llvm-6502/lib/Target/Sparc/SparcInstr64Bit.td
Jakob Stoklund Olesen 53d4bcf35e Implement LowerReturn_64 for SPARC v9.
Integer return values are sign or zero extended by the callee, and
structs up to 32 bytes in size can be returned in registers.

The CC_Sparc64 CallingConv definition is shared between
LowerFormalArguments_64 and LowerReturn_64. Function arguments and
return values are passed in the same registers.

The inreg flag is also used for return values. This is required to handle
C functions returning structs containing floats and ints:

  struct ifp {
    int i;
    float f;
  };

  struct ifp f(void);

LLVM IR:

  define inreg { i32, float } @f() {
     ...
     ret { i32, float } %retval
  }

The ABI requires that %retval.i is returned in the high bits of %i0
while %retval.f goes in %f1.

Without the inreg return value attribute, %retval.i would go in %i0 and
%retval.f would go in %f3 which is a more efficient way of returning
%multiple values, but it is not ABI compliant for returning C structs.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178966 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-06 23:57:33 +00:00

295 lines
11 KiB
TableGen

//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains instruction definitions and patterns needed for 64-bit
// code generation on SPARC v9.
//
// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
// also be used in 32-bit code running on a SPARC v9 CPU.
//
//===----------------------------------------------------------------------===//
let Predicates = [Is64Bit] in {
// The same integer registers are used for i32 and i64 values.
// When registers hold i32 values, the high bits are don't care.
// This give us free trunc and anyext.
def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
} // Predicates = [Is64Bit]
//===----------------------------------------------------------------------===//
// 64-bit Shift Instructions.
//===----------------------------------------------------------------------===//
//
// The 32-bit shift instructions are still available. The left shift srl
// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
//
// The srl instructions only shift the low 32 bits and clear the high 32 bits.
// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
let Predicates = [Is64Bit] in {
def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
} // Predicates = [Is64Bit]
//===----------------------------------------------------------------------===//
// 64-bit Immediates.
//===----------------------------------------------------------------------===//
//
// All 32-bit immediates can be materialized with sethi+or, but 64-bit
// immediates may require more code. There may be a point where it is
// preferable to use a constant pool load instead, depending on the
// microarchitecture.
// The %g0 register is constant 0.
// This is useful for stx %g0, [...], for example.
def : Pat<(i64 0), (i64 G0)>, Requires<[Is64Bit]>;
// Single-instruction patterns.
// The ALU instructions want their simm13 operands as i32 immediates.
def as_i32imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
}]>;
def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
// Double-instruction patterns.
// All unsigned i32 immediates can be handled by sethi+or.
def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
Requires<[Is64Bit]>;
// All negative i33 immediates can be handled by sethi+xor.
def nimm33 : PatLeaf<(imm), [{
int64_t Imm = N->getSExtValue();
return Imm < 0 && isInt<33>(Imm);
}]>;
// Bits 10-31 inverted. Same as assembler's %hix.
def HIX22 : SDNodeXForm<imm, [{
uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
return CurDAG->getTargetConstant(Val, MVT::i32);
}]>;
// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
def LOX10 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
}]>;
def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
Requires<[Is64Bit]>;
// More possible patterns:
//
// (sllx sethi, n)
// (sllx simm13, n)
//
// 3 instrs:
//
// (xor (sllx sethi), simm13)
// (sllx (xor sethi, simm13))
//
// 4 instrs:
//
// (or sethi, (sllx sethi))
// (xnor sethi, (sllx sethi))
//
// 5 instrs:
//
// (or (sllx sethi), (or sethi, simm13))
// (xnor (sllx sethi), (or sethi, simm13))
// (or (sllx sethi), (sllx sethi))
// (xnor (sllx sethi), (sllx sethi))
//
// Worst case is 6 instrs:
//
// (or (sllx (or sethi, simmm13)), (or sethi, simm13))
