mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 16:31:16 +00:00
33d0474bf5
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76472 91177308-0d34-0410-b5e6-96231b3b80d8
1010 lines
37 KiB
C++
1010 lines
37 KiB
C++
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TwoAddress instruction pass which is used
|
|
// by most register allocators. Two-Address instructions are rewritten
|
|
// from:
|
|
//
|
|
// A = B op C
|
|
//
|
|
// to:
|
|
//
|
|
// A = B
|
|
// A op= C
|
|
//
|
|
// Note that if a register allocator chooses to use this pass, that it
|
|
// has to be capable of handling the non-SSA nature of these rewritten
|
|
// virtual registers.
|
|
//
|
|
// It is also worth noting that the duplicate operand of the two
|
|
// address instruction is removed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "twoaddrinstr"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
|
|
STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
|
|
STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
|
|
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
|
|
STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
|
|
STATISTIC(NumReMats, "Number of instructions re-materialized");
|
|
STATISTIC(NumDeletes, "Number of dead instructions deleted");
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN TwoAddressInstructionPass
|
|
: public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI;
|
|
LiveVariables *LV;
|
|
|
|
// DistanceMap - Keep track the distance of a MI from the start of the
|
|
// current basic block.
|
|
DenseMap<MachineInstr*, unsigned> DistanceMap;
|
|
|
|
// SrcRegMap - A map from virtual registers to physical registers which
|
|
// are likely targets to be coalesced to due to copies from physical
|
|
// registers to virtual registers. e.g. v1024 = move r0.
|
|
DenseMap<unsigned, unsigned> SrcRegMap;
|
|
|
|
// DstRegMap - A map from virtual registers to physical registers which
|
|
// are likely targets to be coalesced to due to copies to physical
|
|
// registers from virtual registers. e.g. r1 = move v1024.
|
|
DenseMap<unsigned, unsigned> DstRegMap;
|
|
|
|
bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
|
|
unsigned Reg,
|
|
MachineBasicBlock::iterator OldPos);
|
|
|
|
bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
|
|
MachineInstr *MI, MachineInstr *DefMI,
|
|
MachineBasicBlock *MBB, unsigned Loc);
|
|
|
|
bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
|
|
unsigned &LastDef);
|
|
|
|
MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
|
|
unsigned Dist);
|
|
|
|
bool isProfitableToCommute(unsigned regB, unsigned regC,
|
|
MachineInstr *MI, MachineBasicBlock *MBB,
|
|
unsigned Dist);
|
|
|
|
bool CommuteInstruction(MachineBasicBlock::iterator &mi,
|
|
MachineFunction::iterator &mbbi,
|
|
unsigned RegB, unsigned RegC, unsigned Dist);
|
|
|
|
bool isProfitableToConv3Addr(unsigned RegA);
|
|
|
|
bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
|
|
MachineBasicBlock::iterator &nmi,
|
|
MachineFunction::iterator &mbbi,
|
|
unsigned RegB, unsigned Dist);
|
|
|
|
void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
SmallPtrSet<MachineInstr*, 8> &Processed);
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
if (StrongPHIElim)
|
|
AU.addPreservedID(StrongPHIEliminationID);
|
|
else
|
|
AU.addPreservedID(PHIEliminationID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// runOnMachineFunction - Pass entry point.
|
|
bool runOnMachineFunction(MachineFunction&);
|
|
};
|
|
}
|
|
|
|
char TwoAddressInstructionPass::ID = 0;
|
|
static RegisterPass<TwoAddressInstructionPass>
|
|
X("twoaddressinstruction", "Two-Address instruction pass");
|
|
|
|
const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
|
|
|
|
/// Sink3AddrInstruction - A two-address instruction has been converted to a
|
|
/// three-address instruction to avoid clobbering a register. Try to sink it
|
|
/// past the instruction that would kill the above mentioned register to reduce
|
|
/// register pressure.
|
|
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
|
|
MachineInstr *MI, unsigned SavedReg,
|
|
MachineBasicBlock::iterator OldPos) {
|
|
// Check if it's safe to move this instruction.
|
|
bool SeenStore = true; // Be conservative.
