llvm-6502/lib/Target/MBlaze/MBlazeInstrInfo.td
Wesley Peck a70f28ce7d Adding the MicroBlaze backend.
The MicroBlaze is a highly configurable 32-bit soft-microprocessor for
use on Xilinx FPGAs. For more information see:
http://www.xilinx.com/tools/microblaze.htm
http://en.wikipedia.org/wiki/MicroBlaze

The current LLVM MicroBlaze backend generates assembly which can be
compiled using the an appropriate binutils assembler.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96969 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-23 19:15:24 +00:00

673 lines
30 KiB
C++

//===- MBlazeInstrInfo.td - MBlaze Instruction defs -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MBlazeInstrFormats.td"
//===----------------------------------------------------------------------===//
// MBlaze profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MBlazeRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_MBlazeJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
// Call
def MBlazeJmpLink : SDNode<"MBlazeISD::JmpLink",SDT_MBlazeJmpLink,
[SDNPHasChain,SDNPOptInFlag,SDNPOutFlag]>;
// Return
def MBlazeRet : SDNode<"MBlazeISD::Ret", SDT_MBlazeRet,
[SDNPHasChain, SDNPOptInFlag]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MBlazeISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model.
def MBWrapper : SDNode<"MBlazeISD::Wrap", SDTIntUnaryOp>;
def MBlazeGPRel : SDNode<"MBlazeISD::GPRel", SDTIntUnaryOp>;
def SDT_MBCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MBCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MBCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MBCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def SDTMBlazeSelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>]>;
//===----------------------------------------------------------------------===//
// MBlaze Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasPipe3 : Predicate<"Subtarget.hasPipe3()">;
def HasBarrel : Predicate<"Subtarget.hasBarrel()">;
def NoBarrel : Predicate<"!Subtarget.hasBarrel()">;
def HasDiv : Predicate<"Subtarget.hasDiv()">;
def HasMul : Predicate<"Subtarget.hasMul()">;
def HasFSL : Predicate<"Subtarget.hasFSL()">;
def HasEFSL : Predicate<"Subtarget.hasEFSL()">;
def HasMSRSet : Predicate<"Subtarget.hasMSRSet()">;
def HasException : Predicate<"Subtarget.hasException()">;
def HasPatCmp : Predicate<"Subtarget.hasPatCmp()">;
def HasFPU : Predicate<"Subtarget.hasFPU()">;
def HasESR : Predicate<"Subtarget.hasESR()">;
def HasPVR : Predicate<"Subtarget.hasPVR()">;
def HasMul64 : Predicate<"Subtarget.hasMul64()">;
def HasSqrt : Predicate<"Subtarget.hasSqrt()">;
def HasMMU : Predicate<"Subtarget.hasMMU()">;
//===----------------------------------------------------------------------===//
// MBlaze Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
def simm16 : Operand<i32>;
def uimm5 : Operand<i32>;
def fimm : Operand<f32>;
// Unsigned Operand
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// FSL Operand
def fslimm : Operand<i32> {
let PrintMethod = "printFSLImm";
}
// Address operand
def memri : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops simm16, CPURegs);
}
def memrr : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPURegs, CPURegs);
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() >> 16);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{
return (N->getZExtValue() >> 16) == 0;
}]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
return (N->getZExtValue() >> 16) == 0;
}], LO16>;
// FSL immediate field must fit in 4 bits.
def immZExt4 : PatLeaf<(imm), [{
return N->getZExtValue() == ((N->getZExtValue()) & 0xf) ;
}]>;
// shamt field must fit in 5 bits.
def immZExt5 : PatLeaf<(imm), [{
return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ;
}]>;
// MBlaze Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def iaddr : ComplexPattern<i32, 2, "SelectAddrRegImm", [frameindex], []>;
def xaddr : ComplexPattern<i32, 2, "SelectAddrRegReg", [], []>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [R1], Uses = [R1] in {
def ADJCALLSTACKDOWN : MBlazePseudo<(outs), (ins simm16:$amt),
"${:comment} ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MBlazePseudo<(outs),
(ins uimm16:$amt1, simm16:$amt2),
"${:comment} ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Some assembly macros need to avoid pseudoinstructions and assembler
// automatic reodering, we should reorder ourselves.
