mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-15 04:08:07 +00:00
e53a600f06
No functionality change. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77432 91177308-0d34-0410-b5e6-96231b3b80d8
935 lines
33 KiB
C++
935 lines
33 KiB
C++
//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the target-independent ELF writer. This file writes out
|
|
// the ELF file in the following order:
|
|
//
|
|
// #1. ELF Header
|
|
// #2. '.text' section
|
|
// #3. '.data' section
|
|
// #4. '.bss' section (conceptual position in file)
|
|
// ...
|
|
// #X. '.shstrtab' section
|
|
// #Y. Section Table
|
|
//
|
|
// The entries in the section table are laid out as:
|
|
// #0. Null entry [required]
|
|
// #1. ".text" entry - the program code
|
|
// #2. ".data" entry - global variables with initializers. [ if needed ]
|
|
// #3. ".bss" entry - global variables without initializers. [ if needed ]
|
|
// ...
|
|
// #N. ".shstrtab" entry - String table for the section names.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "elfwriter"
|
|
#include "ELF.h"
|
|
#include "ELFWriter.h"
|
|
#include "ELFCodeEmitter.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/CodeGen/BinaryObject.h"
|
|
#include "llvm/CodeGen/FileWriters.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/ObjectCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/Target/TargetAsmInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetELFWriterInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Mangler.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace llvm;
|
|
|
|
char ELFWriter::ID = 0;
|
|
|
|
/// AddELFWriter - Add the ELF writer to the function pass manager
|
|
ObjectCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
|
|
raw_ostream &O,
|
|
TargetMachine &TM) {
|
|
ELFWriter *EW = new ELFWriter(O, TM);
|
|
PM.add(EW);
|
|
return EW->getObjectCodeEmitter();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ELFWriter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
|
|
: MachineFunctionPass(&ID), O(o), TM(tm),
|
|
is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
|
|
isLittleEndian(TM.getTargetData()->isLittleEndian()),
|
|
ElfHdr(isLittleEndian, is64Bit) {
|
|
|
|
TAI = TM.getTargetAsmInfo();
|
|
TEW = TM.getELFWriterInfo();
|
|
|
|
// Create the object code emitter object for this target.
|
|
ElfCE = new ELFCodeEmitter(*this);
|
|
|
|
// Inital number of sections
|
|
NumSections = 0;
|
|
}
|
|
|
|
ELFWriter::~ELFWriter() {
|
|
delete ElfCE;
|
|
}
|
|
|
|
// doInitialization - Emit the file header and all of the global variables for
|
|
// the module to the ELF file.
|
|
bool ELFWriter::doInitialization(Module &M) {
|
|
Mang = new Mangler(M);
|
|
|
|
// ELF Header
|
|
// ----------
|
|
// Fields e_shnum e_shstrndx are only known after all section have
|
|
// been emitted. They locations in the ouput buffer are recorded so
|
|
// to be patched up later.
|
|
//
|
|
// Note
|
|
// ----
|
|
// emitWord method behaves differently for ELF32 and ELF64, writing
|
|
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
|
|
|
|
ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
|
|
ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
|
|
ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
|
|
ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
|
|
|
|
ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
|
|
ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
|
|
ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
|
|
ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
|
|
|
|
ElfHdr.emitWord16(ET_REL); // e_type
|
|
ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
|
|
ElfHdr.emitWord32(EV_CURRENT); // e_version
|
|
ElfHdr.emitWord(0); // e_entry, no entry point in .o file
|
|
ElfHdr.emitWord(0); // e_phoff, no program header for .o
|
|
ELFHdr_e_shoff_Offset = ElfHdr.size();
|
|
ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
|
|
ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
|
|
ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
|
|
ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
|
|
ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
|
|
|
|
// e_shentsize = Section header entry size
|
|
ElfHdr.emitWord16(TEW->getSHdrSize());
|
|
|
|
// e_shnum = # of section header ents
|
|
ELFHdr_e_shnum_Offset = ElfHdr.size();
|
|
ElfHdr.emitWord16(0); // Placeholder
|
|
|
|
// e_shstrndx = Section # of '.shstrtab'
|
|
ELFHdr_e_shstrndx_Offset = ElfHdr.size();
|
|
ElfHdr.emitWord16(0); // Placeholder
|
|
|
|
// Add the null section, which is required to be first in the file.
|
|
getNullSection();
|
|
|
|
// The first entry in the symtab is the null symbol and the second
|
|
// is a local symbol containing the module/file name
|
|
SymbolList.push_back(new ELFSym());
|
|
SymbolList.push_back(ELFSym::getFileSym());
|
|
|
|
return false;
|
|
}
|
|
|
|
// addGlobalSymbol - Add a global to be processed and to the
|
|
// global symbol lookup, use a zero index for non private symbols
|
|
// because the table index will be determined later.