|
|
if (!MI->isSafeToMove(TII, SeenStore))
|
|
return false;
|
|
|
|
unsigned DefReg = 0;
|
|
SmallSet<unsigned, 4> UseRegs;
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (MO.isUse() && MOReg != SavedReg)
|
|
UseRegs.insert(MO.getReg());
|
|
if (!MO.isDef())
|
|
continue;
|
|
if (MO.isImplicit())
|
|
// Don't try to move it if it implicitly defines a register.
|
|
return false;
|
|
if (DefReg)
|
|
// For now, don't move any instructions that define multiple registers.
|
|
return false;
|
|
DefReg = MO.getReg();
|
|
}
|
|
|
|
// Find the instruction that kills SavedReg.
|
|
MachineInstr *KillMI = NULL;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
if (!UseMO.isKill())
|
|
continue;
|
|
KillMI = UseMO.getParent();
|
|
break;
|
|
}
|
|
|
|
if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
|
|
return false;
|
|
|
|
// If any of the definitions are used by another instruction between the
|
|
// position and the kill use, then it's not safe to sink it.
|
|
//
|
|
// FIXME: This can be sped up if there is an easy way to query whether an
|
|
// instruction is before or after another instruction. Then we can use
|
|
// MachineRegisterInfo def / use instead.
|
|
MachineOperand *KillMO = NULL;
|
|
MachineBasicBlock::iterator KillPos = KillMI;
|
|
++KillPos;
|
|
|
|
unsigned NumVisited = 0;
|
|
for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
|
|
MachineInstr *OtherMI = I;
|
|
if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
|
|
return false;
|
|
++NumVisited;
|
|
for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = OtherMI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (!MOReg)
|
|
continue;
|
|
if (DefReg == MOReg)
|
|
return false;
|
|
|
|
if (MO.isKill()) {
|
|
if (OtherMI == KillMI && MOReg == SavedReg)
|
|
// Save the operand that kills the register. We want to unset the kill
|
|
// marker if we can sink MI past it.
|
|
KillMO = &MO;
|
|
else if (UseRegs.count(MOReg))
|
|
// One of the uses is killed before the destination.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update kill and LV information.
|
|
KillMO->setIsKill(false);
|
|
KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
|
|
KillMO->setIsKill(true);
|
|
|
|
if (LV)
|
|
LV->replaceKillInstruction(SavedReg, KillMI, MI);
|
|
|
|
// Move instruction to its destination.
|
|
MBB->remove(MI);
|
|
MBB->insert(KillPos, MI);
|
|
|
|
++Num3AddrSunk;
|
|
return true;
|
|
}
|
|
|
|
/// isTwoAddrUse - Return true if the specified MI is using the specified
|
|
/// register as a two-address operand.
|
|
static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
|
|
const TargetInstrDesc &TID = UseMI->getDesc();
|
|
for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = UseMI->getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == Reg &&
|
|
(MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
|
|
// Earlier use is a two-address one.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isProfitableToReMat - Return true if the heuristics determines it is likely
|
|
/// to be profitable to re-materialize the definition of Reg rather than copy
|
|
/// the register.
|
|
bool
|
|
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
|
|
const TargetRegisterClass *RC,
|
|
MachineInstr *MI, MachineInstr *DefMI,
|
|
MachineBasicBlock *MBB, unsigned Loc) {
|
|
bool OtherUse = false;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
MachineBasicBlock *UseMBB = UseMI->getParent();
|
|
if (UseMBB == MBB) {
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
|
|
if (DI != DistanceMap.end() && DI->second == Loc)
|
|
continue; // Current use.
|
|
OtherUse = true;
|
|
// There is at least one other use in the MBB that will clobber the
|
|
// register.
|
|
if (isTwoAddrUse(UseMI, Reg))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If other uses in MBB are not two-address uses, then don't remat.
|
|
if (OtherUse)
|
|
return false;
|
|
|
|
// No other uses in the same block, remat if it's defined in the same
|
|
// block so it does not unnecessarily extend the live range.
