llvm-6502/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp
Mon P Wang 77cdf30742 Added CONVERT_RNDSAT (conversion with rounding and saturation) SDNode to
support targets that support these conversions. Users should avoid using
this node as the current targets don't generating code for it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59001 91177308-0d34-0410-b5e6-96231b3b80d8
2008-11-10 20:54:11 +00:00

8402 lines
326 KiB
C++

//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::Legalize method.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetSubtarget.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <map>
using namespace llvm;
//===----------------------------------------------------------------------===//
/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
class VISIBILITY_HIDDEN SelectionDAGLegalize {
TargetLowering &TLI;
SelectionDAG &DAG;
// Libcall insertion helpers.
/// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
/// legalized. We use this to ensure that calls are properly serialized
/// against each other, including inserted libcalls.
SDValue LastCALLSEQ_END;
/// IsLegalizingCall - This member is used *only* for purposes of providing
/// helpful assertions that a libcall isn't created while another call is
/// being legalized (which could lead to non-serialized call sequences).
bool IsLegalizingCall;
enum LegalizeAction {
Legal, // The target natively supports this operation.
Promote, // This operation should be executed in a larger type.
Expand // Try to expand this to other ops, otherwise use a libcall.
};
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// value type, where the two bits correspond to the LegalizeAction enum.
/// This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// LegalizedNodes - For nodes that are of legal width, and that have more
/// than one use, this map indicates what regularized operand to use. This
/// allows us to avoid legalizing the same thing more than once.
DenseMap<SDValue, SDValue> LegalizedNodes;
/// PromotedNodes - For nodes that are below legal width, and that have more
/// than one use, this map indicates what promoted value to use. This allows
/// us to avoid promoting the same thing more than once.
DenseMap<SDValue, SDValue> PromotedNodes;
/// ExpandedNodes - For nodes that need to be expanded this map indicates
/// which operands are the expanded version of the input. This allows
/// us to avoid expanding the same node more than once.
DenseMap<SDValue, std::pair<SDValue, SDValue> > ExpandedNodes;
/// SplitNodes - For vector nodes that need to be split, this map indicates
/// which operands are the split version of the input. This allows us
/// to avoid splitting the same node more than once.
std::map<SDValue, std::pair<SDValue, SDValue> > SplitNodes;
/// ScalarizedNodes - For nodes that need to be converted from vector types to
/// scalar types, this contains the mapping of ones we have already
/// processed to the result.
std::map<SDValue, SDValue> ScalarizedNodes;
/// WidenNodes - For nodes that need to be widened from one vector type to
/// another, this contains the mapping of those that we have already widen.
/// This allows us to avoid widening more than once.
std::map<SDValue, SDValue> WidenNodes;
void AddLegalizedOperand(SDValue From, SDValue To) {
LegalizedNodes.insert(std::make_pair(From, To));
// If someone requests legalization of the new node, return itself.
if (From != To)
LegalizedNodes.insert(std::make_pair(To, To));
}
void AddPromotedOperand(SDValue From, SDValue To) {
bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second;
assert(isNew && "Got into the map somehow?");
// If someone requests legalization of the new node, return itself.
LegalizedNodes.insert(std::make_pair(To, To));
}
void AddWidenedOperand(SDValue From, SDValue To) {
bool isNew = WidenNodes.insert(std::make_pair(From, To)).second;
assert(isNew && "Got into the map somehow?");
// If someone requests legalization of the new node, return itself.
LegalizedNodes.insert(std::make_pair(To, To));
}
public:
explicit SelectionDAGLegalize(SelectionDAG &DAG);
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal or we need to expand it into multiple registers of
/// smaller integer type, or we need to promote it to a larger type.
LegalizeAction getTypeAction(MVT VT) const {
return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
}
/// isTypeLegal - Return true if this type is legal on this target.
///
bool isTypeLegal(MVT VT) const {
return getTypeAction(VT) == Legal;
}
void LegalizeDAG();
private:
/// HandleOp - Legalize, Promote, or Expand the specified operand as
/// appropriate for its type.
void HandleOp(SDValue Op);
/// LegalizeOp - We know that the specified value has a legal type.
/// Recursively ensure that the operands have legal types, then return the
/// result.
SDValue LegalizeOp(SDValue O);
/// UnrollVectorOp - We know that the given vector has a legal type, however
/// the operation it performs is not legal and is an operation that we have
/// no way of lowering. "Unroll" the vector, splitting out the scalars and
/// operating on each element individually.
