Chandler Carruth 8615ab4a4a [LPM] Switch LICM to actively use LCSSA in addition to preserving it.
Fixes PR18753 and PR18782.

This is necessary for LICM to preserve LCSSA correctly and efficiently.
There is still some active discussion about whether we should be using
LCSSA, but we can't just immediately stop using it and we *need* LICM to
preserve it while we are using it. We can restore the old SSAUpdater
driven code if and when there is a serious effort to remove the reliance
on LCSSA from all of the loop passes.

However, this also serves as a great example of why LCSSA is very nice
to have. This change significantly simplifies the process of sinking
instructions for LICM, and makes it quite a bit less expensive.

It wouldn't even be as complex as it is except that I had to start the
process of removing the big recursive LCSSA formation hammer in order to
switch even this much of the re-forming code to asserting that LCSSA was
preserved. I'll fully remove that next just to tidy things up until the
LCSSA debate settles one way or the other.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201148 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-11 12:52:27 +00:00

320 lines
8.4 KiB
LLVM

; RUN: opt < %s -basicaa -licm -S | FileCheck %s
declare i32 @strlen(i8*) readonly
declare void @foo()
; Sink readonly function.
define i32 @test1(i8* %P) {
br label %Loop
Loop: ; preds = %Loop, %0
%A = call i32 @strlen( i8* %P ) readonly
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %A
; CHECK-LABEL: @test1(
; CHECK: Out:
; CHECK-NEXT: call i32 @strlen
; CHECK-NEXT: ret i32 %A
}
declare double @sin(double) readnone
; Sink readnone function out of loop with unknown memory behavior.
define double @test2(double %X) {
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = call double @sin( double %X ) readnone
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret double %A
; CHECK-LABEL: @test2(
; CHECK: Out:
; CHECK-NEXT: call double @sin
; CHECK-NEXT: ret double %A
}
; This testcase checks to make sure the sinker does not cause problems with
; critical edges.
define void @test3() {
Entry:
br i1 false, label %Loop, label %Exit
Loop:
%X = add i32 0, 1
br i1 false, label %Loop, label %Exit
Exit:
%Y = phi i32 [ 0, %Entry ], [ %X, %Loop ]
ret void
; CHECK-LABEL: @test3(
; CHECK: Exit.loopexit:
; CHECK-NEXT: %X.le = add i32 0, 1
; CHECK-NEXT: br label %Exit
}
; If the result of an instruction is only used outside of the loop, sink
; the instruction to the exit blocks instead of executing it on every
; iteration of the loop.
;
define i32 @test4(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.7
; CHECK-LABEL: @test4(
; CHECK: Out:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le, %N
; CHECK-NEXT: ret i32
}
; To reduce register pressure, if a load is hoistable out of the loop, and the
; result of the load is only used outside of the loop, sink the load instead of
; hoisting it!
;
@X = global i32 5 ; <i32*> [#uses=1]
define i32 @test5(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = load i32* @X ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
; CHECK-LABEL: @test5(
; CHECK: Out:
; CHECK-NEXT: %tmp.6.le = load i32* @X
; CHECK-NEXT: ret i32 %tmp.6.le
}
; The loop sinker was running from the bottom of the loop to the top, causing
; it to miss opportunities to sink instructions that depended on sinking other
; instructions from the loop. Instead they got hoisted, which is better than
; leaving them in the loop, but increases register pressure pointlessly.
%Ty = type { i32, i32 }
@X2 = external global %Ty
define i32 @test6() {
br label %Loop
Loop:
%dead = getelementptr %Ty* @X2, i64 0, i32 0
%sunk2 = load i32* %dead
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %sunk2
; CHECK-LABEL: @test6(
; CHECK: Out:
; CHECK-NEXT: %dead.le = getelementptr %Ty* @X2, i64 0, i32 0
; CHECK-NEXT: %sunk2.le = load i32* %dead.le
; CHECK-NEXT: ret i32 %sunk2.le
}
; This testcase ensures that we can sink instructions from loops with
; multiple exits.
;
define i32 @test7(i32 %N, i1 %C) {
Entry:
br label %Loop
Loop: ; preds = %ContLoop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=2]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