def MACRO : MBlazePseudo<(outs), (ins), ".set macro", []>;
def REORDER : MBlazePseudo<(outs), (ins), ".set reorder", []>;
def NOMACRO : MBlazePseudo<(outs), (ins), ".set nomacro", []>;
def NOREORDER : MBlazePseudo<(outs), (ins), ".set noreorder", []>;
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD : MBlazePseudo<(outs), (ins CPURegs:$reg), ".cpload $reg", []>;
def CPRESTORE : MBlazePseudo<(outs), (ins uimm16:$l), ".cprestore $l\n", []>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Arithmetic Instructions
//===----------------------------------------------------------------------===//
class Arith<bits<6> op, bits<11> flags, string instr_asm, SDNode OpNode,
InstrItinClass itin> :
TA<op, flags, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>;
class ArithI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
TAI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, imm_type:$c))], IIAlu>;
class ArithR<bits<6> op, bits<11> flags, string instr_asm, SDNode OpNode,
InstrItinClass itin> :
TA<op, flags, (outs CPURegs:$dst), (ins CPURegs:$c, CPURegs:$b),
!strconcat(instr_asm, " $dst, $c, $b"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], itin>;
class ArithRI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
TAI<op, (outs CPURegs:$dst), (ins Od:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $c, $b"),
[(set CPURegs:$dst, (OpNode imm_type:$b, CPURegs:$c))], IIAlu>;
class ArithN<bits<6> op, bits<11> flags, string instr_asm,
InstrItinClass itin> :
TA<op, flags, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[], itin>;
class ArithNI<bits<6> op, string instr_asm,Operand Od, PatLeaf imm_type> :
TAI<op, (outs CPURegs:$dst), (ins CPURegs:$b, Od:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[], IIAlu>;
class ArithRN<bits<6> op, bits<11> flags, string instr_asm,
InstrItinClass itin> :
TA<op, flags, (outs CPURegs:$dst), (ins CPURegs:$c, CPURegs:$b),
!strconcat(instr_asm, " $dst, $b, $c"),
[], itin>;
class ArithRNI<bits<6> op, string instr_asm,Operand Od, PatLeaf imm_type> :
TAI<op, (outs CPURegs:$dst), (ins Od:$c, CPURegs:$b),
!strconcat(instr_asm, " $dst, $b, $c"),
[], IIAlu>;
//===----------------------------------------------------------------------===//
// Misc Arithmetic Instructions
//===----------------------------------------------------------------------===//
class Logic<bits<6> op, bits<11> flags, string instr_asm, SDNode OpNode> :
TA<op, flags, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>;
class LogicI<bits<6> op, string instr_asm, SDNode OpNode> :
TAI<op, (outs CPURegs:$dst), (ins CPURegs:$b, uimm16:$c),
!strconcat(instr_asm, " $dst, $b, $c"),
[(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt16:$c))],
IIAlu>;
class EffectiveAddress<string instr_asm> :
TAI<0x08, (outs CPURegs:$dst), (ins memri:$addr),
instr_asm, [(set CPURegs:$dst, iaddr:$addr)], IIAlu>;
//===----------------------------------------------------------------------===//
// Memory Access Instructions
//===----------------------------------------------------------------------===//
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode> :
TA<op, 0x000, (outs CPURegs:$dst), (ins memrr:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(set CPURegs:$dst, (OpNode xaddr:$addr))], IILoad>;
class LoadMI<bits<6> op, string instr_asm, PatFrag OpNode> :