SDValue UnrollVectorOp(SDValue O);
/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
SDValue Idx);
/// PromoteOp - Given an operation that produces a value in an invalid type,
/// promote it to compute the value into a larger type. The produced value
/// will have the correct bits for the low portion of the register, but no
/// guarantee is made about the top bits: it may be zero, sign-extended, or
/// garbage.
SDValue PromoteOp(SDValue O);
/// ExpandOp - Expand the specified SDValue into its two component pieces
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this,
/// the LegalizedNodes map is filled in for any results that are not expanded,
/// the ExpandedNodes map is filled in for any results that are expanded, and
/// the Lo/Hi values are returned. This applies to integer types and Vector
/// types.
void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi);
/// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT
/// (e.g., v3i32 to v4i32). The produced value will have the correct value
/// for the existing elements but no guarantee is made about the new elements
/// at the end of the vector: it may be zero, ones, or garbage. This is useful
/// when we have an instruction operating on an illegal vector type and we
/// want to widen it to do the computation on a legal wider vector type.
SDValue WidenVectorOp(SDValue Op, MVT WidenVT);
/// SplitVectorOp - Given an operand of vector type, break it down into
/// two smaller values.
void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi);
/// ScalarizeVectorOp - Given an operand of single-element vector type
/// (e.g. v1f32), convert it into the equivalent operation that returns a
/// scalar (e.g. f32) value.
SDValue ScalarizeVectorOp(SDValue O);
/// Useful 16 element vector type that is used to pass operands for widening.
typedef SmallVector<SDValue, 16> SDValueVector;
/// LoadWidenVectorOp - Load a vector for a wider type. Returns true if
/// the LdChain contains a single load and false if it contains a token
/// factor for multiple loads. It takes
/// Result: location to return the result
/// LdChain: location to return the load chain
/// Op: load operation to widen
/// NVT: widen vector result type we want for the load
bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain,
SDValue Op, MVT NVT);
/// Helper genWidenVectorLoads - Helper function to generate a set of
/// loads to load a vector with a resulting wider type. It takes
/// LdChain: list of chains for the load we have generated
/// Chain: incoming chain for the ld vector
/// BasePtr: base pointer to load from
/// SV: memory disambiguation source value
/// SVOffset: memory disambiugation offset
/// Alignment: alignment of the memory
/// isVolatile: volatile load
/// LdWidth: width of memory that we want to load
/// ResType: the wider result result type for the resulting loaded vector
SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain,
SDValue BasePtr, const Value *SV,
int SVOffset, unsigned Alignment,
bool isVolatile, unsigned LdWidth,
MVT ResType);
/// StoreWidenVectorOp - Stores a widen vector into non widen memory
/// location. It takes
/// ST: store node that we want to replace
/// Chain: incoming store chain
/// BasePtr: base address of where we want to store into
SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain,
SDValue BasePtr);
/// Helper genWidenVectorStores - Helper function to generate a set of
/// stores to store a widen vector into non widen memory
// It takes
// StChain: list of chains for the stores we have generated
// Chain: incoming chain for the ld vector
// BasePtr: base pointer to load from
// SV: memory disambiguation source value
// SVOffset: memory disambiugation offset
// Alignment: alignment of the memory
// isVolatile: volatile lod
// ValOp: value to store
// StWidth: width of memory that we want to store
void genWidenVectorStores(SDValueVector& StChain, SDValue Chain,
SDValue BasePtr, const Value *SV,
int SVOffset, unsigned Alignment,
bool isVolatile, SDValue ValOp,
unsigned StWidth);
/// isShuffleLegal - Return non-null if a vector shuffle is legal with the
/// specified mask and type. Targets can specify exactly which masks they
/// support and the code generator is tasked with not creating illegal masks.
///
/// Note that this will also return true for shuffles that are promoted to a
/// different type.
///
/// If this is a legal shuffle, this method returns the (possibly promoted)
/// build_vector Mask. If it's not a legal shuffle, it returns null.
SDNode *isShuffleLegal(MVT VT, SDValue Mask) const;
bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC);
void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC);
void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC) {
LegalizeSetCCOperands(LHS, RHS, CC);
LegalizeSetCCCondCode(VT, LHS, RHS, CC);
}
SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned,
SDValue &Hi);
SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source);
SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT);
SDValue ExpandBUILD_VECTOR(SDNode *Node);
SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op);
SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT);
SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned);
SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned);
SDValue ExpandBSWAP(SDValue Op);
SDValue ExpandBitCount(unsigned Opc, SDValue Op);
bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt,
SDValue &Lo, SDValue &Hi);
void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt,
SDValue &Lo, SDValue &Hi);
SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op);
SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op);
};
}
/// isVectorShuffleLegal - Return true if a vector shuffle is legal with the
/// specified mask and type. Targets can specify exactly which masks they
/// support and the code generator is tasked with not creating illegal masks.