|
|
void ELFWriter::addGlobalSymbol(const GlobalValue *GV) {
|
|
PendingGlobals.insert(GV);
|
|
}
|
|
|
|
// addExternalSymbol - Add the external to be processed and to the
|
|
// external symbol lookup, use a zero index because the symbol
|
|
// table index will be determined later
|
|
void ELFWriter::addExternalSymbol(const char *External) {
|
|
PendingExternals.insert(External);
|
|
ExtSymLookup[External] = 0;
|
|
}
|
|
|
|
// Get jump table section on the section name returned by TAI
|
|
ELFSection &ELFWriter::getJumpTableSection() {
|
|
unsigned Align = TM.getTargetData()->getPointerABIAlignment();
|
|
return getSection(TAI->getJumpTableDataSection(),
|
|
ELFSection::SHT_PROGBITS,
|
|
ELFSection::SHF_ALLOC, Align);
|
|
}
|
|
|
|
// Get a constant pool section based on the section name returned by TAI
|
|
ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
|
|
SectionKind Kind;
|
|
switch (CPE.getRelocationInfo()) {
|
|
default: llvm_unreachable("Unknown section kind");
|
|
case 2: Kind = SectionKind::get(SectionKind::ReadOnlyWithRel,false); break;
|
|
case 1:
|
|
Kind = SectionKind::get(SectionKind::ReadOnlyWithRelLocal,false);
|
|
break;
|
|
case 0:
|
|
switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
|
|
case 4: Kind = SectionKind::get(SectionKind::MergeableConst4,false); break;
|
|
case 8: Kind = SectionKind::get(SectionKind::MergeableConst8,false); break;
|
|
case 16: Kind = SectionKind::get(SectionKind::MergeableConst16,false);break;
|
|
default: Kind = SectionKind::get(SectionKind::MergeableConst,false); break;
|
|
}
|
|
}
|
|
|
|
const TargetLoweringObjectFile &TLOF =
|
|
TM.getTargetLowering()->getObjFileLowering();
|
|
|
|
return getSection(TLOF.getSectionForMergeableConstant(Kind)->getName(),
|
|
ELFSection::SHT_PROGBITS,
|
|
ELFSection::SHF_MERGE | ELFSection::SHF_ALLOC,
|
|
CPE.getAlignment());
|
|
}
|
|
|
|
// Return the relocation section of section 'S'. 'RelA' is true
|
|
// if the relocation section contains entries with addends.
|
|
ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
|
|
unsigned SectionHeaderTy = TEW->hasRelocationAddend() ?
|
|
ELFSection::SHT_RELA : ELFSection::SHT_REL;
|
|
std::string RelSName(".rel");
|
|
if (TEW->hasRelocationAddend())
|
|
RelSName.append("a");
|
|
RelSName.append(S.getName());
|
|
|
|
return getSection(RelSName, SectionHeaderTy, 0, TEW->getPrefELFAlignment());
|
|
}
|
|
|
|
// getGlobalELFVisibility - Returns the ELF specific visibility type
|
|
unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
|
|
switch (GV->getVisibility()) {
|
|
default:
|
|
llvm_unreachable("unknown visibility type");
|
|
case GlobalValue::DefaultVisibility:
|
|
return ELFSym::STV_DEFAULT;
|
|
case GlobalValue::HiddenVisibility:
|
|
return ELFSym::STV_HIDDEN;
|
|
case GlobalValue::ProtectedVisibility:
|
|
return ELFSym::STV_PROTECTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// getGlobalELFBinding - Returns the ELF specific binding type
|
|
unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
|
|
if (GV->hasInternalLinkage())
|
|
return ELFSym::STB_LOCAL;
|
|
|
|
if (GV->hasWeakLinkage())
|
|
return ELFSym::STB_WEAK;
|
|
|
|
return ELFSym::STB_GLOBAL;
|
|
}
|
|
|
|
// getGlobalELFType - Returns the ELF specific type for a global
|
|
unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
|
|
if (GV->isDeclaration())
|
|
return ELFSym::STT_NOTYPE;
|
|
|
|
if (isa<Function>(GV))
|
|
return ELFSym::STT_FUNC;
|
|
|
|
return ELFSym::STT_OBJECT;
|
|
}
|
|
|
|
// getElfSectionFlags - Get the ELF Section Header flags based
|
|
// on the flags defined in ELFTargetAsmInfo.
