llvm-6502/lib/Target/ARM/ARMSelectionDAGInfo.cpp
Sergey Dmitrouk 1f7a90d793 Reapply r235977 "[DebugInfo] Add debug locations to constant SD nodes"
[DebugInfo] Add debug locations to constant SD nodes

This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).

Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.

Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.

This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.

Differential Revision: http://reviews.llvm.org/D9084

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235989 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-28 14:05:47 +00:00

201 lines
7.0 KiB
C++

//===-- ARMSelectionDAGInfo.cpp - ARM SelectionDAG Info -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMSelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
#define DEBUG_TYPE "arm-selectiondag-info"
ARMSelectionDAGInfo::ARMSelectionDAGInfo(const DataLayout &DL)
: TargetSelectionDAGInfo(&DL) {}
ARMSelectionDAGInfo::~ARMSelectionDAGInfo() {
}
SDValue
ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
// Do repeated 4-byte loads and stores. To be improved.
// This requires 4-byte alignment.
if ((Align & 3) != 0)
return SDValue();
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
// Emit a maximum of 4 loads in Thumb1 since we have fewer registers
const unsigned MAX_LOADS_IN_LDM = Subtarget.isThumb1Only() ? 4 : 6;
SDValue TFOps[6];
SDValue Loads[6];
uint64_t SrcOff = 0, DstOff = 0;
// Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
// same number of stores. The loads and stores will get combined into
// ldm/stm later on.
while (EmittedNumMemOps < NumMemOps) {
for (i = 0;
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, dl, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff), isVolatile,
false, false, 0);
TFOps[i] = Loads[i].getValue(1);
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
for (i = 0;
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, dl, MVT::i32)),
DstPtrInfo.getWithOffset(DstOff),
isVolatile, false, 0);
DstOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
EmittedNumMemOps += i;
}
if (BytesLeft == 0)
return Chain;
// Issue loads / stores for the trailing (1 - 3) bytes.
unsigned BytesLeftSave = BytesLeft;
i = 0;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, dl, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff),
false, false, false, 0);
TFOps[i] = Loads[i].getValue(1);
++i;
SrcOff += VTSize;
BytesLeft -= VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
i = 0;
BytesLeft = BytesLeftSave;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, dl, MVT::i32)),
DstPtrInfo.getWithOffset(DstOff), false, false, 0);
++i;
DstOff += VTSize;
BytesLeft -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
}
// Adjust parameters for memset, EABI uses format (ptr, size, value),
// GNU library uses (ptr, value, size)
// See RTABI section 4.3.4
SDValue ARMSelectionDAGInfo::
EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
// Use default for non-AAPCS (or MachO) subtargets
if (!Subtarget.isAAPCS_ABI() || Subtarget.isTargetMachO() ||
Subtarget.isTargetWindows())
return SDValue();
const ARMTargetLowering &TLI = *Subtarget.getTargetLowering();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
// First argument: data pointer
Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*DAG.getContext());
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
// Second argument: buffer size
Entry.Node = Size;
Entry.Ty = IntPtrTy;
Entry.isSExt = false;
Args.push_back(Entry);
// Extend or truncate the argument to be an i32 value for the call.
if (Src.getValueType().bitsGT(MVT::i32))
Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
else
Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
// Third argument: value to fill
Entry.Node = Src;
Entry.Ty = Type::getInt32Ty(*DAG.getContext());
Entry.isSExt = true;
Args.push_back(Entry);
// Emit __eabi_memset call
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(Chain)
.setCallee(TLI.getLibcallCallingConv(RTLIB::MEMSET),
Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
TLI.getPointerTy()), std::move(Args), 0)
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}