (DestReg != BaseReg)
DstNotEqBase = true;
NumBits = 8;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
isTwoAddr = true;
}
unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale);
unsigned Threshold = (DestReg == ARM::SP) ? 3 : 2;
if (NumMIs > Threshold) {
// This will expand into too many instructions. Load the immediate from a
// constpool entry.
emitThumbRegPlusImmInReg(MBB, MBBI, DestReg, BaseReg, NumBytes, true, TII,
MRI, dl);
return;
}
if (DstNotEqBase) {
if (MRI.isLowRegister(DestReg) && MRI.isLowRegister(BaseReg)) {
// If both are low registers, emit DestReg = add BaseReg, max(Imm, 7)
unsigned Chunk = (1 << 3) - 1;
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
BuildMI(MBB, MBBI, dl,TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3), DestReg)
.addReg(BaseReg, false, false, true).addImm(ThisVal);
} else {
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), DestReg)
.addReg(BaseReg, false, false, true);
}
BaseReg = DestReg;
}
unsigned Chunk = ((1 << NumBits) - 1) * Scale;
while (Bytes) {
unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes;
Bytes -= ThisVal;
ThisVal /= Scale;
// Build the new tADD / tSUB.
if (isTwoAddr)
BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
.addReg(DestReg).addImm(ThisVal);
else {
bool isKill = BaseReg != ARM::SP;
BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
.addReg(BaseReg, false, false, isKill).addImm(ThisVal);
BaseReg = DestReg;
if (Opc == ARM::tADDrSPi) {
// r4 = add sp, imm
// r4 = add r4, imm
// ...
NumBits = 8;
Scale = 1;
Chunk = ((1 << NumBits) - 1) * Scale;
Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8;
isTwoAddr = true;
}
}
}
if (ExtraOpc)
BuildMI(MBB, MBBI, dl, TII.get(ExtraOpc), DestReg)
.addReg(DestReg, false, false, true)
.addImm(((unsigned)NumBytes) & 3);
}
static
void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
int NumBytes, ARMCC::CondCodes Pred, unsigned PredReg,
bool isThumb, const TargetInstrInfo &TII,
const ARMRegisterInfo& MRI,
DebugLoc dl) {
if (isThumb)
emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII,
MRI, dl);
else
emitARMRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes,
Pred, PredReg, TII, dl);
}
void ARMRegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (!hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr *Old = I;
DebugLoc dl = Old->getDebugLoc();
unsigned Amount = Old->getOperand(0).getImm();
if (Amount != 0) {
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
// Replace the pseudo instruction with a new instruction...
unsigned Opc = Old->getOpcode();
bool isThumb = AFI->isThumbFunction();
ARMCC::CondCodes Pred = isThumb
? ARMCC::AL : (ARMCC::CondCodes)Old->getOperand(1).getImm();
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
// Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
unsigned PredReg = isThumb ? 0 : Old->getOperand(2).getReg();
emitSPUpdate(MBB, I, -Amount, Pred, PredReg, isThumb, TII, *this, dl);
} else {
// Note: PredReg is operand 3 for ADJCALLSTACKUP.
unsigned PredReg = isThumb ? 0 : Old->getOperand(3).getReg();
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
emitSPUpdate(MBB, I, Amount, Pred, PredReg, isThumb, TII, *this, dl);
}
}
}
MBB.erase(I);
}
/// emitThumbConstant - Emit a series of instructions to materialize a
/// constant.
static void emitThumbConstant(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
unsigned DestReg, int Imm,
const TargetInstrInfo &TII,
const ARMRegisterInfo& MRI,
DebugLoc dl) {
bool isSub = Imm < 0;
if (isSub) Imm = -Imm;
int Chunk = (1 << 8) - 1;
int ThisVal = (Imm > Chunk) ? Chunk : Imm;
Imm -= ThisVal;
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVi8), DestReg).addImm(ThisVal);
if (Imm > 0)
emitThumbRegPlusImmediate(MBB, MBBI, DestReg, DestReg, Imm, TII, MRI, dl);
if (isSub)
BuildMI(MBB, MBBI, dl, TII.get(ARM::tNEG), DestReg)
.addReg(DestReg, false, false, true);
}
/// findScratchRegister - Find a 'free' ARM register. If register scavenger
/// is not being used, R12 is available. Otherwise, try for a call-clobbered
/// register first and then a spilled callee-saved register if that fails.
static
unsigned findScratchRegister(RegScavenger *RS, const TargetRegisterClass *RC,
ARMFunctionInfo *AFI) {
unsigned Reg = RS ? RS->FindUnusedReg(RC, true) : (unsigned) ARM::R12;
if (Reg == 0)
// Try a already spilled CS register.
