mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
bd1801b555
with BasicAA's DecomposeGEPExpression, which recently began using a TargetData. This fixes PR8968, though the testcase is awkward to reduce. Also, update several off GetUnderlyingObject's users which happen to have a TargetData handy to pass it in. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124134 91177308-0d34-0410-b5e6-96231b3b80d8
731 lines
26 KiB
C++
731 lines
26 KiB
C++
//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a trivial dead store elimination that only considers
|
|
// basic-block local redundant stores.
|
|
//
|
|
// FIXME: This should eventually be extended to be a post-dominator tree
|
|
// traversal. Doing so would be pretty trivial.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dse"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFastStores, "Number of stores deleted");
|
|
STATISTIC(NumFastOther , "Number of other instrs removed");
|
|
|
|
namespace {
|
|
struct DSE : public FunctionPass {
|
|
AliasAnalysis *AA;
|
|
MemoryDependenceAnalysis *MD;
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
DSE() : FunctionPass(ID), AA(0), MD(0) {
|
|
initializeDSEPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &F) {
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
MD = &getAnalysis<MemoryDependenceAnalysis>();
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
|
|
bool Changed = false;
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
// Only check non-dead blocks. Dead blocks may have strange pointer
|
|
// cycles that will confuse alias analysis.
|
|
if (DT.isReachableFromEntry(I))
|
|
Changed |= runOnBasicBlock(*I);
|
|
|
|
AA = 0; MD = 0;
|
|
return Changed;
|
|
}
|
|
|
|
bool runOnBasicBlock(BasicBlock &BB);
|
|
bool HandleFree(CallInst *F);
|
|
bool handleEndBlock(BasicBlock &BB);
|
|
void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
|
|
SmallPtrSet<Value*, 16> &DeadStackObjects);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<MemoryDependenceAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved<DominatorTree>();
|
|
AU.addPreserved<MemoryDependenceAnalysis>();
|
|
}
|
|
};
|
|
}
|
|
|
|
char DSE::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
|
|
|
|
FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DeleteDeadInstruction - Delete this instruction. Before we do, go through
|
|
/// and zero out all the operands of this instruction. If any of them become
|
|
/// dead, delete them and the computation tree that feeds them.
|
|
///
|
|
/// If ValueSet is non-null, remove any deleted instructions from it as well.
|
|
///
|
|
static void DeleteDeadInstruction(Instruction *I,
|
|
MemoryDependenceAnalysis &MD,
|
|
SmallPtrSet<Value*, 16> *ValueSet = 0) {
|
|
SmallVector<Instruction*, 32> NowDeadInsts;
|
|
|
|
NowDeadInsts.push_back(I);
|
|
--NumFastOther;
|
|
|
|
// Before we touch this instruction, remove it from memdep!
|
|
do {
|
|
Instruction *DeadInst = NowDeadInsts.pop_back_val();
|
|
++NumFastOther;
|
|
|
|
// This instruction is dead, zap it, in stages. Start by removing it from
|
|
// MemDep, which needs to know the operands and needs it to be in the
|
|
// function.
|
|
MD.removeInstruction(DeadInst);
|
|
|
|
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
|
|
Value *Op = DeadInst->getOperand(op);
|
|
DeadInst->setOperand(op, 0);
|
|
|
|
// If this operand just became dead, add it to the NowDeadInsts list.
|
|
if (!Op->use_empty()) continue;
|
|
|
|
if (Instruction *OpI = dyn_cast<Instruction>(Op))
|
|
if (isInstructionTriviallyDead(OpI))
|
|
NowDeadInsts.push_back(OpI);
|
|
}
|
|
|
|
DeadInst->eraseFromParent();
|
|
|
|
if (ValueSet) ValueSet->erase(DeadInst);
|
|
} while (!NowDeadInsts.empty());
|
|
}
|
|
|
|
|
|
/// hasMemoryWrite - Does this instruction write some memory? This only returns
|
|
/// true for things that we can analyze with other helpers below.
|
|
static bool hasMemoryWrite(Instruction *I) {
|
|
if (isa<StoreInst>(I))
|
|
return true;
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::init_trampoline:
|
|
case Intrinsic::lifetime_end:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getLocForWrite - Return a Location stored to by the specified instruction.