|
|
return MBB == DefMI->getParent();
|
|
}
|
|
|
|
/// NoUseAfterLastDef - Return true if there are no intervening uses between the
|
|
/// last instruction in the MBB that defines the specified register and the
|
|
/// two-address instruction which is being processed. It also returns the last
|
|
/// def location by reference
|
|
bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
|
|
MachineBasicBlock *MBB, unsigned Dist,
|
|
unsigned &LastDef) {
|
|
LastDef = 0;
|
|
unsigned LastUse = Dist;
|
|
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
|
|
E = MRI->reg_end(); I != E; ++I) {
|
|
MachineOperand &MO = I.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
if (MI->getParent() != MBB)
|
|
continue;
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
|
|
if (DI == DistanceMap.end())
|
|
continue;
|
|
if (MO.isUse() && DI->second < LastUse)
|
|
LastUse = DI->second;
|
|
if (MO.isDef() && DI->second > LastDef)
|
|
LastDef = DI->second;
|
|
}
|
|
|
|
return !(LastUse > LastDef && LastUse < Dist);
|
|
}
|
|
|
|
MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
|
|
MachineBasicBlock *MBB,
|
|
unsigned Dist) {
|
|
unsigned LastUseDist = 0;
|
|
MachineInstr *LastUse = 0;
|
|
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
|
|
E = MRI->reg_end(); I != E; ++I) {
|
|
MachineOperand &MO = I.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
if (MI->getParent() != MBB)
|
|
continue;
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
|
|
if (DI == DistanceMap.end())
|
|
continue;
|
|
if (DI->second >= Dist)
|
|
continue;
|
|
|
|
if (MO.isUse() && DI->second > LastUseDist) {
|
|
LastUse = DI->first;
|
|
LastUseDist = DI->second;
|
|
}
|
|
}
|
|
return LastUse;
|
|
}
|
|
|
|
/// isCopyToReg - Return true if the specified MI is a copy instruction or
|
|
/// a extract_subreg instruction. It also returns the source and destination
|
|
/// registers and whether they are physical registers by reference.
|
|
static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
|
|
unsigned &SrcReg, unsigned &DstReg,
|
|
bool &IsSrcPhys, bool &IsDstPhys) {
|
|
SrcReg = 0;
|
|
DstReg = 0;
|
|
unsigned SrcSubIdx, DstSubIdx;
|
|
if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
|
|
if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
} else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SrcReg = MI.getOperand(2).getReg();
|
|
} else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SrcReg = MI.getOperand(2).getReg();
|
|
}
|
|
}
|
|
|
|
if (DstReg) {
|
|
IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
|
|
IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isKilled - Test if the given register value, which is used by the given
|
|
/// instruction, is killed by the given instruction. This looks through
|
|
/// coalescable copies to see if the original value is potentially not killed.
|
|
///
|
|
/// For example, in this code:
|
|
///
|
|
/// %reg1034 = copy %reg1024
|
|
/// %reg1035 = copy %reg1025<kill>
|
|
/// %reg1036 = add %reg1034<kill>, %reg1035<kill>
|
|
///
|
|
/// %reg1034 is not considered to be killed, since it is copied from a
|
|
/// register which is not killed. Treating it as not killed lets the
|
|
/// normal heuristics commute the (two-address) add, which lets
|
|
/// coalescing eliminate the extra copy.
|
|
///
|
|
static bool isKilled(MachineInstr &MI, unsigned Reg,
|
|
const MachineRegisterInfo *MRI,
|
|
const TargetInstrInfo *TII) {
|
|
MachineInstr *DefMI = &MI;
|
|
for (;;) {
|
|
if (!DefMI->killsRegister(Reg))
|
|
return false;
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return true;
|
|
MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
|
|
// If there are multiple defs, we can't do a simple analysis, so just
|
|
// go with what the kill flag says.
|
|
if (next(Begin) != MRI->def_end())
|
|
return true;
|
|
DefMI = &*Begin;
|
|
bool IsSrcPhys, IsDstPhys;
|
|
unsigned SrcReg, DstReg;
|
|
// If the def is something other than a copy, then it isn't going to
|
|
// be coalesced, so follow the kill flag.
|
|
if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
|
|
return true;
|
|
Reg = SrcReg;
|
|
}
|
|
}
|
|
|
|
/// isTwoAddrUse - Return true if the specified MI uses the specified register
|
|
/// as a two-address use. If so, return the destination register by reference.