TAI<op, (outs CPURegs:$dst), (ins memri:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(set CPURegs:$dst, (OpNode iaddr:$addr))], IILoad>;
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode> :
TA<op, 0x000, (outs), (ins CPURegs:$dst, memrr:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(OpNode CPURegs:$dst, xaddr:$addr)], IIStore>;
class StoreMI<bits<6> op, string instr_asm, PatFrag OpNode> :
TAI<op, (outs), (ins CPURegs:$dst, memri:$addr),
!strconcat(instr_asm, " $dst, $addr"),
[(OpNode CPURegs:$dst, iaddr:$addr)], IIStore>;
//===----------------------------------------------------------------------===//
// Branch Instructions
//===----------------------------------------------------------------------===//
class Branch<bits<6> op, bits<5> br, bits<11> flags, string instr_asm> :
TBR<op, br, flags, (outs), (ins CPURegs:$target),
!strconcat(instr_asm, " $target"),
[(brind CPURegs:$target)], IIBranch>;
class BranchI<bits<6> op, bits<5> brf, string instr_asm> :
TBRI<op, brf, (outs), (ins brtarget:$target),
!strconcat(instr_asm, " $target"),
[(br bb:$target)], IIBranch>;
//===----------------------------------------------------------------------===//
// Branch and Link Instructions
//===----------------------------------------------------------------------===//
class BranchL<bits<6> op, bits<5> br, bits<11> flags, string instr_asm> :
TBRL<op, br, flags, (outs), (ins CPURegs:$target),
!strconcat(instr_asm, " r15, $target"),
[], IIBranch>;
class BranchLI<bits<6> op, bits<5> br, string instr_asm> :
TBRLI<op, br, (outs), (ins calltarget:$target),
!strconcat(instr_asm, " r15, $target"),
[], IIBranch>;
//===----------------------------------------------------------------------===//
// Conditional Branch Instructions
//===----------------------------------------------------------------------===//
class BranchC<bits<6> op, bits<5> br, bits<11> flags, string instr_asm,
PatFrag cond_op> :
TBRC<op, br, flags, (outs),
(ins CPURegs:$a, CPURegs:$b, brtarget:$offset),
!strconcat(instr_asm, " $a, $b, $offset"),
[], IIBranch>;
//(brcond (cond_op CPURegs:$a, CPURegs:$b), bb:$offset)],
//IIBranch>;
class BranchCI<bits<6> op, bits<5> br, string instr_asm, PatFrag cond_op> :
TBRCI<op, br, (outs), (ins CPURegs:$a, brtarget:$offset),
!strconcat(instr_asm, " $a, $offset"),
[], IIBranch>;
//===----------------------------------------------------------------------===//
// MBlaze arithmetic instructions
//===----------------------------------------------------------------------===//
let isCommutable = 1, isAsCheapAsAMove = 1 in {
def ADD : Arith<0x00, 0x000, "add ", add, IIAlu>;
def ADDC : Arith<0x02, 0x000, "addc ", adde, IIAlu>;
def ADDK : Arith<0x04, 0x000, "addk ", addc, IIAlu>;
def ADDKC : ArithN<0x06, 0x000, "addkc ", IIAlu>;
def AND : Logic<0x21, 0x000, "and ", and>;
def OR : Logic<0x20, 0x000, "or ", or>;
def XOR : Logic<0x22, 0x000, "xor ", xor>;
}
let isAsCheapAsAMove = 1 in {
def ANDN : ArithN<0x23, 0x000, "andn ", IIAlu>;
def CMP : ArithN<0x05, 0x001, "cmp ", IIAlu>;
def CMPU : ArithN<0x05, 0x003, "cmpu ", IIAlu>;
def RSUB : ArithR<0x01, 0x000, "rsub ", sub, IIAlu>;
def RSUBC : ArithR<0x03, 0x000, "rsubc ", sube, IIAlu>;
def RSUBK : ArithR<0x05, 0x000, "rsubk ", subc, IIAlu>;
def RSUBKC : ArithRN<0x07, 0x000, "rsubkc ", IIAlu>;
}
let isCommutable = 1, Predicates=[HasMul] in {