|
|
static AliasAnalysis::Location
|
|
getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
return AA.getLocation(SI);
|
|
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
|
|
// memcpy/memmove/memset.
|
|
AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
|
|
// If we don't have target data around, an unknown size in Location means
|
|
// that we should use the size of the pointee type. This isn't valid for
|
|
// memset/memcpy, which writes more than an i8.
|
|
if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
|
|
return AliasAnalysis::Location();
|
|
return Loc;
|
|
}
|
|
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
|
|
if (II == 0) return AliasAnalysis::Location();
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default: return AliasAnalysis::Location(); // Unhandled intrinsic.
|
|
case Intrinsic::init_trampoline:
|
|
// If we don't have target data around, an unknown size in Location means
|
|
// that we should use the size of the pointee type. This isn't valid for
|
|
// init.trampoline, which writes more than an i8.
|
|
if (AA.getTargetData() == 0) return AliasAnalysis::Location();
|
|
|
|
// FIXME: We don't know the size of the trampoline, so we can't really
|
|
// handle it here.
|
|
return AliasAnalysis::Location(II->getArgOperand(0));
|
|
case Intrinsic::lifetime_end: {
|
|
uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
|
|
return AliasAnalysis::Location(II->getArgOperand(1), Len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
|
|
/// instruction if any.
|
|
static AliasAnalysis::Location
|
|
getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
|
|
assert(hasMemoryWrite(Inst) && "Unknown instruction case");
|
|
|
|
// The only instructions that both read and write are the mem transfer
|
|
// instructions (memcpy/memmove).
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
|
|
return AA.getLocationForSource(MTI);
|
|
return AliasAnalysis::Location();
|
|
}
|
|
|
|
|
|
/// isRemovable - If the value of this instruction and the memory it writes to
|
|
/// is unused, may we delete this instruction?
|
|
static bool isRemovable(Instruction *I) {
|
|
// Don't remove volatile stores.
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return !SI->isVolatile();
|
|
|
|
IntrinsicInst *II = cast<IntrinsicInst>(I);
|
|
switch (II->getIntrinsicID()) {
|
|
default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
|
|
case Intrinsic::lifetime_end:
|
|
// Never remove dead lifetime_end's, e.g. because it is followed by a
|
|
// free.
|
|
return false;
|
|
case Intrinsic::init_trampoline:
|
|
// Always safe to remove init_trampoline.
|
|
return true;
|
|
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
// Don't remove volatile memory intrinsics.
|
|
return !cast<MemIntrinsic>(II)->isVolatile();
|
|
}
|
|
}
|
|
|
|
/// getStoredPointerOperand - Return the pointer that is being written to.
|
|
static Value *getStoredPointerOperand(Instruction *I) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
return SI->getPointerOperand();
|
|
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
|
|
return MI->getDest();
|
|
|
|
IntrinsicInst *II = cast<IntrinsicInst>(I);
|
|
switch (II->getIntrinsicID()) {
|
|
default: assert(false && "Unexpected intrinsic!");
|
|
case Intrinsic::init_trampoline:
|
|
return II->getArgOperand(0);
|
|
}
|
|
}
|
|
|
|
static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
|
|
const TargetData *TD = AA.getTargetData();
|
|
if (TD == 0)
|
|
return AliasAnalysis::UnknownSize;
|
|
|
|
if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
|
|
// Get size information for the alloca
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
|
|
return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
|
|
return AliasAnalysis::UnknownSize;
|
|
}
|
|
|
|
assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
|
|
const PointerType *PT = cast<PointerType>(V->getType());
|
|
return TD->getTypeAllocSize(PT->getElementType());
|
|
}
|
|
|
|
/// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
|
|
/// pointing to an object with a pointer size we can trust.
|
|
static bool isObjectPointerWithTrustworthySize(const Value *V) {
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
|
|
return !AI->isArrayAllocation();
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return !GV->mayBeOverridden();
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasByValAttr();
|
|
return false;
|
|
}
|
|
|
|
/// isCompleteOverwrite - Return true if a store to the 'Later' location
|
|
/// completely overwrites a store to the 'Earlier' location.