|
|
unsigned ELFWriter::getElfSectionFlags(SectionKind Kind) {
|
|
unsigned ElfSectionFlags = ELFSection::SHF_ALLOC;
|
|
|
|
if (Kind.isText())
|
|
ElfSectionFlags |= ELFSection::SHF_EXECINSTR;
|
|
if (Kind.isWriteable())
|
|
ElfSectionFlags |= ELFSection::SHF_WRITE;
|
|
if (Kind.isMergeableConst())
|
|
ElfSectionFlags |= ELFSection::SHF_MERGE;
|
|
if (Kind.isThreadLocal())
|
|
ElfSectionFlags |= ELFSection::SHF_TLS;
|
|
if (Kind.isMergeableCString())
|
|
ElfSectionFlags |= ELFSection::SHF_STRINGS;
|
|
|
|
return ElfSectionFlags;
|
|
}
|
|
|
|
// isELFUndefSym - the symbol has no section and must be placed in
|
|
// the symbol table with a reference to the null section.
|
|
static bool isELFUndefSym(const GlobalValue *GV) {
|
|
return GV->isDeclaration();
|
|
}
|
|
|
|
// isELFBssSym - for an undef or null value, the symbol must go to a bss
|
|
// section if it's not weak for linker, otherwise it's a common sym.
|
|
static bool isELFBssSym(const GlobalVariable *GV) {
|
|
const Constant *CV = GV->getInitializer();
|
|
return ((CV->isNullValue() || isa<UndefValue>(CV)) && !GV->isWeakForLinker());
|
|
}
|
|
|
|
// isELFCommonSym - for an undef or null value, the symbol must go to a
|
|
// common section if it's weak for linker, otherwise bss.
|
|
static bool isELFCommonSym(const GlobalVariable *GV) {
|
|
const Constant *CV = GV->getInitializer();
|
|
return ((CV->isNullValue() || isa<UndefValue>(CV)) && GV->isWeakForLinker());
|
|
}
|
|
|
|
// isELFDataSym - if the symbol is an initialized but no null constant
|
|
// it must go to some kind of data section gathered from TAI
|
|
static bool isELFDataSym(const Constant *CV) {
|
|
return (!(CV->isNullValue() || isa<UndefValue>(CV)));
|
|
}
|
|
|
|
// EmitGlobal - Choose the right section for global and emit it
|
|
void ELFWriter::EmitGlobal(const GlobalValue *GV) {
|
|
|
|
// Check if the referenced symbol is already emitted
|
|
if (GblSymLookup.find(GV) != GblSymLookup.end())
|
|
return;
|
|
|
|
// If the global is a function already emited in the text section
|
|
// just add it to the global symbol lookup with a zero index to be
|
|
// patched up later.
|
|
if (isa<Function>(GV) && !GV->isDeclaration()) {
|
|
GblSymLookup[GV] = 0;
|
|
return;
|
|
}
|
|
|
|
// Handle ELF Bind, Visibility and Type for the current symbol
|
|
unsigned SymBind = getGlobalELFBinding(GV);
|
|
ELFSym *GblSym = ELFSym::getGV(GV, SymBind, getGlobalELFType(GV),
|
|
getGlobalELFVisibility(GV));
|
|
|
|
if (isELFUndefSym(GV)) {
|
|
GblSym->SectionIdx = ELFSection::SHN_UNDEF;
|
|
} else {
|
|
assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
|
|
|
|
const TargetLoweringObjectFile &TLOF =
|
|
TM.getTargetLowering()->getObjFileLowering();
|
|
|
|
// Get the ELF section where this global belongs from TLOF
|
|
const Section *S = TLOF.SectionForGlobal(GV, Mang, TM);
|
|
unsigned SectionFlags = getElfSectionFlags(S->getKind());
|
|
|
|
// The symbol align should update the section alignment if needed
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Align = TD->getPreferredAlignment(GVar);
|
|
unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
|
|
GblSym->Size = Size;
|
|
|
|
if (isELFCommonSym(GVar)) {
|
|
GblSym->SectionIdx = ELFSection::SHN_COMMON;
|
|
getSection(S->getName(), ELFSection::SHT_NOBITS, SectionFlags, 1);
|
|
|
|
// A new linkonce section is created for each global in the
|
|
// common section, the default alignment is 1 and the symbol
|
|
// value contains its alignment.
|
|
GblSym->Value = Align;
|
|
|
|
} else if (isELFBssSym(GVar)) {
|
|
ELFSection &ES =
|
|
getSection(S->getName(), ELFSection::SHT_NOBITS, SectionFlags);
|
|
GblSym->SectionIdx = ES.SectionIdx;
|
|
|
|
// Update the size with alignment and the next object can
|
|
// start in the right offset in the section
|
|
if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
|
|
ES.Align = std::max(ES.Align, Align);
|
|
|
|
// GblSym->Value should contain the virtual offset inside the section.