///
/// Note that this will also return true for shuffles that are promoted to a
/// different type.
SDNode *SelectionDAGLegalize::isShuffleLegal(MVT VT, SDValue Mask) const {
switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) {
default: return 0;
case TargetLowering::Legal:
case TargetLowering::Custom:
break;
case TargetLowering::Promote: {
// If this is promoted to a different type, convert the shuffle mask and
// ask if it is legal in the promoted type!
MVT NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT);
MVT EltVT = NVT.getVectorElementType();
// If we changed # elements, change the shuffle mask.
unsigned NumEltsGrowth =
NVT.getVectorNumElements() / VT.getVectorNumElements();
assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
if (NumEltsGrowth > 1) {
// Renumber the elements.
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) {
SDValue InOp = Mask.getOperand(i);
for (unsigned j = 0; j != NumEltsGrowth; ++j) {
if (InOp.getOpcode() == ISD::UNDEF)
Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
else {
unsigned InEltNo = cast<ConstantSDNode>(InOp)->getZExtValue();
Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, EltVT));
}
}
}
Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size());
}
VT = NVT;
break;
}
}
return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.getNode() : 0;
}
SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
assert(MVT::LAST_VALUETYPE <= 32 &&
"Too many value types for ValueTypeActions to hold!");
}
void SelectionDAGLegalize::LegalizeDAG() {
LastCALLSEQ_END = DAG.getEntryNode();
IsLegalizingCall = false;
// The legalize process is inherently a bottom-up recursive process (users
// legalize their uses before themselves). Given infinite stack space, we
// could just start legalizing on the root and traverse the whole graph. In
// practice however, this causes us to run out of stack space on large basic
// blocks. To avoid this problem, compute an ordering of the nodes where each
// node is only legalized after all of its operands are legalized.
DAG.AssignTopologicalOrder();
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = prior(DAG.allnodes_end()); I != next(E); ++I)
HandleOp(SDValue(I, 0));
// Finally, it's possible the root changed. Get the new root.
SDValue OldRoot = DAG.getRoot();
assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
DAG.setRoot(LegalizedNodes[OldRoot]);
ExpandedNodes.clear();
LegalizedNodes.clear();
PromotedNodes.clear();
SplitNodes.clear();
ScalarizedNodes.clear();
WidenNodes.clear();
// Remove dead nodes now.
DAG.RemoveDeadNodes();
}
/// FindCallEndFromCallStart - Given a chained node that is part of a call
/// sequence, find the CALLSEQ_END node that terminates the call sequence.
static SDNode *FindCallEndFromCallStart(SDNode *Node) {
if (Node->getOpcode() == ISD::CALLSEQ_END)
return Node;
if (Node->use_empty())
return 0; // No CallSeqEnd
// The chain is usually at the end.
SDValue TheChain(Node, Node->getNumValues()-1);
if (TheChain.getValueType() != MVT::Other) {
// Sometimes it's at the beginning.
TheChain = SDValue(Node, 0);
if (TheChain.getValueType() != MVT::Other) {
// Otherwise, hunt for it.
for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
if (Node->getValueType(i) == MVT::Other) {
TheChain = SDValue(Node, i);
break;
}
// Otherwise, we walked into a node without a chain.
if (TheChain.getValueType() != MVT::Other)
return 0;
}
}
for (SDNode::use_iterator UI = Node->use_begin(),
E = Node->use_end(); UI != E; ++UI) {
// Make sure to only follow users of our token chain.
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
if (User->getOperand(i) == TheChain)
if (SDNode *Result = FindCallEndFromCallStart(User))
return Result;
}
return 0;
}
/// FindCallStartFromCallEnd - Given a chained node that is part of a call
/// sequence, find the CALLSEQ_START node that initiates the call sequence.
static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
assert(Node && "Didn't find callseq_start for a call??");
if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
assert(Node->getOperand(0).getValueType() == MVT::Other &&
"Node doesn't have a token chain argument!");
return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
}
/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
/// see if any uses can reach Dest. If no dest operands can get to dest,
/// legalize them, legalize ourself, and return false, otherwise, return true.