|
|
static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
|
|
const AliasAnalysis::Location &Earlier,
|
|
AliasAnalysis &AA) {
|
|
const Value *P1 = Earlier.Ptr->stripPointerCasts();
|
|
const Value *P2 = Later.Ptr->stripPointerCasts();
|
|
|
|
// If the start pointers are the same, we just have to compare sizes to see if
|
|
// the later store was larger than the earlier store.
|
|
if (P1 == P2) {
|
|
// If we don't know the sizes of either access, then we can't do a
|
|
// comparison.
|
|
if (Later.Size == AliasAnalysis::UnknownSize ||
|
|
Earlier.Size == AliasAnalysis::UnknownSize) {
|
|
// If we have no TargetData information around, then the size of the store
|
|
// is inferrable from the pointee type. If they are the same type, then
|
|
// we know that the store is safe.
|
|
if (AA.getTargetData() == 0)
|
|
return Later.Ptr->getType() == Earlier.Ptr->getType();
|
|
return false;
|
|
}
|
|
|
|
// Make sure that the Later size is >= the Earlier size.
|
|
if (Later.Size < Earlier.Size)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we have to have size information, and the later store has to be
|
|
// larger than the earlier one.
|
|
if (Later.Size == AliasAnalysis::UnknownSize ||
|
|
Earlier.Size == AliasAnalysis::UnknownSize ||
|
|
Later.Size <= Earlier.Size || AA.getTargetData() == 0)
|
|
return false;
|
|
|
|
// Check to see if the later store is to the entire object (either a global,
|
|
// an alloca, or a byval argument). If so, then it clearly overwrites any
|
|
// other store to the same object.
|
|
const TargetData &TD = *AA.getTargetData();
|
|
|
|
const Value *UO1 = GetUnderlyingObject(P1, &TD),
|
|
*UO2 = GetUnderlyingObject(P2, &TD);
|
|
|
|
// If we can't resolve the same pointers to the same object, then we can't
|
|
// analyze them at all.
|
|
if (UO1 != UO2)
|
|
return false;
|
|
|
|
// If the "Later" store is to a recognizable object, get its size.
|
|
if (isObjectPointerWithTrustworthySize(UO2)) {
|
|
uint64_t ObjectSize =
|
|
TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
|
|
if (ObjectSize == Later.Size)
|
|
return true;
|
|
}
|
|
|
|
// Okay, we have stores to two completely different pointers. Try to
|
|
// decompose the pointer into a "base + constant_offset" form. If the base
|
|
// pointers are equal, then we can reason about the two stores.
|
|
int64_t Off1 = 0, Off2 = 0;
|
|
const Value *BP1 = GetPointerBaseWithConstantOffset(P1, Off1, TD);
|
|
const Value *BP2 = GetPointerBaseWithConstantOffset(P2, Off2, TD);
|
|
|
|
// If the base pointers still differ, we have two completely different stores.
|
|
if (BP1 != BP2)
|
|
return false;
|
|
|
|
// Otherwise, we might have a situation like:
|
|
// store i16 -> P + 1 Byte
|
|
// store i32 -> P
|
|
// In this case, we see if the later store completely overlaps all bytes
|
|
// stored by the previous store.
|
|
if (Off1 < Off2 || // Earlier starts before Later.
|
|
Off1+Earlier.Size > Off2+Later.Size) // Earlier goes beyond Later.
|
|
return false;
|
|
// Otherwise, we have complete overlap.
|
|
return true;
|
|
}
|
|
|
|
/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
|
|
/// memory region into an identical pointer) then it doesn't actually make its
|
|
/// input dead in the traditional sense. Consider this case:
|
|
///
|
|
/// memcpy(A <- B)
|
|
/// memcpy(A <- A)
|
|
///
|
|
/// In this case, the second store to A does not make the first store to A dead.
|
|
/// The usual situation isn't an explicit A<-A store like this (which can be
|
|
/// trivially removed) but a case where two pointers may alias.