def MUL : Arith<0x10, 0x000, "mul ", mul, IIAlu>;
}
let isCommutable = 1, Predicates=[HasMul,HasMul64] in {
def MULH : Arith<0x10, 0x001, "mulh ", mulhs, IIAlu>;
def MULHU : Arith<0x10, 0x003, "mulhu ", mulhu, IIAlu>;
}
let Predicates=[HasMul,HasMul64] in {
def MULHSU : ArithN<0x10, 0x002, "mulhsu ", IIAlu>;
}
let Predicates=[HasBarrel] in {
def BSRL : Arith<0x11, 0x000, "bsrl ", srl, IIAlu>;
def BSRA : Arith<0x11, 0x200, "bsra ", sra, IIAlu>;
def BSLL : Arith<0x11, 0x400, "bsll ", shl, IIAlu>;
def BSRLI : ArithI<0x11, "bsrli ", srl, uimm5, immZExt5>;
def BSRAI : ArithI<0x11, "bsrai ", sra, uimm5, immZExt5>;
def BSLLI : ArithI<0x11, "bslli ", shl, uimm5, immZExt5>;
}
let Predicates=[HasDiv] in {
def IDIV : Arith<0x12, 0x000, "idiv ", sdiv, IIAlu>;
def IDIVU : Arith<0x12, 0x002, "idivu ", udiv, IIAlu>;
}
//===----------------------------------------------------------------------===//
// MBlaze immediate mode arithmetic instructions
//===----------------------------------------------------------------------===//
let isAsCheapAsAMove = 1 in {
def ADDI : ArithI<0x08, "addi ", add, simm16, immSExt16>;
def ADDIC : ArithNI<0x0A, "addic ", simm16, immSExt16>;
def ADDIK : ArithNI<0x0C, "addik ", simm16, immSExt16>;
def ADDIKC : ArithI<0x0E, "addikc ", addc, simm16, immSExt16>;
def RSUBI : ArithRI<0x09, "rsubi ", sub, simm16, immSExt16>;
def RSUBIC : ArithRNI<0x0B, "rsubi ", simm16, immSExt16>;
def RSUBIK : ArithRNI<0x0E, "rsubic ", simm16, immSExt16>;
def RSUBIKC : ArithRI<0x0F, "rsubikc", subc, simm16, immSExt16>;
def ANDNI : ArithNI<0x2B, "andni ", uimm16, immZExt16>;
def ANDI : LogicI<0x29, "andi ", and>;
def ORI : LogicI<0x28, "ori ", or>;
def XORI : LogicI<0x2A, "xori ", xor>;
}
let Predicates=[HasMul] in {
def MULI : ArithI<0x18, "muli ", mul, simm16, immSExt16>;
}
//===----------------------------------------------------------------------===//
// MBlaze memory access instructions
//===----------------------------------------------------------------------===//
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def LBU : LoadM<0x30, "lbu ", zextloadi8>;
def LHU : LoadM<0x31, "lhu ", zextloadi16>;
def LW : LoadM<0x32, "lw ", load>;
def LBUI : LoadMI<0x30, "lbui ", zextloadi8>;
def LHUI : LoadMI<0x31, "lhui ", zextloadi16>;
def LWI : LoadMI<0x32, "lwi ", load>;
}
def SB : StoreM<0x34, "sb ", truncstorei8>;
def SH : StoreM<0x35, "sh ", truncstorei16>;
def SW : StoreM<0x36, "sw ", store>;
def SBI : StoreMI<0x34, "sbi ", truncstorei8>;
def SHI : StoreMI<0x35, "shi ", truncstorei16>;
def SWI : StoreMI<0x36, "swi ", store>;
//===----------------------------------------------------------------------===//
// MBlaze branch instructions
//===----------------------------------------------------------------------===//
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
def BRI : BranchI<0x2E, 0x00, "bri ">;
def BRAI : BranchI<0x2E, 0x08, "brai ">;
def BEQI : BranchCI<0x2F, 0x00, "beqi ", seteq>;
def BNEI : BranchCI<0x2F, 0x01, "bnei ", setne>;
def BLTI : BranchCI<0x2F, 0x02, "blti ", setlt>;
def BLEI : BranchCI<0x2F, 0x03, "blei ", setle>;
def BGTI : BranchCI<0x2F, 0x04, "bgti ", setgt>;
def BGEI : BranchCI<0x2F, 0x05, "bgei ", setge>;
}
let isBranch = 1, isIndirectBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
def BR : Branch<0x26, 0x00, 0x000, "br ">;
def BRA : Branch<0x26, 0x08, 0x000, "bra ">;