///
/// Keep track of the nodes we fine that actually do lead to Dest in
/// NodesLeadingTo. This avoids retraversing them exponential number of times.
///
bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
if (N == Dest) return true; // N certainly leads to Dest :)
// If we've already processed this node and it does lead to Dest, there is no
// need to reprocess it.
if (NodesLeadingTo.count(N)) return true;
// If the first result of this node has been already legalized, then it cannot
// reach N.
switch (getTypeAction(N->getValueType(0))) {
case Legal:
if (LegalizedNodes.count(SDValue(N, 0))) return false;
break;
case Promote:
if (PromotedNodes.count(SDValue(N, 0))) return false;
break;
case Expand:
if (ExpandedNodes.count(SDValue(N, 0))) return false;
break;
}
// Okay, this node has not already been legalized. Check and legalize all
// operands. If none lead to Dest, then we can legalize this node.
bool OperandsLeadToDest = false;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
OperandsLeadToDest |= // If an operand leads to Dest, so do we.
LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
if (OperandsLeadToDest) {
NodesLeadingTo.insert(N);
return true;
}
// Okay, this node looks safe, legalize it and return false.
HandleOp(SDValue(N, 0));
return false;
}
/// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as
/// appropriate for its type.
void SelectionDAGLegalize::HandleOp(SDValue Op) {
MVT VT = Op.getValueType();
switch (getTypeAction(VT)) {
default: assert(0 && "Bad type action!");
case Legal: (void)LegalizeOp(Op); break;
case Promote:
if (!VT.isVector()) {
(void)PromoteOp(Op);
break;
}
else {
// See if we can widen otherwise use Expand to either scalarize or split
MVT WidenVT = TLI.getWidenVectorType(VT);
if (WidenVT != MVT::Other) {
(void) WidenVectorOp(Op, WidenVT);
break;
}
// else fall thru to expand since we can't widen the vector
}
case Expand:
if (!VT.isVector()) {
// If this is an illegal scalar, expand it into its two component
// pieces.
SDValue X, Y;
if (Op.getOpcode() == ISD::TargetConstant)
break; // Allow illegal target nodes.
ExpandOp(Op, X, Y);
} else if (VT.getVectorNumElements() == 1) {
// If this is an illegal single element vector, convert it to a
// scalar operation.
(void)ScalarizeVectorOp(Op);
} else {
// This is an illegal multiple element vector.
// Split it in half and legalize both parts.
SDValue X, Y;
SplitVectorOp(Op, X, Y);
}
break;
}
}
/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
/// a load from the constant pool.
static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
SelectionDAG &DAG, TargetLowering &TLI) {
bool Extend = false;
// If a FP immediate is precise when represented as a float and if the
// target can do an extending load from float to double, we put it into
// the constant pool as a float, even if it's is statically typed as a
// double. This shrinks FP constants and canonicalizes them for targets where
// an FP extending load is the same cost as a normal load (such as on the x87
// fp stack or PPC FP unit).
MVT VT = CFP->getValueType(0);
ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
if (!UseCP) {
if (VT!=MVT::f64 && VT!=MVT::f32)
assert(0 && "Invalid type expansion");
return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
(VT == MVT::f64) ? MVT::i64 : MVT::i32);
}
MVT OrigVT = VT;
MVT SVT = VT;
while (SVT != MVT::f32) {
SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1);
if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
// Only do this if the target has a native EXTLOAD instruction from
// smaller type.
TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
TLI.ShouldShrinkFPConstant(OrigVT)) {
const Type *SType = SVT.getTypeForMVT();
LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
VT = SVT;
Extend = true;
}
}
SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
if (Extend)
return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, DAG.getEntryNode(),
CPIdx, PseudoSourceValue::getConstantPool(),
0, VT, false, Alignment);
return DAG.getLoad(OrigVT, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0, false, Alignment);
}
/// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise
/// operations.
static
SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT,
SelectionDAG &DAG, TargetLowering &TLI) {
MVT VT = Node->getValueType(0);
MVT SrcVT = Node->getOperand(1).getValueType();
assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) &&
"fcopysign expansion only supported for f32 and f64");
MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32;
// First get the sign bit of second operand.
SDValue Mask1 = (SrcVT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT)
: DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT);
Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1);
SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1));
SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1);
// Shift right or sign-extend it if the two operands have different types.
int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits();
if (SizeDiff > 0) {
SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit,
DAG.getConstant(SizeDiff, TLI.getShiftAmountTy()));
SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit);
} else if (SizeDiff < 0) {
SignBit = DAG.getNode(ISD::ZERO_EXTEND, NVT, SignBit);
SignBit = DAG.getNode(ISD::SHL, NVT, SignBit,
DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy()));
}
// Clear the sign bit of first operand.