|
|
///
|
|
/// This function detects when it is unsafe to remove a dependent instruction
|
|
/// because the DSE inducing instruction may be a self-read.
|
|
static bool isPossibleSelfRead(Instruction *Inst,
|
|
const AliasAnalysis::Location &InstStoreLoc,
|
|
Instruction *DepWrite, AliasAnalysis &AA) {
|
|
// Self reads can only happen for instructions that read memory. Get the
|
|
// location read.
|
|
AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
|
|
if (InstReadLoc.Ptr == 0) return false; // Not a reading instruction.
|
|
|
|
// If the read and written loc obviously don't alias, it isn't a read.
|
|
if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
|
|
|
|
// Okay, 'Inst' may copy over itself. However, we can still remove a the
|
|
// DepWrite instruction if we can prove that it reads from the same location
|
|
// as Inst. This handles useful cases like:
|
|
// memcpy(A <- B)
|
|
// memcpy(A <- B)
|
|
// Here we don't know if A/B may alias, but we do know that B/B are must
|
|
// aliases, so removing the first memcpy is safe (assuming it writes <= #
|
|
// bytes as the second one.
|
|
AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
|
|
|
|
if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
|
|
return false;
|
|
|
|
// If DepWrite doesn't read memory or if we can't prove it is a must alias,
|
|
// then it can't be considered dead.
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DSE Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool DSE::runOnBasicBlock(BasicBlock &BB) {
|
|
bool MadeChange = false;
|
|
|
|
// Do a top-down walk on the BB.
|
|
for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
|
|
Instruction *Inst = BBI++;
|
|
|
|
// Handle 'free' calls specially.
|
|
if (CallInst *F = isFreeCall(Inst)) {
|
|
MadeChange |= HandleFree(F);
|
|
continue;
|
|
}
|
|
|
|
// If we find something that writes memory, get its memory dependence.
|
|
if (!hasMemoryWrite(Inst))
|
|
continue;
|
|
|
|
MemDepResult InstDep = MD->getDependency(Inst);
|
|
|
|
// Ignore non-local store liveness.
|
|
// FIXME: cross-block DSE would be fun. :)
|
|
if (InstDep.isNonLocal() ||
|
|
// Ignore self dependence, which happens in the entry block of the
|
|
// function.
|
|
InstDep.getInst() == Inst)
|
|
continue;
|
|
|
|
// If we're storing the same value back to a pointer that we just
|
|
// loaded from, then the store can be removed.
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
|
|
if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
|
|
if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
|
|
SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
|
|
DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n "
|
|
<< "LOAD: " << *DepLoad << "\n STORE: " << *SI << '\n');
|
|
|
|
// DeleteDeadInstruction can delete the current instruction. Save BBI
|
|
// in case we need it.
|
|
WeakVH NextInst(BBI);
|
|
|
|
DeleteDeadInstruction(SI, *MD);
|
|
|
|
if (NextInst == 0) // Next instruction deleted.
|
|
BBI = BB.begin();
|
|
else if (BBI != BB.begin()) // Revisit this instruction if possible.
|
|
--BBI;
|
|
++NumFastStores;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Figure out what location is being stored to.
|
|
AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
|
|
|
|
// If we didn't get a useful location, fail.
|
|
if (Loc.Ptr == 0)
|
|
continue;
|
|
|
|
while (!InstDep.isNonLocal()) {
|
|
// Get the memory clobbered by the instruction we depend on. MemDep will
|
|
// skip any instructions that 'Loc' clearly doesn't interact with. If we
|
|
// end up depending on a may- or must-aliased load, then we can't optimize
|
|
// away the store and we bail out. However, if we depend on on something
|
|
// that overwrites the memory location we *can* potentially optimize it.
|
|
//
|
|
// Find out what memory location the dependant instruction stores.
|
|
Instruction *DepWrite = InstDep.getInst();
|
|
AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
|
|
// If we didn't get a useful location, or if it isn't a size, bail out.
|
|
if (DepLoc.Ptr == 0)
|
|
break;
|
|
|
|
// If we find a write that is a) removable (i.e., non-volatile), b) is
|
|
// completely obliterated by the store to 'Loc', and c) which we know that
|
|
// 'Inst' doesn't load from, then we can remove it.