|
|
static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
|
|
const TargetInstrDesc &TID = MI.getDesc();
|
|
unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
|
|
? MI.getNumOperands() : TID.getNumOperands();
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
|
|
continue;
|
|
unsigned ti;
|
|
if (MI.isRegTiedToDefOperand(i, &ti)) {
|
|
DstReg = MI.getOperand(ti).getReg();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// findOnlyInterestingUse - Given a register, if has a single in-basic block
|
|
/// use, return the use instruction if it's a copy or a two-address use.
|
|
static
|
|
MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
|
|
MachineRegisterInfo *MRI,
|
|
const TargetInstrInfo *TII,
|
|
bool &IsCopy,
|
|
unsigned &DstReg, bool &IsDstPhys) {
|
|
MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
|
|
if (UI == MRI->use_end())
|
|
return 0;
|
|
MachineInstr &UseMI = *UI;
|
|
if (++UI != MRI->use_end())
|
|
// More than one use.
|
|
return 0;
|
|
if (UseMI.getParent() != MBB)
|
|
return 0;
|
|
unsigned SrcReg;
|
|
bool IsSrcPhys;
|
|
if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
|
|
IsCopy = true;
|
|
return &UseMI;
|
|
}
|
|
IsDstPhys = false;
|
|
if (isTwoAddrUse(UseMI, Reg, DstReg)) {
|
|
IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
|
|
return &UseMI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getMappedReg - Return the physical register the specified virtual register
|
|
/// might be mapped to.
|
|
static unsigned
|
|
getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
|
|
while (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
|
|
if (SI == RegMap.end())
|
|
return 0;
|
|
Reg = SI->second;
|
|
}
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
return Reg;
|
|
return 0;
|
|
}
|
|
|
|
/// regsAreCompatible - Return true if the two registers are equal or aliased.
|
|
///
|
|
static bool
|
|
regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
|
|
if (RegA == RegB)
|
|
return true;
|
|
if (!RegA || !RegB)
|
|
return false;
|
|
return TRI->regsOverlap(RegA, RegB);
|
|
}
|
|
|
|
|
|
/// isProfitableToReMat - Return true if it's potentially profitable to commute
|
|
/// the two-address instruction that's being processed.
|
|
bool
|
|
TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
|
|
MachineInstr *MI, MachineBasicBlock *MBB,
|
|
unsigned Dist) {
|
|
// Determine if it's profitable to commute this two address instruction. In
|
|
// general, we want no uses between this instruction and the definition of
|
|
// the two-address register.
|
|
// e.g.
|
|
// %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
|
|
// %reg1029<def> = MOV8rr %reg1028
|
|
// %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
|
|
// insert => %reg1030<def> = MOV8rr %reg1028
|
|
// %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
|
|
// In this case, it might not be possible to coalesce the second MOV8rr
|
|
// instruction if the first one is coalesced. So it would be profitable to
|
|
// commute it:
|
|
// %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
|
|
// %reg1029<def> = MOV8rr %reg1028
|
|
// %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
|
|
// insert => %reg1030<def> = MOV8rr %reg1029
|
|
// %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
|
|
|
|
if (!MI->killsRegister(regC))
|
|
return false;
|
|
|
|
// Ok, we have something like:
|
|
// %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
|
|
// let's see if it's worth commuting it.
|
|
|
|
// Look for situations like this:
|
|
// %reg1024<def> = MOV r1
|
|
// %reg1025<def> = MOV r0
|
|
// %reg1026<def> = ADD %reg1024, %reg1025
|
|
// r0 = MOV %reg1026
|
|
// Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
|
|
unsigned FromRegB = getMappedReg(regB, SrcRegMap);
|
|
unsigned FromRegC = getMappedReg(regC, SrcRegMap);
|
|
unsigned ToRegB = getMappedReg(regB, DstRegMap);
|
|
unsigned ToRegC = getMappedReg(regC, DstRegMap);
|
|
if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
|
|
(regsAreCompatible(FromRegB, ToRegC, TRI) ||
|
|
regsAreCompatible(FromRegC, ToRegB, TRI)))
|
|
return true;
|
|
|
|
// If there is a use of regC between its last def (could be livein) and this
|
|
// instruction, then bail.