Reg = RS->FindUnusedReg(RC, AFI->getSpilledCSRegisters());
return Reg;
}
void ARMRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, RegScavenger *RS) const{
unsigned i = 0;
MachineInstr &MI = *II;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
DebugLoc dl = MI.getDebugLoc();
while (!MI.getOperand(i).isFI()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
unsigned FrameReg = ARM::SP;
int FrameIndex = MI.getOperand(i).getIndex();
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MF.getFrameInfo()->getStackSize() + SPAdj;
if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex))
Offset -= AFI->getGPRCalleeSavedArea1Offset();
else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex))
Offset -= AFI->getGPRCalleeSavedArea2Offset();
else if (AFI->isDPRCalleeSavedAreaFrame(FrameIndex))
Offset -= AFI->getDPRCalleeSavedAreaOffset();
else if (hasFP(MF)) {
assert(SPAdj == 0 && "Unexpected");
// There is alloca()'s in this function, must reference off the frame
// pointer instead.
FrameReg = getFrameRegister(MF);
Offset -= AFI->getFramePtrSpillOffset();
}
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = MI.getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
bool isSub = false;
if (Opcode == ARM::ADDri) {
Offset += MI.getOperand(i+1).getImm();
if (Offset == 0) {
// Turn it into a move.
MI.setDesc(TII.get(ARM::MOVr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
return;
} else if (Offset < 0) {
Offset = -Offset;
isSub = true;
MI.setDesc(TII.get(ARM::SUBri));
}
// Common case: small offset, fits into instruction.
int ImmedOffset = ARM_AM::getSOImmVal(Offset);
if (ImmedOffset != -1) {
// Replace the FrameIndex with sp / fp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(ImmedOffset);
return;
}
// Otherwise, we fallback to common code below to form the imm offset with
// a sequence of ADDri instructions. First though, pull as much of the imm
// into this ADDri as possible.
unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
// We will handle these bits from offset, clear them.
Offset &= ~ThisImmVal;
// Get the properly encoded SOImmVal field.
int ThisSOImmVal = ARM_AM::getSOImmVal(ThisImmVal);
assert(ThisSOImmVal != -1 && "Bit extraction didn't work?");
MI.getOperand(i+1).ChangeToImmediate(ThisSOImmVal);
} else if (Opcode == ARM::tADDrSPi) {
Offset += MI.getOperand(i+1).getImm();
// Can't use tADDrSPi if it's based off the frame pointer.
unsigned NumBits = 0;
unsigned Scale = 1;
if (FrameReg != ARM::SP) {
Opcode = ARM::tADDi3;
MI.setDesc(TII.get(ARM::tADDi3));
NumBits = 3;
} else {
NumBits = 8;
Scale = 4;
assert((Offset & 3) == 0 &&
"Thumb add/sub sp, #imm immediate must be multiple of 4!");
}
if (Offset == 0) {
// Turn it into a move.
MI.setDesc(TII.get(ARM::tMOVr));
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.RemoveOperand(i+1);
return;
}
// Common case: small offset, fits into instruction.
unsigned Mask = (1 << NumBits) - 1;
if (((Offset / Scale) & ~Mask) == 0) {
// Replace the FrameIndex with sp / fp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(Offset / Scale);
return;
}
unsigned DestReg = MI.getOperand(0).getReg();
unsigned Bytes = (Offset > 0) ? Offset : -Offset;
unsigned NumMIs = calcNumMI(Opcode, 0, Bytes, NumBits, Scale);
// MI would expand into a large number of instructions. Don't try to
// simplify the immediate.