|
|
if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
|
|
!isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
|
|
DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
|
|
<< *DepWrite << "\n KILLER: " << *Inst << '\n');
|
|
|
|
// Delete the store and now-dead instructions that feed it.
|
|
DeleteDeadInstruction(DepWrite, *MD);
|
|
++NumFastStores;
|
|
MadeChange = true;
|
|
|
|
// DeleteDeadInstruction can delete the current instruction in loop
|
|
// cases, reset BBI.
|
|
BBI = Inst;
|
|
if (BBI != BB.begin())
|
|
--BBI;
|
|
break;
|
|
}
|
|
|
|
// If this is a may-aliased store that is clobbering the store value, we
|
|
// can keep searching past it for another must-aliased pointer that stores
|
|
// to the same location. For example, in:
|
|
// store -> P
|
|
// store -> Q
|
|
// store -> P
|
|
// we can remove the first store to P even though we don't know if P and Q
|
|
// alias.
|
|
if (DepWrite == &BB.front()) break;
|
|
|
|
// Can't look past this instruction if it might read 'Loc'.
|
|
if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
|
|
break;
|
|
|
|
InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
|
|
}
|
|
}
|
|
|
|
// If this block ends in a return, unwind, or unreachable, all allocas are
|
|
// dead at its end, which means stores to them are also dead.
|
|
if (BB.getTerminator()->getNumSuccessors() == 0)
|
|
MadeChange |= handleEndBlock(BB);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// HandleFree - Handle frees of entire structures whose dependency is a store
|
|
/// to a field of that structure.
|
|
bool DSE::HandleFree(CallInst *F) {
|
|
MemDepResult Dep = MD->getDependency(F);
|
|
do {
|
|
if (Dep.isNonLocal()) return false;
|
|
|
|
Instruction *Dependency = Dep.getInst();
|
|
if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
|
|
return false;
|
|
|
|
Value *DepPointer =
|
|
GetUnderlyingObject(getStoredPointerOperand(Dependency));
|
|
|
|
// Check for aliasing.
|
|
if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
|
|
return false;
|
|
|
|
// DCE instructions only used to calculate that store
|
|
DeleteDeadInstruction(Dependency, *MD);
|
|
++NumFastStores;
|
|
|
|
// Inst's old Dependency is now deleted. Compute the next dependency,
|
|
// which may also be dead, as in
|
|
// s[0] = 0;
|
|
// s[1] = 0; // This has just been deleted.
|
|
// free(s);
|
|
Dep = MD->getDependency(F);
|
|
} while (!Dep.isNonLocal());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// handleEndBlock - Remove dead stores to stack-allocated locations in the
|
|
/// function end block. Ex:
|
|
/// %A = alloca i32
|
|
/// ...
|
|
/// store i32 1, i32* %A
|
|
/// ret void
|
|
bool DSE::handleEndBlock(BasicBlock &BB) {
|
|
bool MadeChange = false;
|
|
|
|
// Keep track of all of the stack objects that are dead at the end of the
|
|
// function.
|
|
SmallPtrSet<Value*, 16> DeadStackObjects;
|
|
|
|
// Find all of the alloca'd pointers in the entry block.
|
|
BasicBlock *Entry = BB.getParent()->begin();
|
|
for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
|
DeadStackObjects.insert(AI);
|
|
|
|
// Treat byval arguments the same, stores to them are dead at the end of the
|
|
// function.
|
|
for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
|
|
AE = BB.getParent()->arg_end(); AI != AE; ++AI)
|
|
if (AI->hasByValAttr())
|
|
DeadStackObjects.insert(AI);
|
|
|
|
// Scan the basic block backwards
|
|
for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
|
|
--BBI;
|
|
|
|
// If we find a store, check to see if it points into a dead stack value.
|
|
if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
|
|
// See through pointer-to-pointer bitcasts
|
|
Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
|
|
|
|
// Stores to stack values are valid candidates for removal.
