llvm-6502/lib/Target/ARM/ARMRegisterInfo.td
2010-08-17 16:20:04 +00:00

653 lines
25 KiB
TableGen

//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Declarations that describe the ARM register file
//===----------------------------------------------------------------------===//
// Registers are identified with 4-bit ID numbers.
class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
field bits<4> Num;
let Namespace = "ARM";
let SubRegs = subregs;
}
class ARMFReg<bits<6> num, string n> : Register<n> {
field bits<6> Num;
let Namespace = "ARM";
}
// Subregister indices.
let Namespace = "ARM" in {
// Note: Code depends on these having consecutive numbers.
def ssub_0 : SubRegIndex;
def ssub_1 : SubRegIndex;
def ssub_2 : SubRegIndex; // In a Q reg.
def ssub_3 : SubRegIndex;
def ssub_4 : SubRegIndex; // In a QQ reg.
def ssub_5 : SubRegIndex;
def ssub_6 : SubRegIndex;
def ssub_7 : SubRegIndex;
def ssub_8 : SubRegIndex; // In a QQQQ reg.
def ssub_9 : SubRegIndex;
def ssub_10 : SubRegIndex;
def ssub_11 : SubRegIndex;
def ssub_12 : SubRegIndex;
def ssub_13 : SubRegIndex;
def ssub_14 : SubRegIndex;
def ssub_15 : SubRegIndex;
def dsub_0 : SubRegIndex;
def dsub_1 : SubRegIndex;
def dsub_2 : SubRegIndex;
def dsub_3 : SubRegIndex;
def dsub_4 : SubRegIndex;
def dsub_5 : SubRegIndex;
def dsub_6 : SubRegIndex;
def dsub_7 : SubRegIndex;
def qsub_0 : SubRegIndex;
def qsub_1 : SubRegIndex;
def qsub_2 : SubRegIndex;
def qsub_3 : SubRegIndex;
def qqsub_0 : SubRegIndex;
def qqsub_1 : SubRegIndex;
}
// Integer registers
def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>;
def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>;
def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>;
def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>;
def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>;
def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>;
def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>;
def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>;
def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>;
def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>;
def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>;
def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>;
def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>;
// Float registers
def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">;
def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">;
def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">;
def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">;
def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">;
def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
// Aliases of the F* registers used to hold 64-bit fp values (doubles)
let SubRegIndices = [ssub_0, ssub_1] in {
def D0 : ARMReg< 0, "d0", [S0, S1]>;
def D1 : ARMReg< 1, "d1", [S2, S3]>;
def D2 : ARMReg< 2, "d2", [S4, S5]>;
def D3 : ARMReg< 3, "d3", [S6, S7]>;
def D4 : ARMReg< 4, "d4", [S8, S9]>;
def D5 : ARMReg< 5, "d5", [S10, S11]>;
def D6 : ARMReg< 6, "d6", [S12, S13]>;
def D7 : ARMReg< 7, "d7", [S14, S15]>;
def D8 : ARMReg< 8, "d8", [S16, S17]>;
def D9 : ARMReg< 9, "d9", [S18, S19]>;
def D10 : ARMReg<10, "d10", [S20, S21]>;
def D11 : ARMReg<11, "d11", [S22, S23]>;
def D12 : ARMReg<12, "d12", [S24, S25]>;
def D13 : ARMReg<13, "d13", [S26, S27]>;