|
|
unsigned LastDefC = 0;
|
|
if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
|
|
return false;
|
|
|
|
// If there is a use of regB between its last def (could be livein) and this
|
|
// instruction, then go ahead and make this transformation.
|
|
unsigned LastDefB = 0;
|
|
if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
|
|
return true;
|
|
|
|
// Since there are no intervening uses for both registers, then commute
|
|
// if the def of regC is closer. Its live interval is shorter.
|
|
return LastDefB && LastDefC && LastDefC > LastDefB;
|
|
}
|
|
|
|
/// CommuteInstruction - Commute a two-address instruction and update the basic
|
|
/// block, distance map, and live variables if needed. Return true if it is
|
|
/// successful.
|
|
bool
|
|
TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
|
|
MachineFunction::iterator &mbbi,
|
|
unsigned RegB, unsigned RegC, unsigned Dist) {
|
|
MachineInstr *MI = mi;
|
|
DOUT << "2addr: COMMUTING : " << *MI;
|
|
MachineInstr *NewMI = TII->commuteInstruction(MI);
|
|
|
|
if (NewMI == 0) {
|
|
DOUT << "2addr: COMMUTING FAILED!\n";
|
|
return false;
|
|
}
|
|
|
|
DOUT << "2addr: COMMUTED TO: " << *NewMI;
|
|
// If the instruction changed to commute it, update livevar.
|
|
if (NewMI != MI) {
|
|
if (LV)
|
|
// Update live variables
|
|
LV->replaceKillInstruction(RegC, MI, NewMI);
|
|
|
|
mbbi->insert(mi, NewMI); // Insert the new inst
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
mi = NewMI;
|
|
DistanceMap.insert(std::make_pair(NewMI, Dist));
|
|
}
|
|
|
|
// Update source register map.
|
|
unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
|
|
if (FromRegC) {
|
|
unsigned RegA = MI->getOperand(0).getReg();
|
|
SrcRegMap[RegA] = FromRegC;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isProfitableToConv3Addr - Return true if it is profitable to convert the
|
|
/// given 2-address instruction to a 3-address one.
|
|
bool
|
|
TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
|
|
// Look for situations like this:
|
|
// %reg1024<def> = MOV r1
|
|
// %reg1025<def> = MOV r0
|
|
// %reg1026<def> = ADD %reg1024, %reg1025
|
|
// r2 = MOV %reg1026
|
|
// Turn ADD into a 3-address instruction to avoid a copy.
|
|
unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
|
|
unsigned ToRegA = getMappedReg(RegA, DstRegMap);
|
|
return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
|
|
}
|
|
|
|
/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
|
|
/// three address one. Return true if this transformation was successful.
|
|
bool
|
|
TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
|
|
MachineBasicBlock::iterator &nmi,
|
|
MachineFunction::iterator &mbbi,
|
|
unsigned RegB, unsigned Dist) {
|
|
MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
|
|
if (NewMI) {
|
|
DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
|
|
DOUT << "2addr: TO 3-ADDR: " << *NewMI;
|
|
bool Sunk = false;
|
|
|
|
if (NewMI->findRegisterUseOperand(RegB, false, TRI))
|
|
// FIXME: Temporary workaround. If the new instruction doesn't
|
|
// uses RegB, convertToThreeAddress must have created more
|
|
// then one instruction.
|
|
Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
|
|
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
|
|
if (!Sunk) {
|
|
DistanceMap.insert(std::make_pair(NewMI, Dist));
|
|
mi = NewMI;
|
|
nmi = next(mi);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ProcessCopy - If the specified instruction is not yet processed, process it
|
|
/// if it's a copy. For a copy instruction, we find the physical registers the
|
|
/// source and destination registers might be mapped to. These are kept in
|
|
/// point-to maps used to determine future optimizations. e.g.
|
|
/// v1024 = mov r0
|
|
/// v1025 = mov r1
|
|
/// v1026 = add v1024, v1025
|
|
/// r1 = mov r1026
|
|
/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
|
|
/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
|
|
/// potentially joined with r1 on the output side. It's worthwhile to commute
|
|
/// 'add' to eliminate a copy.