def BEQ : BranchC<0x27, 0x00, 0x000, "beq ", seteq>;
def BNE : BranchC<0x27, 0x01, 0x000, "bne ", setne>;
def BLT : BranchC<0x27, 0x02, 0x000, "blt ", setlt>;
def BLE : BranchC<0x27, 0x03, 0x000, "ble ", setle>;
def BGT : BranchC<0x27, 0x04, 0x000, "bgt ", setgt>;
def BGE : BranchC<0x27, 0x05, 0x000, "bge ", setge>;
}
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1, hasCtrlDep = 1 in {
def BRID : BranchI<0x2E, 0x10, "brid ">;
def BRAID : BranchI<0x2E, 0x18, "braid ">;
def BEQID : BranchCI<0x2F, 0x10, "beqid ", seteq>;
def BNEID : BranchCI<0x2F, 0x11, "bneid ", setne>;
def BLTID : BranchCI<0x2F, 0x12, "bltid ", setlt>;
def BLEID : BranchCI<0x2F, 0x13, "bleid ", setle>;
def BGTID : BranchCI<0x2F, 0x14, "bgtid ", setgt>;
def BGEID : BranchCI<0x2F, 0x15, "bgeid ", setge>;
}
let isBranch = 1, isIndirectBranch = 1, isTerminator = 1,
hasDelaySlot = 1, hasCtrlDep = 1 in {
def BRD : Branch<0x26, 0x10, 0x000, "brd ">;
def BRAD : Branch<0x26, 0x18, 0x000, "brad ">;
def BEQD : BranchC<0x27, 0x10, 0x000, "beqd ", seteq>;
def BNED : BranchC<0x27, 0x11, 0x000, "bned ", setne>;
def BLTD : BranchC<0x27, 0x12, 0x000, "bltd ", setlt>;
def BLED : BranchC<0x27, 0x13, 0x000, "bled ", setle>;
def BGTD : BranchC<0x27, 0x14, 0x000, "bgtd ", setgt>;
def BGED : BranchC<0x27, 0x15, 0x000, "bged ", setge>;
}
let isCall = 1, hasCtrlDep = 1, isIndirectBranch = 1,
Defs = [R3,R4,R5,R6,R7,R8,R9,R10,R11,R12],
Uses = [R1,R5,R6,R7,R8,R9,R10] in {
def BRL : BranchL<0x26, 0x04, 0x000, "brl ">;
def BRAL : BranchL<0x26, 0x0C, 0x000, "bral ">;
}
let isCall = 1, hasDelaySlot = 1, hasCtrlDep = 1,
Defs = [R3,R4,R5,R6,R7,R8,R9,R10,R11,R12],
Uses = [R1,R5,R6,R7,R8,R9,R10] in {
def BRLID : BranchLI<0x2E, 0x14, "brlid ">;
def BRALID : BranchLI<0x2E, 0x1C, "bralid ">;
}
let isCall = 1, hasDelaySlot = 1, hasCtrlDep = 1, isIndirectBranch = 1,
Defs = [R3,R4,R5,R6,R7,R8,R9,R10,R11,R12],
Uses = [R1,R5,R6,R7,R8,R9,R10] in {
def BRLD : BranchL<0x26, 0x14, 0x000, "brld ">;
def BRALD : BranchL<0x26, 0x1C, 0x000, "brald ">;
}
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, imm16=0x8 in {
def RTSD : TRET<0x2D, (outs), (ins CPURegs:$target),
"rtsd $target, 8",
[(MBlazeRet CPURegs:$target)],
IIBranch>;
}
//===----------------------------------------------------------------------===//
// MBlaze misc instructions
//===----------------------------------------------------------------------===//
let addr = 0 in {
def NOP : TADDR<0x00, (outs), (ins), "nop ", [], IIAlu>;
}
let usesCustomInserter = 1 in {
//class PseudoSelCC<RegisterClass RC, string asmstr>:
// MBlazePseudo<(outs RC:$D), (ins RC:$T, RC:$F, CPURegs:$CMP), asmstr,
// [(set RC:$D, (MBlazeSelectCC RC:$T, RC:$F, CPURegs:$CMP))]>;
//def Select_CC : PseudoSelCC<CPURegs, "# MBlazeSelect_CC">;
def Select_CC : MBlazePseudo<(outs CPURegs:$dst),
(ins CPURegs:$T, CPURegs:$F, CPURegs:$CMP, i32imm:$CC),
"; SELECT_CC PSEUDO!",
[]>;
def ShiftL : MBlazePseudo<(outs CPURegs:$dst),
(ins CPURegs:$L, CPURegs:$R),
"; ShiftL PSEUDO!",
[]>;
def ShiftRA : MBlazePseudo<(outs CPURegs:$dst),
(ins CPURegs:$L, CPURegs:$R),
"; ShiftRA PSEUDO!",
[]>;
def ShiftRL : MBlazePseudo<(outs CPURegs:$dst),
(ins CPURegs:$L, CPURegs:$R),
"; ShiftRL PSEUDO!",
[]>;
}
let rb = 0 in {
def SEXT16 : TA<0x24, 0x061, (outs CPURegs:$dst), (ins CPURegs:$src),
"sext16 $dst, $src", [], IIAlu>;