br i1 %C, label %ContLoop, label %Out1
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out2
Out1: ; preds = %Loop
ret i32 %tmp.7
Out2: ; preds = %ContLoop
ret i32 %tmp.7
; CHECK-LABEL: @test7(
; CHECK: Out1:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le, %N
; CHECK-NEXT: ret
; CHECK: Out2:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le4, %N
; CHECK-NEXT: ret
}
; This testcase checks to make sure we can sink values which are only live on
; some exits out of the loop, and that we can do so without breaking dominator
; info.
define i32 @test8(i1 %C1, i1 %C2, i32* %P, i32* %Q) {
Entry:
br label %Loop
Loop: ; preds = %Cont, %Entry
br i1 %C1, label %Cont, label %exit1
Cont: ; preds = %Loop
%X = load i32* %P ; <i32> [#uses=2]
store i32 %X, i32* %Q
%V = add i32 %X, 1 ; <i32> [#uses=1]
br i1 %C2, label %Loop, label %exit2
exit1: ; preds = %Loop
ret i32 0
exit2: ; preds = %Cont
ret i32 %V
; CHECK-LABEL: @test8(
; CHECK: exit1:
; CHECK-NEXT: ret i32 0
; CHECK: exit2:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %X
; CHECK-NEXT: %V.le = add i32 %[[LCSSAPHI]], 1
; CHECK-NEXT: ret i32 %V.le
}
define void @test9() {
loopentry.2.i:
br i1 false, label %no_exit.1.i.preheader, label %loopentry.3.i.preheader
no_exit.1.i.preheader: ; preds = %loopentry.2.i
br label %no_exit.1.i
no_exit.1.i: ; preds = %endif.8.i, %no_exit.1.i.preheader
br i1 false, label %return.i, label %endif.8.i
endif.8.i: ; preds = %no_exit.1.i
%inc.1.i = add i32 0, 1 ; <i32> [#uses=1]
br i1 false, label %no_exit.1.i, label %loopentry.3.i.preheader.loopexit
loopentry.3.i.preheader.loopexit: ; preds = %endif.8.i
br label %loopentry.3.i.preheader
loopentry.3.i.preheader: ; preds = %loopentry.3.i.preheader.loopexit, %loopentry.2.i
%arg_num.0.i.ph13000 = phi i32 [ 0, %loopentry.2.i ], [ %inc.1.i, %loopentry.3.i.preheader.loopexit ] ; <i32> [#uses=0]
ret void
return.i: ; preds = %no_exit.1.i
ret void
; CHECK-LABEL: @test9(
; CHECK: loopentry.3.i.preheader.loopexit:
; CHECK-NEXT: %inc.1.i.le = add i32 0, 1
; CHECK-NEXT: br label %loopentry.3.i.preheader
}
; Potentially trapping instructions may be sunk as long as they are guaranteed
; to be executed.
define i32 @test10(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] ; <i32> [#uses=3]
%tmp.6 = sdiv i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 0 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
; CHECK-LABEL: @test10(
; CHECK: Out:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: %tmp.6.le = sdiv i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: ret i32 %tmp.6.le
}
; Should delete, not sink, dead instructions.
define void @test11() {
br label %Loop
Loop:
%dead = getelementptr %Ty* @X2, i64 0, i32 0
br i1 false, label %Loop, label %Out
Out:
ret void
; CHECK-LABEL: @test11(
; CHECK: Out:
; CHECK-NEXT: ret void
}
@c = common global [1 x i32] zeroinitializer, align 4
; Test a *many* way nested loop with multiple exit blocks both of which exit
; multiple loop nests. This exercises LCSSA corner cases.
define i32 @PR18753(i1* %a, i1* %b, i1* %c, i1* %d) {
entry:
br label %l1.header
l1.header:
%iv = phi i64 [ %iv.next, %l1.latch ], [ 0, %entry ]
%arrayidx.i = getelementptr inbounds [1 x i32]* @c, i64 0, i64 %iv
br label %l2.header
l2.header:
%x0 = load i1* %c, align 4
br i1 %x0, label %l1.latch, label %l3.preheader
l3.preheader:
br label %l3.header
l3.header:
%x1 = load i1* %d, align 4
br i1 %x1, label %l2.latch, label %l4.preheader
l4.preheader:
br label %l4.header
l4.header:
%x2 = load i1* %a
br i1 %x2, label %l3.latch, label %l4.body
l4.body:
call void @f(i32* %arrayidx.i)
%x3 = load i1* %b
%l = trunc i64 %iv to i32
br i1 %x3, label %l4.latch, label %exit
l4.latch:
call void @g()
%x4 = load i1* %b, align 4
br i1 %x4, label %l4.header, label %exit
l3.latch:
br label %l3.header
l2.latch:
br label %l2.header
l1.latch:
%iv.next = add nsw i64 %iv, 1
br label %l1.header
exit:
%lcssa = phi i32 [ %l, %l4.latch ], [ %l, %l4.body ]
; CHECK-LABEL: @PR18753(
; CHECK: exit:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i64 [ %iv, %l4.latch ], [ %iv, %l4.body ]
; CHECK-NEXT: %l.le = trunc i64 %[[LCSSAPHI]] to i32
; CHECK-NEXT: ret i32 %l.le
ret i32 %lcssa
}
declare void @f(i32*)
declare void @g()