|
|
void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
SmallPtrSet<MachineInstr*, 8> &Processed) {
|
|
if (Processed.count(MI))
|
|
return;
|
|
|
|
bool IsSrcPhys, IsDstPhys;
|
|
unsigned SrcReg, DstReg;
|
|
if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
|
|
return;
|
|
|
|
if (IsDstPhys && !IsSrcPhys)
|
|
DstRegMap.insert(std::make_pair(SrcReg, DstReg));
|
|
else if (!IsDstPhys && IsSrcPhys) {
|
|
bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
|
|
if (!isNew)
|
|
assert(SrcRegMap[DstReg] == SrcReg &&
|
|
"Can't map to two src physical registers!");
|
|
|
|
SmallVector<unsigned, 4> VirtRegPairs;
|
|
bool IsCopy = false;
|
|
unsigned NewReg = 0;
|
|
while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
|
|
IsCopy, NewReg, IsDstPhys)) {
|
|
if (IsCopy) {
|
|
if (!Processed.insert(UseMI))
|
|
break;
|
|
}
|
|
|
|
DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
|
|
if (DI != DistanceMap.end())
|
|
// Earlier in the same MBB.Reached via a back edge.
|
|
break;
|
|
|
|
if (IsDstPhys) {
|
|
VirtRegPairs.push_back(NewReg);
|
|
break;
|
|
}
|
|
bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
|
|
if (!isNew)
|
|
assert(SrcRegMap[NewReg] == DstReg &&
|
|
"Can't map to two src physical registers!");
|
|
VirtRegPairs.push_back(NewReg);
|
|
DstReg = NewReg;
|
|
}
|
|
|
|
if (!VirtRegPairs.empty()) {
|
|
unsigned ToReg = VirtRegPairs.back();
|
|
VirtRegPairs.pop_back();
|
|
while (!VirtRegPairs.empty()) {
|
|
unsigned FromReg = VirtRegPairs.back();
|
|
VirtRegPairs.pop_back();
|
|
bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
|
|
if (!isNew)
|
|
assert(DstRegMap[FromReg] == ToReg &&
|
|
"Can't map to two dst physical registers!");
|
|
ToReg = FromReg;
|
|
}
|
|
}
|
|
}
|
|
|
|
Processed.insert(MI);
|
|
}
|
|
|
|
/// isSafeToDelete - If the specified instruction does not produce any side
|
|
/// effects and all of its defs are dead, then it's safe to delete.
|
|
static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
|
|
const TargetInstrInfo *TII,
|
|
SmallVector<unsigned, 4> &Kills) {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (TID.mayStore() || TID.isCall())
|
|
return false;
|
|
if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isDef() && !MO.isDead())
|
|
return false;
|
|
if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
|
|
Kills.push_back(MO.getReg());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// runOnMachineFunction - Reduce two-address instructions to two operands.
|
|
///
|
|
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
|
|
DOUT << "Machine Function\n";
|
|
const TargetMachine &TM = MF.getTarget();
|
|
MRI = &MF.getRegInfo();
|
|
TII = TM.getInstrInfo();
|
|
TRI = TM.getRegisterInfo();
|
|
LV = getAnalysisIfAvailable<LiveVariables>();
|
|
|
|
bool MadeChange = false;
|
|
|
|
DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
|
|
DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
|
|
|
|
// ReMatRegs - Keep track of the registers whose def's are remat'ed.
|
|
BitVector ReMatRegs;
|
|
ReMatRegs.resize(MRI->getLastVirtReg()+1);
|
|
|
|
SmallPtrSet<MachineInstr*, 8> Processed;
|
|
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
unsigned Dist = 0;
|
|
DistanceMap.clear();
|
|
SrcRegMap.clear();
|
|
DstRegMap.clear();
|
|
Processed.clear();
|
|
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
|
|
mi != me; ) {
|
|
MachineBasicBlock::iterator nmi = next(mi);
|
|
const TargetInstrDesc &TID = mi->getDesc();
|
|
bool FirstTied = true;
|
|
|
|
DistanceMap.insert(std::make_pair(mi, ++Dist));
|
|
|
|
ProcessCopy(&*mi, &*mbbi, Processed);
|
|
|
|
unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
|
|
? mi->getNumOperands() : TID.getNumOperands();
|
|
for (unsigned si = 0; si < NumOps; ++si) {
|
|
unsigned ti = 0;
|
|
if (!mi->isRegTiedToDefOperand(si, &ti))
|
|
continue;
|
|
|
|
if (FirstTied) {
|
|
++NumTwoAddressInstrs;
|
|
DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
|
|
}
|
|
|
|
FirstTied = false;
|
|
|
|
assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
|
|
mi->getOperand(si).isUse() && "two address instruction invalid");
|
|
|
|
// If the two operands are the same we just remove the use
|
|
// and mark the def as def&use, otherwise we have to insert a copy.