if (NumMIs > 2) {
emitThumbRegPlusImmediate(MBB, II, DestReg, FrameReg, Offset, TII,
*this, dl);
MBB.erase(II);
return;
}
if (Offset > 0) {
// Translate r0 = add sp, imm to
// r0 = add sp, 255*4
// r0 = add r0, (imm - 255*4)
MI.getOperand(i).ChangeToRegister(FrameReg, false);
MI.getOperand(i+1).ChangeToImmediate(Mask);
Offset = (Offset - Mask * Scale);
MachineBasicBlock::iterator NII = next(II);
emitThumbRegPlusImmediate(MBB, NII, DestReg, DestReg, Offset, TII,
*this, dl);
} else {
// Translate r0 = add sp, -imm to
// r0 = -imm (this is then translated into a series of instructons)
// r0 = add r0, sp
emitThumbConstant(MBB, II, DestReg, Offset, TII, *this, dl);
MI.setDesc(TII.get(ARM::tADDhirr));
MI.getOperand(i).ChangeToRegister(DestReg, false, false, true);
MI.getOperand(i+1).ChangeToRegister(FrameReg, false);
}
return;
} else {
unsigned ImmIdx = 0;
int InstrOffs = 0;
unsigned NumBits = 0;
unsigned Scale = 1;
switch (AddrMode) {
case ARMII::AddrMode2: {
ImmIdx = i+2;
InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 12;
break;
}
case ARMII::AddrMode3: {
ImmIdx = i+2;
InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
break;
}
case ARMII::AddrMode5: {
ImmIdx = i+1;
InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
Scale = 4;
break;
}
case ARMII::AddrModeTs: {
ImmIdx = i+1;
InstrOffs = MI.getOperand(ImmIdx).getImm();
NumBits = (FrameReg == ARM::SP) ? 8 : 5;
Scale = 4;
break;
}
default:
assert(0 && "Unsupported addressing mode!");
abort();
break;
}
Offset += InstrOffs * Scale;
assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
if (Offset < 0 && !isThumb) {
Offset = -Offset;
isSub = true;
}
// Common case: small offset, fits into instruction.
MachineOperand &ImmOp = MI.getOperand(ImmIdx);
int ImmedOffset = Offset / Scale;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale) {
// Replace the FrameIndex with sp
MI.getOperand(i).ChangeToRegister(FrameReg, false);
if (isSub)
ImmedOffset |= 1 << NumBits;
ImmOp.ChangeToImmediate(ImmedOffset);
return;
}
bool isThumSpillRestore = Opcode == ARM::tRestore || Opcode == ARM::tSpill;
if (AddrMode == ARMII::AddrModeTs) {
// Thumb tLDRspi, tSTRspi. These will change to instructions that use
// a different base register.
NumBits = 5;
Mask = (1 << NumBits) - 1;
}
// If this is a thumb spill / restore, we will be using a constpool load to
// materialize the offset.
if (AddrMode == ARMII::AddrModeTs && isThumSpillRestore)
ImmOp.ChangeToImmediate(0);
else {
// Otherwise, it didn't fit. Pull in what we can to simplify the immed.
ImmedOffset = ImmedOffset & Mask;
if (isSub)
ImmedOffset |= 1 << NumBits;
ImmOp.ChangeToImmediate(ImmedOffset);
Offset &= ~(Mask*Scale);
}
}
// If we get here, the immediate doesn't fit into the instruction. We folded
// as much as possible above, handle the rest, providing a register that is
// SP+LargeImm.
assert(Offset && "This code isn't needed if offset already handled!");
if (isThumb) {
if (Desc.mayLoad()) {
// Use the destination register to materialize sp + offset.
unsigned TmpReg = MI.getOperand(0).getReg();
bool UseRR = false;
if (Opcode == ARM::tRestore) {
if (FrameReg == ARM::SP)
emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,
Offset, false, TII, *this, dl);
else {
emitLoadConstPool(MBB, II, TmpReg, Offset, ARMCC::AL, 0, &TII,
true, dl);
UseRR = true;
}
} else
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII,
*this, dl);
MI.setDesc(TII.get(ARM::tLDR));
MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
if (UseRR)
// Use [reg, reg] addrmode.