|
|
// Virtual because the BSS space is not allocated on ELF objects
|
|
GblSym->Value = ES.Size;
|
|
ES.Size += Size;
|
|
|
|
} else if (isELFDataSym(GV)) {
|
|
ELFSection &ES =
|
|
getSection(S->getName(), ELFSection::SHT_PROGBITS, SectionFlags);
|
|
GblSym->SectionIdx = ES.SectionIdx;
|
|
|
|
// GblSym->Value should contain the symbol offset inside the section,
|
|
// and all symbols should start on their required alignment boundary
|
|
ES.Align = std::max(ES.Align, Align);
|
|
GblSym->Value = (ES.size() + (Align-1)) & (-Align);
|
|
ES.emitAlignment(ES.Align);
|
|
|
|
// Emit the global to the data section 'ES'
|
|
EmitGlobalConstant(GVar->getInitializer(), ES);
|
|
}
|
|
}
|
|
|
|
if (GV->hasPrivateLinkage()) {
|
|
// For a private symbols, keep track of the index inside the
|
|
// private list since it will never go to the symbol table and
|
|
// won't be patched up later.
|
|
PrivateSyms.push_back(GblSym);
|
|
GblSymLookup[GV] = PrivateSyms.size()-1;
|
|
} else {
|
|
// Non private symbol are left with zero indices until they are patched
|
|
// up during the symbol table emition (where the indicies are created).
|
|
SymbolList.push_back(GblSym);
|
|
GblSymLookup[GV] = 0;
|
|
}
|
|
}
|
|
|
|
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
|
|
ELFSection &GblS) {
|
|
|
|
// Print the fields in successive locations. Pad to align if needed!
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Size = TD->getTypeAllocSize(CVS->getType());
|
|
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
|
|
uint64_t sizeSoFar = 0;
|
|
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
|
|
const Constant* field = CVS->getOperand(i);
|
|
|
|
// Check if padding is needed and insert one or more 0s.
|
|
uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
|
|
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
|
|
- cvsLayout->getElementOffset(i)) - fieldSize;
|
|
sizeSoFar += fieldSize + padSize;
|
|
|
|
// Now print the actual field value.
|
|
EmitGlobalConstant(field, GblS);
|
|
|
|
// Insert padding - this may include padding to increase the size of the
|
|
// current field up to the ABI size (if the struct is not packed) as well
|
|
// as padding to ensure that the next field starts at the right offset.
|
|
for (unsigned p=0; p < padSize; p++)
|
|
GblS.emitByte(0);
|
|
}
|
|
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
|
|
"Layout of constant struct may be incorrect!");
|
|
}
|
|
|
|
void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
|
|
const TargetData *TD = TM.getTargetData();
|
|
unsigned Size = TD->getTypeAllocSize(CV->getType());
|
|
|
|
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
|
|
if (CVA->isString()) {
|
|
std::string GblStr = CVA->getAsString();
|
|
GblStr.resize(GblStr.size()-1);
|
|
GblS.emitString(GblStr);
|
|
} else { // Not a string. Print the values in successive locations
|
|
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
|
|
EmitGlobalConstant(CVA->getOperand(i), GblS);
|
|
}
|
|
return;
|
|
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
|
|
EmitGlobalConstantStruct(CVS, GblS);
|
|
return;
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
if (CFP->getType() == Type::DoubleTy)
|
|
GblS.emitWord64(Val);
|
|
else if (CFP->getType() == Type::FloatTy)
|
|
GblS.emitWord32(Val);
|
|
else if (CFP->getType() == Type::X86_FP80Ty) {
|
|
llvm_unreachable("X86_FP80Ty global emission not implemented");
|
|
} else if (CFP->getType() == Type::PPC_FP128Ty)
|
|
llvm_unreachable("PPC_FP128Ty global emission not implemented");
|
|
return;
|
|
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
if (Size == 4)
|
|
GblS.emitWord32(CI->getZExtValue());
|
|
else if (Size == 8)
|
|
GblS.emitWord64(CI->getZExtValue());
|
|
else
|
|
llvm_unreachable("LargeInt global emission not implemented");
|
|
return;
|
|
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
|
|
const VectorType *PTy = CP->getType();
|
|
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
|
|
EmitGlobalConstant(CP->getOperand(I), GblS);
|
|
return;
|
|
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
|
|
// This is a constant address for a global variable or function and
|
|
// therefore must be referenced using a relocation entry.