SDValue Mask2 = (VT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
: DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2);
SDValue Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
Result = DAG.getNode(ISD::AND, NVT, Result, Mask2);
// Or the value with the sign bit.
Result = DAG.getNode(ISD::OR, NVT, Result, SignBit);
return Result;
}
/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
static
SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
TargetLowering &TLI) {
SDValue Chain = ST->getChain();
SDValue Ptr = ST->getBasePtr();
SDValue Val = ST->getValue();
MVT VT = Val.getValueType();
int Alignment = ST->getAlignment();
int SVOffset = ST->getSrcValueOffset();
if (ST->getMemoryVT().isFloatingPoint() ||
ST->getMemoryVT().isVector()) {
// Expand to a bitconvert of the value to the integer type of the
// same size, then a (misaligned) int store.
MVT intVT;
if (VT.is128BitVector() || VT == MVT::ppcf128 || VT == MVT::f128)
intVT = MVT::i128;
else if (VT.is64BitVector() || VT==MVT::f64)
intVT = MVT::i64;
else if (VT==MVT::f32)
intVT = MVT::i32;
else
assert(0 && "Unaligned store of unsupported type");
SDValue Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val);
return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(),
SVOffset, ST->isVolatile(), Alignment);
}
assert(ST->getMemoryVT().isInteger() &&
!ST->getMemoryVT().isVector() &&
"Unaligned store of unknown type.");
// Get the half-size VT
MVT NewStoredVT =
(MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1);
int NumBits = NewStoredVT.getSizeInBits();
int IncrementSize = NumBits / 8;
// Divide the stored value in two parts.
SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
SDValue Lo = Val;
SDValue Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount);
// Store the two parts
SDValue Store1, Store2;
Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr,
ST->getSrcValue(), SVOffset, NewStoredVT,
ST->isVolatile(), Alignment);
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, TLI.getPointerTy()));
Alignment = MinAlign(Alignment, IncrementSize);
Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr,
ST->getSrcValue(), SVOffset + IncrementSize,
NewStoredVT, ST->isVolatile(), Alignment);
return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2);
}
/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
static
SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
TargetLowering &TLI) {
int SVOffset = LD->getSrcValueOffset();
SDValue Chain = LD->getChain();
SDValue Ptr = LD->getBasePtr();
MVT VT = LD->getValueType(0);
MVT LoadedVT = LD->getMemoryVT();
if (VT.isFloatingPoint() || VT.isVector()) {
// Expand to a (misaligned) integer load of the same size,
// then bitconvert to floating point or vector.
MVT intVT;
if (LoadedVT.is128BitVector() ||
LoadedVT == MVT::ppcf128 || LoadedVT == MVT::f128)
intVT = MVT::i128;
else if (LoadedVT.is64BitVector() || LoadedVT == MVT::f64)
intVT = MVT::i64;
else if (LoadedVT == MVT::f32)
intVT = MVT::i32;
else
assert(0 && "Unaligned load of unsupported type");
SDValue newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(),
SVOffset, LD->isVolatile(),
LD->getAlignment());
SDValue Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad);
if (VT.isFloatingPoint() && LoadedVT != VT)
Result = DAG.getNode(ISD::FP_EXTEND, VT, Result);
SDValue Ops[] = { Result, Chain };
return DAG.getMergeValues(Ops, 2);
}
assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
"Unaligned load of unsupported type.");
// Compute the new VT that is half the size of the old one. This is an
// integer MVT.
unsigned NumBits = LoadedVT.getSizeInBits();
MVT NewLoadedVT;
NewLoadedVT = MVT::getIntegerVT(NumBits/2);
NumBits >>= 1;
unsigned Alignment = LD->getAlignment();
unsigned IncrementSize = NumBits / 8;
ISD::LoadExtType HiExtType = LD->getExtensionType();
// If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
if (HiExtType == ISD::NON_EXTLOAD)
HiExtType = ISD::ZEXTLOAD;
// Load the value in two parts
SDValue Lo, Hi;
if (TLI.isLittleEndian()) {
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(),
SVOffset, NewLoadedVT, LD->isVolatile(), Alignment);
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, TLI.getPointerTy()));
Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(),
SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
MinAlign(Alignment, IncrementSize));
} else {
Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset,
NewLoadedVT,LD->isVolatile(), Alignment);
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getConstant(IncrementSize, TLI.getPointerTy()));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(),
SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
MinAlign(Alignment, IncrementSize));
}
// aggregate the two parts
SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
SDValue Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount);
Result = DAG.getNode(ISD::OR, VT, Result, Lo);
SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
SDValue Ops[] = { Result, TF };
return DAG.getMergeValues(Ops, 2);
}
/// UnrollVectorOp - We know that the given vector has a legal type, however
/// the operation it performs is not legal and is an operation that we have
/// no way of lowering. "Unroll" the vector, splitting out the scalars and
/// operating on each element individually.
SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) {
MVT VT = Op.getValueType();
assert(isTypeLegal(VT) &&
"Caller should expand or promote operands that are not legal!");
assert(Op.getNode()->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");
unsigned NE = VT.getVectorNumElements();
MVT EltVT = VT.getVectorElementType();
SmallVector<SDValue, 8> Scalars;
SmallVector<SDValue, 4> Operands(Op.getNumOperands());
for (unsigned i = 0; i != NE; ++i) {
for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
SDValue Operand = Op.getOperand(j);
MVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
// A vector operand; extract a single element.
MVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
OperandEltVT,
Operand,
DAG.getConstant(i, MVT::i32));
} else {
// A scalar operand; just use it as is.
Operands[j] = Operand;
}
}
Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT,
&Operands[0], Operands.size()));
}
return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size());
}
/// GetFPLibCall - Return the right libcall for the given floating point type.
static RTLIB::Libcall GetFPLibCall(MVT VT,
RTLIB::Libcall Call_F32,
RTLIB::Libcall Call_F64,
RTLIB::Libcall Call_F80,
RTLIB::Libcall Call_PPCF128) {
return
VT == MVT::f32 ? Call_F32 :
VT == MVT::f64 ? Call_F64 :
VT == MVT::f80 ? Call_F80 :
VT == MVT::ppcf128 ? Call_PPCF128 :
RTLIB::UNKNOWN_LIBCALL;
}
/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
/// is necessary to spill the vector being inserted into to memory, perform
/// the insert there, and then read the result back.
SDValue SelectionDAGLegalize::
PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx) {
SDValue Tmp1 = Vec;
SDValue Tmp2 = Val;
SDValue Tmp3 = Idx;
// If the target doesn't support this, we have to spill the input vector
// to a temporary stack slot, update the element, then reload it. This is
// badness. We could also load the value into a vector register (either
// with a "move to register" or "extload into register" instruction, then
// permute it into place, if the idx is a constant and if the idx is
// supported by the target.
MVT VT = Tmp1.getValueType();
MVT EltVT = VT.getVectorElementType();
MVT IdxVT = Tmp3.getValueType();
MVT PtrVT = TLI.getPointerTy();
SDValue StackPtr = DAG.CreateStackTemporary(VT);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
// Store the vector.
SDValue Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr,
PseudoSourceValue::getFixedStack(SPFI), 0);
// Truncate or zero extend offset to target pointer type.
unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3);
// Add the offset to the index.
unsigned EltSize = EltVT.getSizeInBits()/8;
Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
SDValue StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr);
// Store the scalar value.
Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2,
PseudoSourceValue::getFixedStack(SPFI), 0, EltVT);
// Load the updated vector.
return DAG.getLoad(VT, Ch, StackPtr,
PseudoSourceValue::getFixedStack(SPFI), 0);
}
/// LegalizeOp - We know that the specified value has a legal type, and
/// that its operands are legal. Now ensure that the operation itself
/// is legal, recursively ensuring that the operands' operations remain
/// legal.
SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
return Op;
assert(isTypeLegal(Op.getValueType()) &&
"Caller should expand or promote operands that are not legal!");
SDNode *Node = Op.getNode();
// If this operation defines any values that cannot be represented in a
// register on this target, make sure to expand or promote them.
if (Node->getNumValues() > 1) {
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
if (getTypeAction(Node->getValueType(i)) != Legal) {
HandleOp(Op.getValue(i));
assert(LegalizedNodes.count(Op) &&
"Handling didn't add legal operands!");
return LegalizedNodes[Op];
}
}
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
if (I != LegalizedNodes.end()) return I->second;
SDValue Tmp1, Tmp2, Tmp3, Tmp4;
SDValue Result = Op;
bool isCustom = false;
switch (Node->getOpcode()) {
case ISD::FrameIndex:
case ISD::EntryToken:
case ISD::Register:
case ISD::BasicBlock:
case ISD::TargetFrameIndex:
case ISD::TargetJumpTable:
case ISD::TargetConstant:
case ISD::TargetConstantFP:
case ISD::TargetConstantPool:
case ISD::TargetGlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::TargetExternalSymbol:
case ISD::VALUETYPE:
case ISD::SRCVALUE:
case ISD::MEMOPERAND:
case ISD::CONDCODE:
case ISD::ARG_FLAGS:
// Primitives must all be legal.
assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) &&
"This must be legal!");
break;
default:
if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
// If this is a target node, legalize it by legalizing the operands then
// passing it through.