def SEXT8 : TA<0x24, 0x060, (outs CPURegs:$dst), (ins CPURegs:$src),
"sext8 $dst, $src", [], IIAlu>;
def SRL : TA<0x24, 0x041, (outs CPURegs:$dst), (ins CPURegs:$src),
"srl $dst, $src", [], IIAlu>;
def SRA : TA<0x24, 0x001, (outs CPURegs:$dst), (ins CPURegs:$src),
"sra $dst, $src", [], IIAlu>;
def SRC : TA<0x24, 0x021, (outs CPURegs:$dst), (ins CPURegs:$src),
"src $dst, $src", [], IIAlu>;
}
def LEA_ADDI : EffectiveAddress<"addi $dst, ${addr:stackloc}">;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 0), (ADD R0, R0)>;
def : Pat<(i32 immSExt16:$imm), (ADDI R0, imm:$imm)>;
def : Pat<(i32 immZExt16:$imm), (ORI R0, imm:$imm)>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm), (ADDI R0, imm:$imm)>;
// In register sign extension
def : Pat<(sext_inreg CPURegs:$src, i16), (SEXT16 CPURegs:$src)>;
def : Pat<(sext_inreg CPURegs:$src, i8), (SEXT8 CPURegs:$src)>;
// Call
def : Pat<(MBlazeJmpLink (i32 tglobaladdr:$dst)), (BRLID tglobaladdr:$dst)>;
def : Pat<(MBlazeJmpLink (i32 texternalsym:$dst)),(BRLID texternalsym:$dst)>;
def : Pat<(MBlazeJmpLink CPURegs:$dst), (BRLD CPURegs:$dst)>;
// Shift Instructions
def : Pat<(shl CPURegs:$L, CPURegs:$R), (ShiftL CPURegs:$L, CPURegs:$R)>;
def : Pat<(sra CPURegs:$L, CPURegs:$R), (ShiftRA CPURegs:$L, CPURegs:$R)>;
def : Pat<(srl CPURegs:$L, CPURegs:$R), (ShiftRL CPURegs:$L, CPURegs:$R)>;
// SET_CC operations
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETEQ),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMP CPURegs:$L, CPURegs:$R), 1)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETNE),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMP CPURegs:$L, CPURegs:$R), 2)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETGT),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMP CPURegs:$L, CPURegs:$R), 3)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETLT),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMP CPURegs:$L, CPURegs:$R), 4)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETGE),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMP CPURegs:$L, CPURegs:$R), 5)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETLE),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMP CPURegs:$L, CPURegs:$R), 6)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETUGT),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMPU CPURegs:$L, CPURegs:$R), 3)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETULT),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMPU CPURegs:$L, CPURegs:$R), 4)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETUGE),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMPU CPURegs:$L, CPURegs:$R), 5)>;
def : Pat<(setcc CPURegs:$L, CPURegs:$R, SETULE),
(Select_CC (ADDI R0, 1), (ADDI R0, 0),
(CMPU CPURegs:$L, CPURegs:$R), 6)>;
// SELECT operations
def : Pat<(select CPURegs:$C, CPURegs:$T, CPURegs:$F),
(Select_CC CPURegs:$T, CPURegs:$F, CPURegs:$C, 2)>;
// SELECT_CC
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETEQ),
(Select_CC CPURegs:$T, CPURegs:$F, (CMP CPURegs:$L, CPURegs:$R), 1)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETNE),
(Select_CC CPURegs:$T, CPURegs:$F, (CMP CPURegs:$L, CPURegs:$R), 2)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETGT),
(Select_CC CPURegs:$T, CPURegs:$F, (CMP CPURegs:$L, CPURegs:$R), 3)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETLT),