def D14 : ARMReg<14, "d14", [S28, S29]>;
def D15 : ARMReg<15, "d15", [S30, S31]>;
}
// VFP3 defines 16 additional double registers
def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d17">;
def D18 : ARMFReg<18, "d18">; def D19 : ARMFReg<19, "d19">;
def D20 : ARMFReg<20, "d20">; def D21 : ARMFReg<21, "d21">;
def D22 : ARMFReg<22, "d22">; def D23 : ARMFReg<23, "d23">;
def D24 : ARMFReg<24, "d24">; def D25 : ARMFReg<25, "d25">;
def D26 : ARMFReg<26, "d26">; def D27 : ARMFReg<27, "d27">;
def D28 : ARMFReg<28, "d28">; def D29 : ARMFReg<29, "d29">;
def D30 : ARMFReg<30, "d30">; def D31 : ARMFReg<31, "d31">;
// Advanced SIMD (NEON) defines 16 quad-word aliases
let SubRegIndices = [dsub_0, dsub_1],
CompositeIndices = [(ssub_2 dsub_1, ssub_0),
(ssub_3 dsub_1, ssub_1)] in {
def Q0 : ARMReg< 0, "q0", [D0, D1]>;
def Q1 : ARMReg< 1, "q1", [D2, D3]>;
def Q2 : ARMReg< 2, "q2", [D4, D5]>;
def Q3 : ARMReg< 3, "q3", [D6, D7]>;
def Q4 : ARMReg< 4, "q4", [D8, D9]>;
def Q5 : ARMReg< 5, "q5", [D10, D11]>;
def Q6 : ARMReg< 6, "q6", [D12, D13]>;
def Q7 : ARMReg< 7, "q7", [D14, D15]>;
}
let SubRegIndices = [dsub_0, dsub_1] in {
def Q8 : ARMReg< 8, "q8", [D16, D17]>;
def Q9 : ARMReg< 9, "q9", [D18, D19]>;
def Q10 : ARMReg<10, "q10", [D20, D21]>;
def Q11 : ARMReg<11, "q11", [D22, D23]>;
def Q12 : ARMReg<12, "q12", [D24, D25]>;
def Q13 : ARMReg<13, "q13", [D26, D27]>;
def Q14 : ARMReg<14, "q14", [D28, D29]>;
def Q15 : ARMReg<15, "q15", [D30, D31]>;
}
// Pseudo 256-bit registers to represent pairs of Q registers. These should
// never be present in the emitted code.
// These are used for NEON load / store instructions, e.g., vld4, vst3.
// NOTE: It's possible to define more QQ registers since technically the
// starting D register number doesn't have to be multiple of 4, e.g.,
// D1, D2, D3, D4 would be a legal quad, but that would make the subregister
// stuff very messy.
let SubRegIndices = [qsub_0, qsub_1] in {
let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1),
(ssub_4 qsub_1, ssub_0), (ssub_5 qsub_1, ssub_1),
(ssub_6 qsub_1, ssub_2), (ssub_7 qsub_1, ssub_3)] in {
def QQ0 : ARMReg<0, "qq0", [Q0, Q1]>;
def QQ1 : ARMReg<1, "qq1", [Q2, Q3]>;
def QQ2 : ARMReg<2, "qq2", [Q4, Q5]>;
def QQ3 : ARMReg<3, "qq3", [Q6, Q7]>;
}
let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
def QQ4 : ARMReg<4, "qq4", [Q8, Q9]>;
def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
}
}
// Pseudo 512-bit registers to represent four consecutive Q registers.
let SubRegIndices = [qqsub_0, qqsub_1] in {
let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1),
(dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1),
(dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3),
(ssub_8 qqsub_1, ssub_0), (ssub_9 qqsub_1, ssub_1),
(ssub_10 qqsub_1, ssub_2), (ssub_11 qqsub_1, ssub_3),
(ssub_12 qqsub_1, ssub_4), (ssub_13 qqsub_1, ssub_5),
(ssub_14 qqsub_1, ssub_6), (ssub_15 qqsub_1, ssub_7)] in
{
def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
}
let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1),
(dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1),
(dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in {
def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
}
}
// Current Program Status Register.
def CPSR : ARMReg<0, "cpsr">;
def FPSCR : ARMReg<1, "fpscr">;
def ITSTATE : ARMReg<2, "itstate">;
// Register classes.