// Bits 42-63, same as assembler's %hh.
def HH22 : SDNodeXForm<imm, [{
uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
return CurDAG->getTargetConstant(Val, MVT::i32);
}]>;
// Bits 32-41, same as assembler's %hm.
def HM10 : SDNodeXForm<imm, [{
uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
return CurDAG->getTargetConstant(Val, MVT::i32);
}]>;
def : Pat<(i64 imm:$val),
(ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i64 32)),
(ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
Requires<[Is64Bit]>;
//===----------------------------------------------------------------------===//
// 64-bit Integer Arithmetic and Logic.
//===----------------------------------------------------------------------===//
let Predicates = [Is64Bit] in {
// Register-register instructions.
def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
def : Pat<(or i64:$a, i64:$b), (ORrr $a, $b)>;
def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
def : Pat<(or i64:$a, (not i64:$b)), (ORNrr $a, $b)>;
def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
// Add/sub with carry were renamed to addc/subc in SPARC v9.
def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
def : Pat<(SPcmpicc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
// Register-immediate instructions.
def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
def : Pat<(or i64:$a, (i64 simm13:$b)), (ORri $a, (as_i32imm $b))>;
def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (SUBCCri $a, (as_i32imm $b))>;
} // Predicates = [Is64Bit]
//===----------------------------------------------------------------------===//
// 64-bit Loads and Stores.
//===----------------------------------------------------------------------===//
//
// All the 32-bit loads and stores are available. The extending loads are sign
// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
// Word).
//
// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
let Predicates = [Is64Bit] in {
// 64-bit loads.
def LDXrr : F3_1<3, 0b001011,
(outs I64Regs:$dst), (ins MEMrr:$addr),
"ldx [$addr], $dst",
[(set i64:$dst, (load ADDRrr:$addr))]>;
def LDXri : F3_2<3, 0b001011,
(outs I64Regs:$dst), (ins MEMri:$addr),
"ldx [$addr], $dst",
[(set i64:$dst, (load ADDRri:$addr))]>;
// Extending loads to i64.
def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
def LDSWrr : F3_1<3, 0b001011,
(outs I64Regs:$dst), (ins MEMrr:$addr),
"ldsw [$addr], $dst",
[(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
def LDSWri : F3_2<3, 0b001011,
(outs I64Regs:$dst), (ins MEMri:$addr),
"ldsw [$addr], $dst",
[(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
// 64-bit stores.
def STXrr : F3_1<3, 0b001110,
(outs), (ins MEMrr:$addr, I64Regs:$src),
"stx $src, [$addr]",
[(store i64:$src, ADDRrr:$addr)]>;
def STXri : F3_2<3, 0b001110,
(outs), (ins MEMri:$addr, I64Regs:$src),
"stx $src, [$addr]",
[(store i64:$src, ADDRri:$addr)]>;
// Truncating stores from i64 are identical to the i32 stores.
def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>;
def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>;
} // Predicates = [Is64Bit]
//===----------------------------------------------------------------------===//
// 64-bit Conditionals.
//===----------------------------------------------------------------------===//
//
// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
// The icc flags correspond to the 32-bit result, and the xcc are for the
// full 64-bit result.
//
// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
// 64-bit compares. See LowerBR_CC.
let Predicates = [Is64Bit] in {
let Uses = [ICC] in
def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
"bp$cc %xcc, $dst",
[(SPbrxcc bb:$dst, imm:$cc)]>;
// Conditional moves on %xcc.
let Uses = [ICC], Constraints = "$f = $rd" in {
def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
(ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
"mov$cond %xcc, $rs2, $rd",
[(set i32:$rd,
(SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
def MOVXCCri : Pseudo<(outs IntRegs:$rd),
(ins i32imm:$i, IntRegs:$f, CCOp:$cond),
"mov$cond %xcc, $i, $rd",
[(set i32:$rd,
(SPselecticc simm11:$i, i32:$f, imm:$cond))]>;
} // Uses, Constraints
def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
(MOVXCCrr $t, $f, imm:$cond)>;
def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
(MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
} // Predicates = [Is64Bit]