|
|
|
|
// Check if the referenced symbol is already emitted
|
|
if (GblSymLookup.find(GV) == GblSymLookup.end())
|
|
EmitGlobal(GV);
|
|
|
|
// Create the relocation entry for the global value
|
|
MachineRelocation MR =
|
|
MachineRelocation::getGV(GblS.getCurrentPCOffset(),
|
|
TEW->getAbsoluteLabelMachineRelTy(),
|
|
const_cast<GlobalValue*>(GV));
|
|
|
|
// Fill the data entry with zeros
|
|
for (unsigned i=0; i < Size; ++i)
|
|
GblS.emitByte(0);
|
|
|
|
// Add the relocation entry for the current data section
|
|
GblS.addRelocation(MR);
|
|
return;
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
if (CE->getOpcode() == Instruction::BitCast) {
|
|
EmitGlobalConstant(CE->getOperand(0), GblS);
|
|
return;
|
|
}
|
|
// See AsmPrinter::EmitConstantValueOnly for other ConstantExpr types
|
|
llvm_unreachable("Unsupported ConstantExpr type");
|
|
}
|
|
|
|
llvm_unreachable("Unknown global constant type");
|
|
}
|
|
|
|
|
|
bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
|
|
// Nothing to do here, this is all done through the ElfCE object above.
|
|
return false;
|
|
}
|
|
|
|
/// doFinalization - Now that the module has been completely processed, emit
|
|
/// the ELF file to 'O'.
|
|
bool ELFWriter::doFinalization(Module &M) {
|
|
// Emit .data section placeholder
|
|
getDataSection();
|
|
|
|
// Emit .bss section placeholder
|
|
getBSSSection();
|
|
|
|
// Build and emit data, bss and "common" sections.
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
EmitGlobal(I);
|
|
|
|
// Emit all pending globals
|
|
for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
|
|
I != E; ++I)
|
|
EmitGlobal(*I);
|
|
|
|
// Emit all pending externals
|
|
for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
|
|
I != E; ++I)
|
|
SymbolList.push_back(ELFSym::getExtSym(*I));
|
|
|
|
// Emit non-executable stack note
|
|
if (TAI->getNonexecutableStackDirective())
|
|
getNonExecStackSection();
|
|
|
|
// Emit a symbol for each section created until now, skip null section
|
|
for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
|
|
ELFSection &ES = *SectionList[i];
|
|
ELFSym *SectionSym = ELFSym::getSectionSym();
|
|
SectionSym->SectionIdx = ES.SectionIdx;
|
|
SymbolList.push_back(SectionSym);
|
|
ES.Sym = SymbolList.back();
|
|
}
|
|
|
|
// Emit string table
|
|
EmitStringTable(M.getModuleIdentifier());
|
|
|
|
// Emit the symbol table now, if non-empty.
|
|
EmitSymbolTable();
|
|
|
|
// Emit the relocation sections.
|
|
EmitRelocations();
|
|
|
|
// Emit the sections string table.
|
|
EmitSectionTableStringTable();
|
|
|
|
// Dump the sections and section table to the .o file.
|
|
OutputSectionsAndSectionTable();
|
|
|
|
// We are done with the abstract symbols.
|
|
SymbolList.clear();
|
|
SectionList.clear();
|
|
NumSections = 0;
|
|
|
|
// Release the name mangler object.
|
|
delete Mang; Mang = 0;
|
|
return false;
|
|
}
|
|
|
|
// RelocateField - Patch relocatable field with 'Offset' in 'BO'
|
|
// using a 'Value' of known 'Size'
|
|
void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
|
|
int64_t Value, unsigned Size) {
|
|
if (Size == 32)
|
|
BO.fixWord32(Value, Offset);
|
|
else if (Size == 64)
|
|
BO.fixWord64(Value, Offset);
|
|
else
|
|
llvm_unreachable("don't know howto patch relocatable field");
|
|
}
|
|
|
|
/// EmitRelocations - Emit relocations
|
|
void ELFWriter::EmitRelocations() {
|
|
|
|
// True if the target uses the relocation entry to hold the addend,
|
|
// otherwise the addend is written directly to the relocatable field.
|
|
bool HasRelA = TEW->hasRelocationAddend();
|
|
|
|
// Create Relocation sections for each section which needs it.