//
// pc == Program Counter
// lr == Link Register
// sp == Stack Pointer
// r12 == ip (scratch)
// r7 == Frame Pointer (thumb-style backtraces)
// r9 == May be reserved as Thread Register
// r11 == Frame Pointer (arm-style backtraces)
// r10 == Stack Limit
//
def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
R7, R8, R9, R10, R11, R12,
SP, LR, PC]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// FP is R11, R9 is available.
static const unsigned ARM_GPR_AO_1[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R9, ARM::R10,
ARM::R11 };
// FP is R11, R9 is not available.
static const unsigned ARM_GPR_AO_2[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R10,
ARM::R11 };
// FP is R7, R9 is available as non-callee-saved register.
// This is used by Darwin.
static const unsigned ARM_GPR_AO_3[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R9, ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R10,ARM::R11,ARM::R7 };
// FP is R7, R9 is not available.
static const unsigned ARM_GPR_AO_4[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R10,ARM::R11,
ARM::R7 };
// FP is R7, R9 is available as callee-saved register.
// This is used by non-Darwin platform in Thumb mode.
static const unsigned ARM_GPR_AO_5[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R9, ARM::R10,ARM::R11,ARM::R7 };
// For Thumb1 mode, we don't want to allocate hi regs at all, as we
// don't know how to spill them. If we make our prologue/epilogue code
// smarter at some point, we can go back to using the above allocation
// orders for the Thumb1 instructions that know how to use hi regs.
static const unsigned THUMB_GPR_AO[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
GPRClass::iterator
GPRClass::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
if (Subtarget.isThumb1Only())
return THUMB_GPR_AO;
if (Subtarget.isTargetDarwin()) {
if (Subtarget.isR9Reserved())
return ARM_GPR_AO_4;
else
return ARM_GPR_AO_3;
} else {
if (Subtarget.isR9Reserved())
return ARM_GPR_AO_2;
else if (Subtarget.isThumb())
return ARM_GPR_AO_5;
else
return ARM_GPR_AO_1;
}
}
GPRClass::iterator
GPRClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
GPRClass::iterator I;
if (Subtarget.isThumb1Only()) {
I = THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned));
return RI->hasFP(MF) ? I-1 : I;
}
if (Subtarget.isTargetDarwin()) {
if (Subtarget.isR9Reserved())
I = ARM_GPR_AO_4 + (sizeof(ARM_GPR_AO_4)/sizeof(unsigned));
else
I = ARM_GPR_AO_3 + (sizeof(ARM_GPR_AO_3)/sizeof(unsigned));
} else {
if (Subtarget.isR9Reserved())
I = ARM_GPR_AO_2 + (sizeof(ARM_GPR_AO_2)/sizeof(unsigned));
else if (Subtarget.isThumb())
I = ARM_GPR_AO_5 + (sizeof(ARM_GPR_AO_5)/sizeof(unsigned));
else
I = ARM_GPR_AO_1 + (sizeof(ARM_GPR_AO_1)/sizeof(unsigned));
}
return RI->hasFP(MF) ? I-1 : I;
}
}];
}
// restricted GPR register class. Many Thumb2 instructions allow the full
// register range for operands, but have undefined behaviours when PC
// or SP (R13 or R15) are used. The ARM ARM refers to these operands
// via the BadReg() pseudo-code description.
def rGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
R7, R8, R9, R10, R11, R12, LR]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// FP is R11, R9 is available.
static const unsigned ARM_rGPRAO_1[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R9, ARM::R10,
ARM::R11 };
// FP is R11, R9 is not available.
static const unsigned ARM_rGPRAO_2[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
ARM::R8, ARM::R10,
ARM::R11 };
// FP is R7, R9 is available as non-callee-saved register.
// This is used by Darwin.
static const unsigned ARM_rGPRAO_3[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R9, ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R10,ARM::R11,ARM::R7 };
// FP is R7, R9 is not available.
static const unsigned ARM_rGPRAO_4[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R10,ARM::R11,
ARM::R7 };
// FP is R7, R9 is available as callee-saved register.