(Select_CC CPURegs:$T, CPURegs:$F, (CMP CPURegs:$L, CPURegs:$R), 4)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETGE),
(Select_CC CPURegs:$T, CPURegs:$F, (CMP CPURegs:$L, CPURegs:$R), 5)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETLE),
(Select_CC CPURegs:$T, CPURegs:$F, (CMP CPURegs:$L, CPURegs:$R), 6)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETUGT),
(Select_CC CPURegs:$T, CPURegs:$F, (CMPU CPURegs:$L, CPURegs:$R), 3)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETULT),
(Select_CC CPURegs:$T, CPURegs:$F, (CMPU CPURegs:$L, CPURegs:$R), 4)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETUGE),
(Select_CC CPURegs:$T, CPURegs:$F, (CMPU CPURegs:$L, CPURegs:$R), 5)>;
def : Pat<(selectcc CPURegs:$L, CPURegs:$R, CPURegs:$T, CPURegs:$F, SETULE),
(Select_CC CPURegs:$T, CPURegs:$F, (CMPU CPURegs:$L, CPURegs:$R), 6)>;
// BRCOND instructions
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETEQ), bb:$T),
(BEQID (CMP CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETNE), bb:$T),
(BNEID (CMP CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETGT), bb:$T),
(BGTID (CMP CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETLT), bb:$T),
(BLTID (CMP CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETGE), bb:$T),
(BGEID (CMP CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETLE), bb:$T),
(BLEID (CMP CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETUGT), bb:$T),
(BGTID (CMPU CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETULT), bb:$T),
(BLTID (CMPU CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETUGE), bb:$T),
(BGEID (CMPU CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond (setcc CPURegs:$L, CPURegs:$R, SETULE), bb:$T),
(BLEID (CMPU CPURegs:$R, CPURegs:$L), bb:$T)>;
def : Pat<(brcond CPURegs:$C, bb:$T),
(BNEID CPURegs:$C, bb:$T)>;
// Jump tables, global addresses, and constant pools
def : Pat<(MBWrapper tglobaladdr:$in), (ORI R0, tglobaladdr:$in)>;
def : Pat<(MBWrapper tjumptable:$in), (ORI R0, tjumptable:$in)>;
def : Pat<(MBWrapper tconstpool:$in), (ORI R0, tconstpool:$in)>;
// Misc instructions
def : Pat<(and CPURegs:$lh, (not CPURegs:$rh)),(ANDN CPURegs:$lh, CPURegs:$rh)>;
// Arithmetic with immediates
def : Pat<(add CPURegs:$in, imm:$imm),(ADDI CPURegs:$in, imm:$imm)>;
def : Pat<(or CPURegs:$in, imm:$imm),(ORI CPURegs:$in, imm:$imm)>;
def : Pat<(xor CPURegs:$in, imm:$imm),(XORI CPURegs:$in, imm:$imm)>;
// extended load and stores
def : Pat<(extloadi1 iaddr:$src), (LBUI iaddr:$src)>;
def : Pat<(extloadi8 iaddr:$src), (LBUI iaddr:$src)>;
def : Pat<(extloadi16 iaddr:$src), (LHUI iaddr:$src)>;
def : Pat<(extloadi1 xaddr:$src), (LBU xaddr:$src)>;
def : Pat<(extloadi8 xaddr:$src), (LBU xaddr:$src)>;
def : Pat<(extloadi16 xaddr:$src), (LHU xaddr:$src)>;
def : Pat<(sextloadi1 iaddr:$src), (SEXT8 (LBUI iaddr:$src))>;
def : Pat<(sextloadi8 iaddr:$src), (SEXT8 (LBUI iaddr:$src))>;
def : Pat<(sextloadi16 iaddr:$src), (SEXT16 (LHUI iaddr:$src))>;
def : Pat<(sextloadi1 xaddr:$src), (SEXT8 (LBU xaddr:$src))>;
def : Pat<(sextloadi8 xaddr:$src), (SEXT8 (LBU xaddr:$src))>;
def : Pat<(sextloadi16 xaddr:$src), (SEXT16 (LHU xaddr:$src))>;
// peepholes
def : Pat<(store (i32 0), iaddr:$dst), (SWI R0, iaddr:$dst)>;
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MBlazeInstrFSL.td"
include "MBlazeInstrFPU.td"