|
|
if (DeadStackObjects.count(Pointer)) {
|
|
Instruction *Dead = BBI++;
|
|
|
|
DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
|
|
<< *Dead << "\n Object: " << *Pointer << '\n');
|
|
|
|
// DCE instructions only used to calculate that store.
|
|
DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
|
|
++NumFastStores;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Remove any dead non-memory-mutating instructions.
|
|
if (isInstructionTriviallyDead(BBI)) {
|
|
Instruction *Inst = BBI++;
|
|
DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
|
|
++NumFastOther;
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
|
|
if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
|
|
DeadStackObjects.erase(A);
|
|
continue;
|
|
}
|
|
|
|
if (CallSite CS = cast<Value>(BBI)) {
|
|
// If this call does not access memory, it can't be loading any of our
|
|
// pointers.
|
|
if (AA->doesNotAccessMemory(CS))
|
|
continue;
|
|
|
|
unsigned NumModRef = 0, NumOther = 0;
|
|
|
|
// If the call might load from any of our allocas, then any store above
|
|
// the call is live.
|
|
SmallVector<Value*, 8> LiveAllocas;
|
|
for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
|
|
E = DeadStackObjects.end(); I != E; ++I) {
|
|
// If we detect that our AA is imprecise, it's not worth it to scan the
|
|
// rest of the DeadPointers set. Just assume that the AA will return
|
|
// ModRef for everything, and go ahead and bail out.
|
|
if (NumModRef >= 16 && NumOther == 0)
|
|
return MadeChange;
|
|
|
|
// See if the call site touches it.
|
|
AliasAnalysis::ModRefResult A =
|
|
AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
|
|
|
|
if (A == AliasAnalysis::ModRef)
|
|
++NumModRef;
|
|
else
|
|
++NumOther;
|
|
|
|
if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
|
|
LiveAllocas.push_back(*I);
|
|
}
|
|
|
|
for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
|
|
E = LiveAllocas.end(); I != E; ++I)
|
|
DeadStackObjects.erase(*I);
|
|
|
|
// If all of the allocas were clobbered by the call then we're not going
|
|
// to find anything else to process.
|
|
if (DeadStackObjects.empty())
|
|
return MadeChange;
|
|
|
|
continue;
|
|
}
|
|
|
|
AliasAnalysis::Location LoadedLoc;
|
|
|
|
// If we encounter a use of the pointer, it is no longer considered dead
|
|
if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
|
|
LoadedLoc = AA->getLocation(L);
|
|
} else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
|
|
LoadedLoc = AA->getLocation(V);
|
|
} else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
|
|
LoadedLoc = AA->getLocationForSource(MTI);
|
|
} else {
|
|
// Not a loading instruction.
|
|
continue;
|
|
}
|
|
|
|
// Remove any allocas from the DeadPointer set that are loaded, as this
|
|
// makes any stores above the access live.
|
|
RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
|
|
|
|
// If all of the allocas were clobbered by the access then we're not going
|
|
// to find anything else to process.
|
|
if (DeadStackObjects.empty())
|
|
break;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// RemoveAccessedObjects - Check to see if the specified location may alias any
|
|
/// of the stack objects in the DeadStackObjects set. If so, they become live
|
|
/// because the location is being loaded.
|
|
void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
|
|
SmallPtrSet<Value*, 16> &DeadStackObjects) {
|
|
const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
|
|
|
|
// A constant can't be in the dead pointer set.
|
|
if (isa<Constant>(UnderlyingPointer))
|
|
return;
|
|
|
|
// If the kill pointer can be easily reduced to an alloca, don't bother doing
|
|
// extraneous AA queries.
|
|
if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
|
|
DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
|
|
return;
|
|
}
|
|
|
|
SmallVector<Value*, 16> NowLive;
|
|
for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
|
|
E = DeadStackObjects.end(); I != E; ++I) {
|
|
// See if the loaded location could alias the stack location.
|
|
AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
|
|
if (!AA->isNoAlias(StackLoc, LoadedLoc))
|
|
NowLive.push_back(*I);
|
|
}
|
|
|
|
for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
|
|
I != E; ++I)
|
|
DeadStackObjects.erase(*I);
|
|
}
|
|
|