MI.addOperand(MachineOperand::CreateReg(FrameReg, false));
else // tLDR has an extra register operand.
MI.addOperand(MachineOperand::CreateReg(0, false));
} else if (Desc.mayStore()) {
// FIXME! This is horrific!!! We need register scavenging.
// Our temporary workaround has marked r3 unavailable. Of course, r3 is
// also a ABI register so it's possible that is is the register that is
// being storing here. If that's the case, we do the following:
// r12 = r2
// Use r2 to materialize sp + offset
// str r3, r2
// r2 = r12
unsigned ValReg = MI.getOperand(0).getReg();
unsigned TmpReg = ARM::R3;
bool UseRR = false;
if (ValReg == ARM::R3) {
BuildMI(MBB, II, dl, TII.get(ARM::tMOVr), ARM::R12)
.addReg(ARM::R2, false, false, true);
TmpReg = ARM::R2;
}
if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
BuildMI(MBB, II, dl, TII.get(ARM::tMOVr), ARM::R12)
.addReg(ARM::R3, false, false, true);
if (Opcode == ARM::tSpill) {
if (FrameReg == ARM::SP)
emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,
Offset, false, TII, *this, dl);
else {
emitLoadConstPool(MBB, II, TmpReg, Offset, ARMCC::AL, 0, &TII,
true, dl);
UseRR = true;
}
} else
emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII,
*this, dl);
MI.setDesc(TII.get(ARM::tSTR));
MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true);
if (UseRR) // Use [reg, reg] addrmode.
MI.addOperand(MachineOperand::CreateReg(FrameReg, false));
else // tSTR has an extra register operand.
MI.addOperand(MachineOperand::CreateReg(0, false));
MachineBasicBlock::iterator NII = next(II);
if (ValReg == ARM::R3)
BuildMI(MBB, NII, dl, TII.get(ARM::tMOVr), ARM::R2)
.addReg(ARM::R12, false, false, true);
if (TmpReg == ARM::R3 && AFI->isR3LiveIn())
BuildMI(MBB, NII, dl, TII.get(ARM::tMOVr), ARM::R3)
.addReg(ARM::R12, false, false, true);
} else
assert(false && "Unexpected opcode!");
} else {
// Insert a set of r12 with the full address: r12 = sp + offset
// If the offset we have is too large to fit into the instruction, we need
// to form it with a series of ADDri's. Do this by taking 8-bit chunks
// out of 'Offset'.
unsigned ScratchReg = findScratchRegister(RS, &ARM::GPRRegClass, AFI);
if (ScratchReg == 0)
// No register is "free". Scavenge a register.
ScratchReg = RS->scavengeRegister(&ARM::GPRRegClass, II, SPAdj);
int PIdx = MI.findFirstPredOperandIdx();
ARMCC::CondCodes Pred = (PIdx == -1)
? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
emitARMRegPlusImmediate(MBB, II, ScratchReg, FrameReg,
isSub ? -Offset : Offset, Pred, PredReg, TII, dl);
MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true);
}
}
static unsigned estimateStackSize(MachineFunction &MF, MachineFrameInfo *MFI) {
const MachineFrameInfo *FFI = MF.getFrameInfo();
int Offset = 0;
for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) {
int FixedOff = -FFI->getObjectOffset(i);
if (FixedOff > Offset) Offset = FixedOff;
}
for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) {
if (FFI->isDeadObjectIndex(i))
continue;
Offset += FFI->getObjectSize(i);
unsigned Align = FFI->getObjectAlignment(i);
// Adjust to alignment boundary
Offset = (Offset+Align-1)/Align*Align;
}
return (unsigned)Offset;
}
void
ARMRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
RegScavenger *RS) const {
// This tells PEI to spill the FP as if it is any other callee-save register
// to take advantage the eliminateFrameIndex machinery. This also ensures it
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
// to combine multiple loads / stores.