|
|
if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
|
|
// Rewrite:
|
|
// a = b op c
|
|
// to:
|
|
// a = b
|
|
// a = a op c
|
|
unsigned regA = mi->getOperand(ti).getReg();
|
|
unsigned regB = mi->getOperand(si).getReg();
|
|
unsigned regASubIdx = mi->getOperand(ti).getSubReg();
|
|
|
|
assert(TargetRegisterInfo::isVirtualRegister(regB) &&
|
|
"cannot update physical register live information");
|
|
|
|
#ifndef NDEBUG
|
|
// First, verify that we don't have a use of a in the instruction (a =
|
|
// b + a for example) because our transformation will not work. This
|
|
// should never occur because we are in SSA form.
|
|
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
|
|
assert(i == ti ||
|
|
!mi->getOperand(i).isReg() ||
|
|
mi->getOperand(i).getReg() != regA);
|
|
#endif
|
|
|
|
// If this instruction is not the killing user of B, see if we can
|
|
// rearrange the code to make it so. Making it the killing user will
|
|
// allow us to coalesce A and B together, eliminating the copy we are
|
|
// about to insert.
|
|
if (!isKilled(*mi, regB, MRI, TII)) {
|
|
// If regA is dead and the instruction can be deleted, just delete
|
|
// it so it doesn't clobber regB.
|
|
SmallVector<unsigned, 4> Kills;
|
|
if (mi->getOperand(ti).isDead() &&
|
|
isSafeToDelete(mi, regB, TII, Kills)) {
|
|
SmallVector<std::pair<std::pair<unsigned, bool>
|
|
,MachineInstr*>, 4> NewKills;
|
|
bool ReallySafe = true;
|
|
// If this instruction kills some virtual registers, we need
|
|
// update the kill information. If it's not possible to do so,
|
|
// then bail out.
|
|
while (!Kills.empty()) {
|
|
unsigned Kill = Kills.back();
|
|
Kills.pop_back();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
|
|
ReallySafe = false;
|
|
break;
|
|
}
|
|
MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
|
|
if (LastKill) {
|
|
bool isModRef = LastKill->modifiesRegister(Kill);
|
|
NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
|
|
LastKill));
|
|
} else {
|
|
ReallySafe = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ReallySafe) {
|
|
if (LV) {
|
|
while (!NewKills.empty()) {
|
|
MachineInstr *NewKill = NewKills.back().second;
|
|
unsigned Kill = NewKills.back().first.first;
|
|
bool isDead = NewKills.back().first.second;
|
|
NewKills.pop_back();
|
|
if (LV->removeVirtualRegisterKilled(Kill, mi)) {
|
|
if (isDead)
|
|
LV->addVirtualRegisterDead(Kill, NewKill);
|
|
else
|
|
LV->addVirtualRegisterKilled(Kill, NewKill);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're really going to nuke the old inst. If regB was marked
|
|
// as a kill we need to update its Kills list.
|
|
if (mi->getOperand(si).isKill())
|
|
LV->removeVirtualRegisterKilled(regB, mi);
|
|
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
mi = nmi;
|
|
++NumDeletes;
|
|
break; // Done with this instruction.
|
|
}
|
|
}
|
|
|
|
// If this instruction is commutative, check to see if C dies. If
|
|
// so, swap the B and C operands. This makes the live ranges of A
|
|
// and C joinable.
|
|
// FIXME: This code also works for A := B op C instructions.