// This is used by non-Darwin platform in Thumb mode.
static const unsigned ARM_rGPRAO_5[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12,ARM::LR,
ARM::R4, ARM::R5, ARM::R6,
ARM::R8, ARM::R9, ARM::R10,ARM::R11,ARM::R7 };
// For Thumb1 mode, we don't want to allocate hi regs at all, as we
// don't know how to spill them. If we make our prologue/epilogue code
// smarter at some point, we can go back to using the above allocation
// orders for the Thumb1 instructions that know how to use hi regs.
static const unsigned THUMB_rGPRAO[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
rGPRClass::iterator
rGPRClass::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
if (Subtarget.isThumb1Only())
return THUMB_rGPRAO;
if (Subtarget.isTargetDarwin()) {
if (Subtarget.isR9Reserved())
return ARM_rGPRAO_4;
else
return ARM_rGPRAO_3;
} else {
if (Subtarget.isR9Reserved())
return ARM_rGPRAO_2;
else if (Subtarget.isThumb())
return ARM_rGPRAO_5;
else
return ARM_rGPRAO_1;
}
}
rGPRClass::iterator
rGPRClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
GPRClass::iterator I;
if (Subtarget.isThumb1Only()) {
I = THUMB_rGPRAO + (sizeof(THUMB_rGPRAO)/sizeof(unsigned));
return RI->hasFP(MF) ? I-1 : I;
}
if (Subtarget.isTargetDarwin()) {
if (Subtarget.isR9Reserved())
I = ARM_rGPRAO_4 + (sizeof(ARM_rGPRAO_4)/sizeof(unsigned));
else
I = ARM_rGPRAO_3 + (sizeof(ARM_rGPRAO_3)/sizeof(unsigned));
} else {
if (Subtarget.isR9Reserved())
I = ARM_rGPRAO_2 + (sizeof(ARM_rGPRAO_2)/sizeof(unsigned));
else if (Subtarget.isThumb())
I = ARM_rGPRAO_5 + (sizeof(ARM_rGPRAO_5)/sizeof(unsigned));
else
I = ARM_rGPRAO_1 + (sizeof(ARM_rGPRAO_1)/sizeof(unsigned));
}
return RI->hasFP(MF) ? I-1 : I;
}
}];
}
// Thumb registers are R0-R7 normally. Some instructions can still use
// the general GPR register class above (MOV, e.g.)
def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
static const unsigned THUMB_tGPR_AO[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
// FP is R7, only low registers available.
tGPRClass::iterator
tGPRClass::allocation_order_begin(const MachineFunction &MF) const {
return THUMB_tGPR_AO;
}
tGPRClass::iterator
tGPRClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *RI = TM.getRegisterInfo();
tGPRClass::iterator I =
THUMB_tGPR_AO + (sizeof(THUMB_tGPR_AO)/sizeof(unsigned));
return RI->hasFP(MF) ? I-1 : I;
}
}];
}
// For tail calls, we can't use callee-saved registers, as they are restored
// to the saved value before the tail call, which would clobber a call address.
// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
// this class and the preceding one(!) This is what we want.
def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// R9 is available.
static const unsigned ARM_GPR_R9_TC[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R9, ARM::R12 };
// R9 is not available.
static const unsigned ARM_GPR_NOR9_TC[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3,
ARM::R12 };
// For Thumb1 mode, we don't want to allocate hi regs at all, as we
// don't know how to spill them. If we make our prologue/epilogue code
// smarter at some point, we can go back to using the above allocation
// orders for the Thumb1 instructions that know how to use hi regs.
static const unsigned THUMB_GPR_AO_TC[] = {
ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
tcGPRClass::iterator
tcGPRClass::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
if (Subtarget.isThumb1Only())
return THUMB_GPR_AO_TC;
if (Subtarget.isTargetDarwin()) {
if (Subtarget.isR9Reserved())
return ARM_GPR_NOR9_TC;
else
return ARM_GPR_R9_TC;
} else
// R9 is either callee-saved or reserved; can't use it.
return ARM_GPR_NOR9_TC;
}
tcGPRClass::iterator
tcGPRClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
GPRClass::iterator I;
if (Subtarget.isThumb1Only()) {
I = THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned));
return I;
}
if (Subtarget.isTargetDarwin()) {
if (Subtarget.isR9Reserved())
I = ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
else
I = ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned));
} else
// R9 is either callee-saved or reserved; can't use it.
I = ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
return I;
}
}];
}
// Scalar single precision floating point register class..
def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
S23, S24, S25, S26, S27, S28, S29, S30, S31]>;
// Subset of SPR which can be used as a source of NEON scalars for 16-bit
// operations
def SPR_8 : RegisterClass<"ARM", [f32], 32,
[S0, S1, S2, S3, S4, S5, S6, S7,
S8, S9, S10, S11, S12, S13, S14, S15]>;
// Scalar double precision floating point / generic 64-bit vector register
// class.
// ARM requires only word alignment for double. It's more performant if it
// is double-word alignment though.
def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
[D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// VFP2
static const unsigned ARM_DPR_VFP2[] = {
ARM::D0, ARM::D1, ARM::D2, ARM::D3,
ARM::D4, ARM::D5, ARM::D6, ARM::D7,
ARM::D8, ARM::D9, ARM::D10, ARM::D11,
ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
// VFP3
static const unsigned ARM_DPR_VFP3[] = {
ARM::D0, ARM::D1, ARM::D2, ARM::D3,
ARM::D4, ARM::D5, ARM::D6, ARM::D7,
ARM::D8, ARM::D9, ARM::D10, ARM::D11,
ARM::D12, ARM::D13, ARM::D14, ARM::D15,
ARM::D16, ARM::D17, ARM::D18, ARM::D19,
ARM::D20, ARM::D21, ARM::D22, ARM::D23,
ARM::D24, ARM::D25, ARM::D26, ARM::D27,
ARM::D28, ARM::D29, ARM::D30, ARM::D31 };
DPRClass::iterator
DPRClass::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
if (Subtarget.hasVFP3())
return ARM_DPR_VFP3;
return ARM_DPR_VFP2;
}
DPRClass::iterator
DPRClass::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
if (Subtarget.hasVFP3())
return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned));
else
return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned));
}
}];
}
// Subset of DPR that are accessible with VFP2 (and so that also have
// 32-bit SPR subregs).
def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
[D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15]> {
let SubRegClasses = [(SPR ssub_0, ssub_1)];
}
// Subset of DPR which can be used as a source of NEON scalars for 16-bit
// operations
def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
[D0, D1, D2, D3, D4, D5, D6, D7]> {
let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
}
// Generic 128-bit vector register class.
def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15]> {
let SubRegClasses = [(DPR dsub_0, dsub_1)];
}
// Subset of QPR that have 32-bit SPR subregs.
def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
128,
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]> {
let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3),
(DPR_VFP2 dsub_0, dsub_1)];
}
// Subset of QPR that have DPR_8 and SPR_8 subregs.
def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
128,
[Q0, Q1, Q2, Q3]> {
let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
(DPR_8 dsub_0, dsub_1)];
}
// Pseudo 256-bit vector register class to model pairs of Q registers
// (4 consecutive D registers).
def QQPR : RegisterClass<"ARM", [v4i64],
256,
[QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> {
let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
(QPR qsub_0, qsub_1)];
}
// Subset of QQPR that have 32-bit SPR subregs.
def QQPR_VFP2 : RegisterClass<"ARM", [v4i64],
256,
[QQ0, QQ1, QQ2, QQ3]> {
let SubRegClasses = [(SPR ssub_0, ssub_1, ssub_2, ssub_3),
(DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
(QPR_VFP2 qsub_0, qsub_1)];
}
// Pseudo 512-bit vector register class to model 4 consecutive Q registers
// (8 consecutive D registers).
def QQQQPR : RegisterClass<"ARM", [v8i64],
256,
[QQQQ0, QQQQ1, QQQQ2, QQQQ3]> {
let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
dsub_4, dsub_5, dsub_6, dsub_7),
(QPR qsub_0, qsub_1, qsub_2, qsub_3)];
}
// Condition code registers.
def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;