bool CanEliminateFrame = true;
bool CS1Spilled = false;
bool LRSpilled = false;
unsigned NumGPRSpills = 0;
SmallVector<unsigned, 4> UnspilledCS1GPRs;
SmallVector<unsigned, 4> UnspilledCS2GPRs;
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
// Don't spill FP if the frame can be eliminated. This is determined
// by scanning the callee-save registers to see if any is used.
const unsigned *CSRegs = getCalleeSavedRegs();
const TargetRegisterClass* const *CSRegClasses = getCalleeSavedRegClasses();
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
bool Spilled = false;
if (MF.getRegInfo().isPhysRegUsed(Reg)) {
AFI->setCSRegisterIsSpilled(Reg);
Spilled = true;
CanEliminateFrame = false;
} else {
// Check alias registers too.
for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) {
if (MF.getRegInfo().isPhysRegUsed(*Aliases)) {
Spilled = true;
CanEliminateFrame = false;
}
}
}
if (CSRegClasses[i] == &ARM::GPRRegClass) {
if (Spilled) {
NumGPRSpills++;
if (!STI.isTargetDarwin()) {
if (Reg == ARM::LR)
LRSpilled = true;
CS1Spilled = true;
continue;
}
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
switch (Reg) {
case ARM::LR:
LRSpilled = true;
// Fallthrough
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
CS1Spilled = true;
break;
default:
break;
}
} else {
if (!STI.isTargetDarwin()) {
UnspilledCS1GPRs.push_back(Reg);
continue;
}
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
UnspilledCS1GPRs.push_back(Reg);
break;
default:
UnspilledCS2GPRs.push_back(Reg);
break;
}
}
}
}
bool ForceLRSpill = false;
if (!LRSpilled && AFI->isThumbFunction()) {
unsigned FnSize = TII.GetFunctionSizeInBytes(MF);
// Force LR to be spilled if the Thumb function size is > 2048. This enables
// use of BL to implement far jump. If it turns out that it's not needed
// then the branch fix up path will undo it.
if (FnSize >= (1 << 11)) {
CanEliminateFrame = false;
ForceLRSpill = true;
}
}
bool ExtraCSSpill = false;
if (!CanEliminateFrame || hasFP(MF)) {
AFI->setHasStackFrame(true);
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
if (!LRSpilled && CS1Spilled) {
MF.getRegInfo().setPhysRegUsed(ARM::LR);
AFI->setCSRegisterIsSpilled(ARM::LR);
NumGPRSpills++;
UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(),
UnspilledCS1GPRs.end(), (unsigned)ARM::LR));
ForceLRSpill = false;
ExtraCSSpill = true;
}
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if (STI.isTargetDarwin() || hasFP(MF)) {
MF.getRegInfo().setPhysRegUsed(FramePtr);
NumGPRSpills++;
}
// If stack and double are 8-byte aligned and we are spilling an odd number
// of GPRs. Spill one extra callee save GPR so we won't have to pad between
// the integer and double callee save areas.
unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment();
if (TargetAlign == 8 && (NumGPRSpills & 1)) {
if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
unsigned Reg = UnspilledCS1GPRs[i];
// Don't spiil high register if the function is thumb
if (!AFI->isThumbFunction() || isLowRegister(Reg) || Reg == ARM::LR) {
MF.getRegInfo().setPhysRegUsed(Reg);
AFI->setCSRegisterIsSpilled(Reg);
if (!isReservedReg(MF, Reg))
ExtraCSSpill = true;
break;
}
}
} else if (!UnspilledCS2GPRs.empty() &&
!AFI->isThumbFunction()) {
unsigned Reg = UnspilledCS2GPRs.front();
MF.getRegInfo().setPhysRegUsed(Reg);
AFI->setCSRegisterIsSpilled(Reg);
if (!isReservedReg(MF, Reg))
ExtraCSSpill = true;
}
}
// Estimate if we might need to scavenge a register at some point in order
// to materialize a stack offset. If so, either spill one additiona
// callee-saved register or reserve a special spill slot to facilitate
// register scavenging.