|
|
unsigned SrcOp1, SrcOp2;
|
|
if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
|
|
TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
|
|
unsigned regC = 0;
|
|
if (si == SrcOp1)
|
|
regC = mi->getOperand(SrcOp2).getReg();
|
|
else if (si == SrcOp2)
|
|
regC = mi->getOperand(SrcOp1).getReg();
|
|
if (isKilled(*mi, regC, MRI, TII)) {
|
|
if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
|
|
++NumCommuted;
|
|
regB = regC;
|
|
goto InstructionRearranged;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this instruction is potentially convertible to a true
|
|
// three-address instruction,
|
|
if (TID.isConvertibleTo3Addr()) {
|
|
// FIXME: This assumes there are no more operands which are tied
|
|
// to another register.
|
|
#ifndef NDEBUG
|
|
for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
|
|
assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
|
|
#endif
|
|
|
|
if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
|
|
++NumConvertedTo3Addr;
|
|
break; // Done with this instruction.
|
|
}
|
|
}
|
|
}
|
|
|
|
// If it's profitable to commute the instruction, do so.
|
|
unsigned SrcOp1, SrcOp2;
|
|
if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
|
|
TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
|
|
unsigned regC = 0;
|
|
if (si == SrcOp1)
|
|
regC = mi->getOperand(SrcOp2).getReg();
|
|
else if (si == SrcOp2)
|
|
regC = mi->getOperand(SrcOp1).getReg();
|
|
|
|
if (regC && isProfitableToCommute(regB, regC, mi, mbbi, Dist))
|
|
if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
|
|
++NumAggrCommuted;
|
|
++NumCommuted;
|
|
regB = regC;
|
|
goto InstructionRearranged;
|
|
}
|
|
}
|
|
|
|
// If it's profitable to convert the 2-address instruction to a
|
|
// 3-address one, do so.
|
|
if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
|
|
if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
|
|
++NumConvertedTo3Addr;
|
|
break; // Done with this instruction.
|
|
}
|
|
}
|
|
|
|
InstructionRearranged:
|
|
const TargetRegisterClass* rc = MRI->getRegClass(regB);
|
|
MachineInstr *DefMI = MRI->getVRegDef(regB);
|
|
// If it's safe and profitable, remat the definition instead of
|
|
// copying it.
|
|
if (DefMI &&
|
|
DefMI->getDesc().isAsCheapAsAMove() &&
|
|
DefMI->isSafeToReMat(TII, regB) &&
|
|
isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
|
|
DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
|
|
TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI);
|
|
ReMatRegs.set(regB);
|
|
++NumReMats;
|
|
} else {
|
|
bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
|
|
(void)Emitted;
|
|
assert(Emitted && "Unable to issue a copy instruction!\n");
|
|
}
|
|
|
|
MachineBasicBlock::iterator prevMI = prior(mi);
|
|
// Update DistanceMap.
|
|
DistanceMap.insert(std::make_pair(prevMI, Dist));
|
|
DistanceMap[mi] = ++Dist;
|
|
|
|
// Update live variables for regB.
|
|
if (LV) {
|
|
if (LV->removeVirtualRegisterKilled(regB, mi))
|
|
LV->addVirtualRegisterKilled(regB, prevMI);
|
|
|
|
if (LV->removeVirtualRegisterDead(regB, mi))
|
|
LV->addVirtualRegisterDead(regB, prevMI);
|
|
}
|
|
|
|
DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
|
|
|
|
// Replace all occurences of regB with regA.
|
|
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
|
|
if (mi->getOperand(i).isReg() &&
|
|
mi->getOperand(i).getReg() == regB)
|
|
mi->getOperand(i).setReg(regA);
|
|
}
|
|
}
|
|
|
|
assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
|
|
mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
|
|
MadeChange = true;
|
|
|
|
DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
|
|
}
|
|
|
|
mi = nmi;
|
|
}
|
|
}
|
|
|
|
// Some remat'ed instructions are dead.
|
|
int VReg = ReMatRegs.find_first();
|
|
while (VReg != -1) {
|
|
if (MRI->use_empty(VReg)) {
|
|
MachineInstr *DefMI = MRI->getVRegDef(VReg);
|
|
DefMI->eraseFromParent();
|
|
}
|
|
VReg = ReMatRegs.find_next(VReg);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|