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size());
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
return Result.getValue(Op.getResNo());
}
// Otherwise this is an unhandled builtin node. splat.
#ifndef NDEBUG
cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to legalize this operator!");
abort();
case ISD::GLOBAL_OFFSET_TABLE:
case ISD::GlobalAddress:
case ISD::GlobalTLSAddress:
case ISD::ExternalSymbol:
case ISD::ConstantPool:
case ISD::JumpTable: // Nothing to do.
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.getNode()) Result = Tmp1;
// FALLTHROUGH if the target doesn't want to lower this op after all.
case TargetLowering::Legal:
break;
}
break;
case ISD::FRAMEADDR:
case ISD::RETURNADDR:
// The only option for these nodes is to custom lower them. If the target
// does not custom lower them, then return zero.
Tmp1 = TLI.LowerOperation(Op, DAG);
if (Tmp1.getNode())
Result = Tmp1;
else
Result = DAG.getConstant(0, TLI.getPointerTy());
break;
case ISD::FRAME_TO_ARGS_OFFSET: {
MVT VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) break;
// Fall Thru
case TargetLowering::Legal:
Result = DAG.getConstant(0, VT);
break;
}
}
break;
case ISD::EXCEPTIONADDR: {
Tmp1 = LegalizeOp(Node->getOperand(0));
MVT VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
unsigned Reg = TLI.getExceptionAddressRegister();
Result = DAG.getCopyFromReg(Tmp1, Reg, VT);
}
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) break;
// Fall Thru
case TargetLowering::Legal: {
SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 };
Result = DAG.getMergeValues(Ops, 2);
break;
}
}
}
if (Result.getNode()->getNumValues() == 1) break;
assert(Result.getNode()->getNumValues() == 2 &&
"Cannot return more than two values!");
// Since we produced two values, make sure to remember that we
// legalized both of them.
Tmp1 = LegalizeOp(Result);
Tmp2 = LegalizeOp(Result.getValue(1));
AddLegalizedOperand(Op.getValue(0), Tmp1);
AddLegalizedOperand(Op.getValue(1), Tmp2);
return Op.getResNo() ? Tmp2 : Tmp1;
case ISD::EHSELECTION: {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
MVT VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
unsigned Reg = TLI.getExceptionSelectorRegister();
Result = DAG.getCopyFromReg(Tmp2, Reg, VT);
}
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) break;
// Fall Thru
case TargetLowering::Legal: {
SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 };
Result = DAG.getMergeValues(Ops, 2);
break;
}
}
}
if (Result.getNode()->getNumValues() == 1) break;
assert(Result.getNode()->getNumValues() == 2 &&
"Cannot return more than two values!");
// Since we produced two values, make sure to remember that we
// legalized both of them.
Tmp1 = LegalizeOp(Result);
Tmp2 = LegalizeOp(Result.getValue(1));
AddLegalizedOperand(Op.getValue(0), Tmp1);
AddLegalizedOperand(Op.getValue(1), Tmp2);
return Op.getResNo() ? Tmp2 : Tmp1;
case ISD::EH_RETURN: {
MVT VT = Node->getValueType(0);
// The only "good" option for this node is to custom lower it.
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported at all!");
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) break;
// Fall Thru
case TargetLowering::Legal:
// Target does not know, how to lower this, lower to noop
Result = LegalizeOp(Node->getOperand(0));
break;
}
}
break;
case ISD::AssertSext:
case ISD::AssertZext:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case ISD::MERGE_VALUES:
// Legalize eliminates MERGE_VALUES nodes.