if (RS && !ExtraCSSpill && !AFI->isThumbFunction()) {
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned Size = estimateStackSize(MF, MFI);
unsigned Limit = (1 << 12) - 1;
for (MachineFunction::iterator BB = MF.begin(),E = MF.end();BB != E; ++BB)
for (MachineBasicBlock::iterator I= BB->begin(); I != BB->end(); ++I) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (I->getOperand(i).isFI()) {
unsigned Opcode = I->getOpcode();
const TargetInstrDesc &Desc = TII.get(Opcode);
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
if (AddrMode == ARMII::AddrMode3) {
Limit = (1 << 8) - 1;
goto DoneEstimating;
} else if (AddrMode == ARMII::AddrMode5) {
unsigned ThisLimit = ((1 << 8) - 1) * 4;
if (ThisLimit < Limit)
Limit = ThisLimit;
}
}
}
DoneEstimating:
if (Size >= Limit) {
// If any non-reserved CS register isn't spilled, just spill one or two
// extra. That should take care of it!
unsigned NumExtras = TargetAlign / 4;
SmallVector<unsigned, 2> Extras;
while (NumExtras && !UnspilledCS1GPRs.empty()) {
unsigned Reg = UnspilledCS1GPRs.back();
UnspilledCS1GPRs.pop_back();
if (!isReservedReg(MF, Reg)) {
Extras.push_back(Reg);
NumExtras--;
}
}
while (NumExtras && !UnspilledCS2GPRs.empty()) {
unsigned Reg = UnspilledCS2GPRs.back();
UnspilledCS2GPRs.pop_back();
if (!isReservedReg(MF, Reg)) {
Extras.push_back(Reg);
NumExtras--;
}
}
if (Extras.size() && NumExtras == 0) {
for (unsigned i = 0, e = Extras.size(); i != e; ++i) {
MF.getRegInfo().setPhysRegUsed(Extras[i]);
AFI->setCSRegisterIsSpilled(Extras[i]);
}
} else {
// Reserve a slot closest to SP or frame pointer.
const TargetRegisterClass *RC = &ARM::GPRRegClass;
RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(),
RC->getAlignment()));
}
}
}
}
if (ForceLRSpill) {
MF.getRegInfo().setPhysRegUsed(ARM::LR);
AFI->setCSRegisterIsSpilled(ARM::LR);
AFI->setLRIsSpilledForFarJump(true);
}
}
/// Move iterator pass the next bunch of callee save load / store ops for
/// the particular spill area (1: integer area 1, 2: integer area 2,
/// 3: fp area, 0: don't care).
static void movePastCSLoadStoreOps(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
int Opc, unsigned Area,
const ARMSubtarget &STI) {
while (MBBI != MBB.end() &&
MBBI->getOpcode() == Opc && MBBI->getOperand(1).isFI()) {
if (Area != 0) {
bool Done = false;
unsigned Category = 0;
switch (MBBI->getOperand(0).getReg()) {
case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7:
case ARM::LR:
Category = 1;
break;
case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11:
Category = STI.isTargetDarwin() ? 2 : 1;
break;
case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11:
case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15:
Category = 3;
break;
default:
Done = true;
break;
}
if (Done || Category != Area)
break;
}
++MBBI;
}
}
void ARMRegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
unsigned NumBytes = MFI->getStackSize();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
DebugLoc dl = (MBBI != MBB.end() ?
MBBI->getDebugLoc() : DebugLoc::getUnknownLoc());
if (isThumb) {
// Check if R3 is live in. It might have to be used as a scratch register.
for (MachineRegisterInfo::livein_iterator I =MF.getRegInfo().livein_begin(),
E = MF.getRegInfo().livein_end(); I != E; ++I) {
if (I->first == ARM::R3) {
AFI->setR3IsLiveIn(true);
break;
}
}
// Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4.
NumBytes = (NumBytes + 3) & ~3;
MFI->setStackSize(NumBytes);
}
// Determine the sizes of each callee-save spill areas and record which frame
// belongs to which callee-save spill areas.