|
|
for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
|
|
ELFSection &S = *SectionList[i];
|
|
|
|
// This section does not have relocations
|
|
if (!S.hasRelocations()) continue;
|
|
ELFSection &RelSec = getRelocSection(S);
|
|
|
|
// 'Link' - Section hdr idx of the associated symbol table
|
|
// 'Info' - Section hdr idx of the section to which the relocation applies
|
|
ELFSection &SymTab = getSymbolTableSection();
|
|
RelSec.Link = SymTab.SectionIdx;
|
|
RelSec.Info = S.SectionIdx;
|
|
RelSec.EntSize = TEW->getRelocationEntrySize();
|
|
|
|
// Get the relocations from Section
|
|
std::vector<MachineRelocation> Relos = S.getRelocations();
|
|
for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
|
|
MRE = Relos.end(); MRI != MRE; ++MRI) {
|
|
MachineRelocation &MR = *MRI;
|
|
|
|
// Relocatable field offset from the section start
|
|
unsigned RelOffset = MR.getMachineCodeOffset();
|
|
|
|
// Symbol index in the symbol table
|
|
unsigned SymIdx = 0;
|
|
|
|
// Target specific relocation field type and size
|
|
unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
|
|
unsigned RelTySize = TEW->getRelocationTySize(RelType);
|
|
int64_t Addend = 0;
|
|
|
|
// There are several machine relocations types, and each one of
|
|
// them needs a different approach to retrieve the symbol table index.
|
|
if (MR.isGlobalValue()) {
|
|
const GlobalValue *G = MR.getGlobalValue();
|
|
SymIdx = GblSymLookup[G];
|
|
if (G->hasPrivateLinkage()) {
|
|
// If the target uses a section offset in the relocation:
|
|
// SymIdx + Addend = section sym for global + section offset
|
|
unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
|
|
Addend = PrivateSyms[SymIdx]->Value;
|
|
SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
|
|
} else {
|
|
Addend = TEW->getDefaultAddendForRelTy(RelType);
|
|
}
|
|
} else if (MR.isExternalSymbol()) {
|
|
const char *ExtSym = MR.getExternalSymbol();
|
|
SymIdx = ExtSymLookup[ExtSym];
|
|
Addend = TEW->getDefaultAddendForRelTy(RelType);
|
|
} else {
|
|
// Get the symbol index for the section symbol
|
|
unsigned SectionIdx = MR.getConstantVal();
|
|
SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
|
|
Addend = (uint64_t)MR.getResultPointer();
|
|
|
|
// For pc relative relocations where symbols are defined in the same
|
|
// section they are referenced, ignore the relocation entry and patch
|
|
// the relocatable field with the symbol offset directly.
|
|
if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
|
|
int64_t Value = TEW->computeRelocation(Addend, RelOffset, RelType);
|
|
RelocateField(S, RelOffset, Value, RelTySize);
|
|
continue;
|
|
}
|
|
|
|
// Handle Jump Table Index relocation
|
|
if ((SectionIdx == getJumpTableSection().SectionIdx) &&
|
|
TEW->hasCustomJumpTableIndexRelTy()) {
|
|
RelType = TEW->getJumpTableIndexRelTy();
|
|
RelTySize = TEW->getRelocationTySize(RelType);
|
|
}
|
|
}
|
|
|
|
// The target without addend on the relocation symbol must be
|
|
// patched in the relocation place itself to contain the addend
|
|
if (!HasRelA)
|
|
RelocateField(S, RelOffset, Addend, RelTySize);
|
|
|
|
// Get the relocation entry and emit to the relocation section
|
|
ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
|
|
EmitRelocation(RelSec, Rel, HasRelA);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
|
|
void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
|
|
bool HasRelA) {
|
|
RelSec.emitWord(Rel.getOffset());
|
|
RelSec.emitWord(Rel.getInfo(is64Bit));
|
|
if (HasRelA)
|
|
RelSec.emitWord(Rel.getAddend());
|
|
}
|
|
|
|
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
|
|
void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
|
|
if (is64Bit) {
|
|
SymbolTable.emitWord32(Sym.NameIdx);
|
|
SymbolTable.emitByte(Sym.Info);
|
|
SymbolTable.emitByte(Sym.Other);
|
|
SymbolTable.emitWord16(Sym.SectionIdx);
|
|
SymbolTable.emitWord64(Sym.Value);
|
|
SymbolTable.emitWord64(Sym.Size);
|
|
} else {
|
|
SymbolTable.emitWord32(Sym.NameIdx);
|
|
SymbolTable.emitWord32(Sym.Value);
|
|
SymbolTable.emitWord32(Sym.Size);
|
|
SymbolTable.emitByte(Sym.Info);
|
|
SymbolTable.emitByte(Sym.Other);
|
|
SymbolTable.emitWord16(Sym.SectionIdx);
|
|
}
|
|
}
|
|
|
|
/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
|
|
/// Section Header Table
|
|
void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
|
|
const ELFSection &SHdr) {
|
|
SHdrTab.emitWord32(SHdr.NameIdx);
|
|
SHdrTab.emitWord32(SHdr.Type);
|
|
if (is64Bit) {
|
|
SHdrTab.emitWord64(SHdr.Flags);
|
|
SHdrTab.emitWord(SHdr.Addr);
|
|
SHdrTab.emitWord(SHdr.Offset);
|
|
SHdrTab.emitWord64(SHdr.Size);
|
|
SHdrTab.emitWord32(SHdr.Link);
|
|
SHdrTab.emitWord32(SHdr.Info);
|
|
SHdrTab.emitWord64(SHdr.Align);
|
|
SHdrTab.emitWord64(SHdr.EntSize);
|
|
} else {
|
|
SHdrTab.emitWord32(SHdr.Flags);
|
|
SHdrTab.emitWord(SHdr.Addr);
|
|
SHdrTab.emitWord(SHdr.Offset);
|
|
SHdrTab.emitWord32(SHdr.Size);
|
|
SHdrTab.emitWord32(SHdr.Link);
|
|
SHdrTab.emitWord32(SHdr.Info);
|
|
SHdrTab.emitWord32(SHdr.Align);
|
|
SHdrTab.emitWord32(SHdr.EntSize);
|
|
}
|
|
}
|
|
|
|
/// EmitStringTable - If the current symbol table is non-empty, emit the string
|
|
/// table for it
|
|
void ELFWriter::EmitStringTable(const std::string &ModuleName) {
|
|
if (!SymbolList.size()) return; // Empty symbol table.
