llvm-6502/test/Transforms/PlaceSafepoints/split-backedge.ll
Sanjoy Das ead2d1fbe0 [Statepoints] Support for "patchable" statepoints.
Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`.  `id` gets propagated to the ID field
in the generated StackMap section.  If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.

This change brings statepoints one step closer to patchpoints.  With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.

PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`.  This can be made more sophisticated
later.

Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9546

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237214 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-12 23:52:24 +00:00

46 lines
1.1 KiB
LLVM

;; A very basic test to make sure that splitting the backedge keeps working
;; RUN: opt -place-safepoints -spp-split-backedge=1 -S %s | FileCheck %s
define void @test(i32, i1 %cond) gc "statepoint-example" {
; CHECK-LABEL: @test
; CHECK-LABEL: loop.loop_crit_edge
; CHECK: gc.statepoint
; CHECK-NEXT: br label %loop
entry:
br label %loop
loop:
br i1 %cond, label %loop, label %exit
exit:
ret void
}
; Test for the case where a single conditional branch jumps to two
; different loop header blocks. Since we're currently using LoopSimplfy
; this doesn't hit the interesting case, but once we remove that, we need
; to be sure this keeps working.
define void @test2(i32, i1 %cond) gc "statepoint-example" {
; CHECK-LABEL: @test2
; CHECK-LABEL: loop2.loop2_crit_edge:
; CHECK: gc.statepoint
; CHECK-NEXT: br label %loop2
; CHECK-LABEL: loop2.loop_crit_edge:
; CHECK: gc.statepoint
; CHECK-NEXT: br label %loop
entry:
br label %loop
loop:
br label %loop2
loop2:
br i1 %cond, label %loop, label %loop2
}
declare void @do_safepoint()
define void @gc.safepoint_poll() {
entry:
call void @do_safepoint()
ret void
}