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
int FramePtrSpillFI = 0;
if (VARegSaveSize)
emitSPUpdate(MBB, MBBI, -VARegSaveSize, ARMCC::AL, 0, isThumb, TII,
*this, dl);
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(MBB, MBBI, -NumBytes, ARMCC::AL, 0, isThumb, TII, *this, dl);
return;
}
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
int FI = CSI[i].getFrameIdx();
switch (Reg) {
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
AFI->addGPRCalleeSavedArea1Frame(FI);
GPRCS1Size += 4;
break;
case ARM::R8:
case ARM::R9:
case ARM::R10:
case ARM::R11:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
if (STI.isTargetDarwin()) {
AFI->addGPRCalleeSavedArea2Frame(FI);
GPRCS2Size += 4;
} else {
AFI->addGPRCalleeSavedArea1Frame(FI);
GPRCS1Size += 4;
}
break;
default:
AFI->addDPRCalleeSavedAreaFrame(FI);
DPRCSSize += 8;
}
}
if (!isThumb) {
// Build the new SUBri to adjust SP for integer callee-save spill area 1.
emitSPUpdate(MBB, MBBI, -GPRCS1Size, ARMCC::AL, 0, isThumb, TII, *this, dl);
movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 1, STI);
} else if (MBBI != MBB.end() && MBBI->getOpcode() == ARM::tPUSH) {
++MBBI;
if (MBBI != MBB.end())
dl = MBBI->getDebugLoc();
}
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if (STI.isTargetDarwin() || hasFP(MF)) {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, dl, TII.get(isThumb ? ARM::tADDrSPi : ARM::ADDri),
FramePtr)
.addFrameIndex(FramePtrSpillFI).addImm(0);
if (!isThumb) AddDefaultCC(AddDefaultPred(MIB));
}
if (!isThumb) {
// Build the new SUBri to adjust SP for integer callee-save spill area 2.
emitSPUpdate(MBB, MBBI, -GPRCS2Size, ARMCC::AL, 0, false, TII, *this, dl);
// Build the new SUBri to adjust SP for FP callee-save spill area.
movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 2, STI);
emitSPUpdate(MBB, MBBI, -DPRCSSize, ARMCC::AL, 0, false, TII, *this, dl);
}
// Determine starting offsets of spill areas.
unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize);
unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize;
unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size;
AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes);
AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
NumBytes = DPRCSOffset;
if (NumBytes) {
// Insert it after all the callee-save spills.
if (!isThumb)
movePastCSLoadStoreOps(MBB, MBBI, ARM::FSTD, 3, STI);
emitSPUpdate(MBB, MBBI, -NumBytes, ARMCC::AL, 0, isThumb, TII, *this, dl);
}
if(STI.isTargetELF() && hasFP(MF)) {
MFI->setOffsetAdjustment(MFI->getOffsetAdjustment() -
AFI->getFramePtrSpillOffset());
}
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
}
static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) {
for (unsigned i = 0; CSRegs[i]; ++i)
if (Reg == CSRegs[i])
return true;
return false;
}
static bool isCSRestore(MachineInstr *MI, const unsigned *CSRegs) {
return ((MI->getOpcode() == ARM::FLDD ||
MI->getOpcode() == ARM::LDR ||
MI->getOpcode() == ARM::tRestore) &&
MI->getOperand(1).isFI() &&
isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs));
}
void ARMRegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = prior(MBB.end());
assert((MBBI->getOpcode() == ARM::BX_RET ||
MBBI->getOpcode() == ARM::tBX_RET ||
MBBI->getOpcode() == ARM::tPOP_RET) &&
"Can only insert epilog into returning blocks");
DebugLoc dl = MBBI->getDebugLoc();
MachineFrameInfo *MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isThumb = AFI->isThumbFunction();
unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize();
int NumBytes = (int)MFI->getStackSize();
if (!AFI->hasStackFrame()) {
if (NumBytes != 0)
emitSPUpdate(MBB, MBBI, NumBytes, ARMCC::AL, 0, isThumb, TII, *this, dl);
} else {
// Unwind MBBI to point to first LDR / FLDD.
const unsigned *CSRegs = getCalleeSavedRegs();
if (MBBI != MBB.begin()) {
do
--MBBI;
while (MBBI != MBB.begin() && isCSRestore(MBBI, CSRegs));
if (!isCSRestore(MBBI, CSRegs))
++MBBI;
}
// Move SP to start of FP callee save spill area.