|
|
ELFSection &StrTab = getStringTableSection();
|
|
|
|
// Set the zero'th symbol to a null byte, as required.
|
|
StrTab.emitByte(0);
|
|
|
|
// Walk on the symbol list and write symbol names into the string table.
|
|
unsigned Index = 1;
|
|
for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
|
|
ELFSym &Sym = *(*I);
|
|
|
|
std::string Name;
|
|
if (Sym.isGlobalValue())
|
|
// Use the name mangler to uniquify the LLVM symbol.
|
|
Name.append(Mang->getMangledName(Sym.getGlobalValue()));
|
|
else if (Sym.isExternalSym())
|
|
Name.append(Sym.getExternalSymbol());
|
|
else if (Sym.isFileType())
|
|
Name.append(ModuleName);
|
|
|
|
if (Name.empty()) {
|
|
Sym.NameIdx = 0;
|
|
} else {
|
|
Sym.NameIdx = Index;
|
|
StrTab.emitString(Name);
|
|
|
|
// Keep track of the number of bytes emitted to this section.
|
|
Index += Name.size()+1;
|
|
}
|
|
}
|
|
assert(Index == StrTab.size());
|
|
StrTab.Size = Index;
|
|
}
|
|
|
|
// SortSymbols - On the symbol table local symbols must come before
|
|
// all other symbols with non-local bindings. The return value is
|
|
// the position of the first non local symbol.
|
|
unsigned ELFWriter::SortSymbols() {
|
|
unsigned FirstNonLocalSymbol;
|
|
std::vector<ELFSym*> LocalSyms, OtherSyms;
|
|
|
|
for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
|
|
if ((*I)->isLocalBind())
|
|
LocalSyms.push_back(*I);
|
|
else
|
|
OtherSyms.push_back(*I);
|
|
}
|
|
SymbolList.clear();
|
|
FirstNonLocalSymbol = LocalSyms.size();
|
|
|
|
for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
|
|
SymbolList.push_back(LocalSyms[i]);
|
|
|
|
for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
|
|
SymbolList.push_back(*I);
|
|
|
|
LocalSyms.clear();
|
|
OtherSyms.clear();
|
|
|
|
return FirstNonLocalSymbol;
|
|
}
|
|
|
|
/// EmitSymbolTable - Emit the symbol table itself.
|
|
void ELFWriter::EmitSymbolTable() {
|
|
if (!SymbolList.size()) return; // Empty symbol table.
|
|
|
|
// Now that we have emitted the string table and know the offset into the
|
|
// string table of each symbol, emit the symbol table itself.
|
|
ELFSection &SymTab = getSymbolTableSection();
|
|
SymTab.Align = TEW->getPrefELFAlignment();
|
|
|
|
// Section Index of .strtab.
|
|
SymTab.Link = getStringTableSection().SectionIdx;
|
|
|
|
// Size of each symtab entry.
|
|
SymTab.EntSize = TEW->getSymTabEntrySize();
|
|
|
|
// Reorder the symbol table with local symbols first!
|
|
unsigned FirstNonLocalSymbol = SortSymbols();
|
|
|
|
// Emit all the symbols to the symbol table.