NumBytes -= (AFI->getGPRCalleeSavedArea1Size() +
AFI->getGPRCalleeSavedArea2Size() +
AFI->getDPRCalleeSavedAreaSize());
if (isThumb) {
if (hasFP(MF)) {
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
// Reset SP based on frame pointer only if the stack frame extends beyond
// frame pointer stack slot or target is ELF and the function has FP.
if (NumBytes)
emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, FramePtr, -NumBytes,
TII, *this, dl);
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP).addReg(FramePtr);
} else {
if (MBBI->getOpcode() == ARM::tBX_RET &&
&MBB.front() != MBBI &&
prior(MBBI)->getOpcode() == ARM::tPOP) {
MachineBasicBlock::iterator PMBBI = prior(MBBI);
emitSPUpdate(MBB, PMBBI, NumBytes, ARMCC::AL, 0, isThumb, TII,
*this, dl);
} else
emitSPUpdate(MBB, MBBI, NumBytes, ARMCC::AL, 0, isThumb, TII,
*this, dl);
}
} else {
// Darwin ABI requires FP to point to the stack slot that contains the
// previous FP.
if ((STI.isTargetDarwin() && NumBytes) || hasFP(MF)) {
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
// Reset SP based on frame pointer only if the stack frame extends beyond
// frame pointer stack slot or target is ELF and the function has FP.
if (AFI->getGPRCalleeSavedArea2Size() ||
AFI->getDPRCalleeSavedAreaSize() ||
AFI->getDPRCalleeSavedAreaOffset()||
hasFP(MF)) {
if (NumBytes)
BuildMI(MBB, MBBI, dl, TII.get(ARM::SUBri), ARM::SP).addReg(FramePtr)
.addImm(NumBytes)
.addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP).addReg(FramePtr)
.addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
}
} else if (NumBytes) {
emitSPUpdate(MBB, MBBI, NumBytes, ARMCC::AL, 0, false, TII, *this, dl);
}
// Move SP to start of integer callee save spill area 2.
movePastCSLoadStoreOps(MBB, MBBI, ARM::FLDD, 3, STI);
emitSPUpdate(MBB, MBBI, AFI->getDPRCalleeSavedAreaSize(), ARMCC::AL, 0,
false, TII, *this, dl);
// Move SP to start of integer callee save spill area 1.
movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 2, STI);
emitSPUpdate(MBB, MBBI, AFI->getGPRCalleeSavedArea2Size(), ARMCC::AL, 0,
false, TII, *this, dl);
// Move SP to SP upon entry to the function.
movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 1, STI);
emitSPUpdate(MBB, MBBI, AFI->getGPRCalleeSavedArea1Size(), ARMCC::AL, 0,
false, TII, *this, dl);
}
}
if (VARegSaveSize) {
if (isThumb)
// Epilogue for vararg functions: pop LR to R3 and branch off it.
// FIXME: Verify this is still ok when R3 is no longer being reserved.
BuildMI(MBB, MBBI, dl, TII.get(ARM::tPOP)).addReg(ARM::R3);
emitSPUpdate(MBB, MBBI, VARegSaveSize, ARMCC::AL, 0, isThumb, TII,
*this, dl);
if (isThumb) {
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBX_RET_vararg)).addReg(ARM::R3);
MBB.erase(MBBI);
}
}
}
unsigned ARMRegisterInfo::getRARegister() const {
return ARM::LR;
}
unsigned ARMRegisterInfo::getFrameRegister(MachineFunction &MF) const {
if (STI.isTargetDarwin() || hasFP(MF))
return (STI.useThumbBacktraces() || STI.isThumb()) ? ARM::R7 : ARM::R11;
else
return ARM::SP;
}
unsigned ARMRegisterInfo::getEHExceptionRegister() const {
assert(0 && "What is the exception register");
return 0;
}
unsigned ARMRegisterInfo::getEHHandlerRegister() const {
assert(0 && "What is the exception handler register");
return 0;
}
int ARMRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const {
return ARMGenRegisterInfo::getDwarfRegNumFull(RegNum, 0);
}
#include "ARMGenRegisterInfo.inc"