|
|
for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
|
|
ELFSym &Sym = *SymbolList[i];
|
|
|
|
// Emit symbol to the symbol table
|
|
EmitSymbol(SymTab, Sym);
|
|
|
|
// Record the symbol table index for each symbol
|
|
if (Sym.isGlobalValue())
|
|
GblSymLookup[Sym.getGlobalValue()] = i;
|
|
else if (Sym.isExternalSym())
|
|
ExtSymLookup[Sym.getExternalSymbol()] = i;
|
|
|
|
// Keep track on the symbol index into the symbol table
|
|
Sym.SymTabIdx = i;
|
|
}
|
|
|
|
// One greater than the symbol table index of the last local symbol
|
|
SymTab.Info = FirstNonLocalSymbol;
|
|
SymTab.Size = SymTab.size();
|
|
}
|
|
|
|
/// EmitSectionTableStringTable - This method adds and emits a section for the
|
|
/// ELF Section Table string table: the string table that holds all of the
|
|
/// section names.
|
|
void ELFWriter::EmitSectionTableStringTable() {
|
|
// First step: add the section for the string table to the list of sections:
|
|
ELFSection &SHStrTab = getSectionHeaderStringTableSection();
|
|
|
|
// Now that we know which section number is the .shstrtab section, update the
|
|
// e_shstrndx entry in the ELF header.
|
|
ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
|
|
|
|
// Set the NameIdx of each section in the string table and emit the bytes for
|
|
// the string table.
|
|
unsigned Index = 0;
|
|
|
|
for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
|
|
ELFSection &S = *(*I);
|
|
// Set the index into the table. Note if we have lots of entries with
|
|
// common suffixes, we could memoize them here if we cared.
|
|
S.NameIdx = Index;
|
|
SHStrTab.emitString(S.getName());
|
|
|
|
// Keep track of the number of bytes emitted to this section.
|
|
Index += S.getName().size()+1;
|
|
}
|
|
|
|
// Set the size of .shstrtab now that we know what it is.
|
|
assert(Index == SHStrTab.size());
|
|
SHStrTab.Size = Index;
|
|
}
|
|
|
|
/// OutputSectionsAndSectionTable - Now that we have constructed the file header
|
|
/// and all of the sections, emit these to the ostream destination and emit the
|
|
/// SectionTable.
|
|
void ELFWriter::OutputSectionsAndSectionTable() {
|
|
// Pass #1: Compute the file offset for each section.
|
|
size_t FileOff = ElfHdr.size(); // File header first.
|
|
|
|
// Adjust alignment of all section if needed, skip the null section.
|
|
for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
|
|
ELFSection &ES = *SectionList[i];
|
|
if (!ES.size()) {
|
|
ES.Offset = FileOff;
|
|
continue;
|
|
}
|
|
|
|
// Update Section size
|
|
if (!ES.Size)
|
|
ES.Size = ES.size();
|
|
|
|
// Align FileOff to whatever the alignment restrictions of the section are.
|
|
if (ES.Align)
|
|
FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
|
|
|
|
ES.Offset = FileOff;
|
|
FileOff += ES.Size;
|
|
}
|
|
|
|
// Align Section Header.
|
|
unsigned TableAlign = TEW->getPrefELFAlignment();
|
|
FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
|
|
|
|
// Now that we know where all of the sections will be emitted, set the e_shnum
|
|
// entry in the ELF header.
|
|
ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
|
|
|
|
// Now that we know the offset in the file of the section table, update the
|
|
// e_shoff address in the ELF header.
|
|
ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
|
|
|
|
// Now that we know all of the data in the file header, emit it and all of the
|
|
// sections!
|
|
O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
|
|
FileOff = ElfHdr.size();
|
|
|
|
// Section Header Table blob
|
|
BinaryObject SHdrTable(isLittleEndian, is64Bit);
|
|
|
|
// Emit all of sections to the file and build the section header table.
|
|
for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
|
|
ELFSection &S = *(*I);
|
|
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
|
|
<< ", Size: " << S.Size << ", Offset: " << S.Offset
|
|
<< ", SectionData Size: " << S.size() << "\n";
|
|
|
|
// Align FileOff to whatever the alignment restrictions of the section are.
|
|
if (S.size()) {
|
|
if (S.Align) {
|
|
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
|
|
FileOff != NewFileOff; ++FileOff)
|
|
O << (char)0xAB;
|
|
}
|
|
O.write((char *)&S.getData()[0], S.Size);
|
|
FileOff += S.Size;
|
|
}
|
|
|
|
EmitSectionHeader(SHdrTable, S);
|
|
}
|
|
|
|
// Align output for the section table.
|
|
for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
|
|
FileOff != NewFileOff; ++FileOff)
|
|
O << (char)0xAB;
|
|
|
|
// Emit the section table itself.
|
|
O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
|
|
}
|