Result = Node->getOperand(Op.getResNo());
break;
case ISD::CopyFromReg:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = Op.getValue(0);
if (Node->getNumValues() == 2) {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
} else {
assert(Node->getNumValues() == 3 && "Invalid copyfromreg!");
if (Node->getNumOperands() == 3) {
Tmp2 = LegalizeOp(Node->getOperand(2));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
} else {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
}
AddLegalizedOperand(Op.getValue(2), Result.getValue(2));
}
// Since CopyFromReg produces two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(Op.getValue(0), Result);
AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
return Result.getValue(Op.getResNo());
case ISD::UNDEF: {
MVT VT = Op.getValueType();
switch (TLI.getOperationAction(ISD::UNDEF, VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand:
if (VT.isInteger())
Result = DAG.getConstant(0, VT);
else if (VT.isFloatingPoint())
Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)),
VT);
else
assert(0 && "Unknown value type!");
break;
case TargetLowering::Legal:
break;
}
break;
}
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_VOID: {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
// Allow the target to custom lower its intrinsics if it wants to.
if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) ==
TargetLowering::Custom) {
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) Result = Tmp3;
}
if (Result.getNode()->getNumValues() == 1) break;
// Must have return value and chain result.
assert(Result.getNode()->getNumValues() == 2 &&
"Cannot return more than two values!");
// Since loads produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result.getValue(Op.getResNo());
}
case ISD::DBG_STOPPOINT:
assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!");
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain.
switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) {
case TargetLowering::Promote:
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other);
bool useLABEL = TLI.isOperationLegal(ISD::DBG_LABEL, MVT::Other);
const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(Node);
if (MMI && (useDEBUG_LOC || useLABEL)) {
const CompileUnitDesc *CompileUnit = DSP->getCompileUnit();
unsigned SrcFile = MMI->RecordSource(CompileUnit);
unsigned Line = DSP->getLine();
unsigned Col = DSP->getColumn();
if (useDEBUG_LOC) {
SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32),
DAG.getConstant(Col, MVT::i32),
DAG.getConstant(SrcFile, MVT::i32) };
Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, Ops, 4);
} else {
unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile);
Result = DAG.getLabel(ISD::DBG_LABEL, Tmp1, ID);
}
} else {
Result = Tmp1; // chain
}
break;
}
case TargetLowering::Legal: {
LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType());
if (Action == Legal && Tmp1 == Node->getOperand(0))
break;
SmallVector<SDValue, 8> Ops;
Ops.push_back(Tmp1);
if (Action == Legal) {
Ops.push_back(Node->getOperand(1)); // line # must be legal.
Ops.push_back(Node->getOperand(2)); // col # must be legal.
} else {
// Otherwise promote them.
Ops.push_back(PromoteOp(Node->getOperand(1)));
Ops.push_back(PromoteOp(Node->getOperand(2)));
}
Ops.push_back(Node->getOperand(3)); // filename must be legal.
Ops.push_back(Node->getOperand(4)); // working dir # must be legal.
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
break;
}
}
break;
case ISD::DECLARE:
assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!");
switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
break;
case TargetLowering::Expand:
Result = LegalizeOp(Node->getOperand(0));
break;
}
break;
case ISD::DEBUG_LOC:
assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!");
switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: {
LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType());
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
if (Action == Legal && Tmp1 == Node->getOperand(0))
break;
if (Action == Legal) {
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
Tmp4 = Node->getOperand(3);
} else {
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #.
Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id.
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4);
break;
}
}
break;
case ISD::DBG_LABEL:
case ISD::EH_LABEL:
assert(Node->getNumOperands() == 1 && "Invalid LABEL node!");
switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case TargetLowering::Expand:
Result = LegalizeOp(Node->getOperand(0));
break;
}
break;
case ISD::PREFETCH:
assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!");
switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier.
Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4);
break;
case TargetLowering::Expand:
// It's a noop.
Result = LegalizeOp(Node->getOperand(0));
break;
}
break;
case ISD::MEMBARRIER: {
assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!");
switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: {
SDValue Ops[6];
Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
for (int x = 1; x < 6; ++x) {
Ops[x] = Node->getOperand(x);
if (!isTypeLegal(Ops[x].getValueType()))
Ops[x] = PromoteOp(Ops[x]);
}
Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6);
break;
}
case TargetLowering::Expand:
//There is no libgcc call for this op
Result = Node->getOperand(0); // Noop
break;
}
break;
}
case ISD::ATOMIC_CMP_SWAP_8:
case ISD::ATOMIC_CMP_SWAP_16:
case ISD::ATOMIC_CMP_SWAP_32:
case ISD::ATOMIC_CMP_SWAP_64: {
unsigned int num_operands = 4;
assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!");
SDValue Ops[4];
for (unsigned int x = 0; x < num_operands; ++x)
Ops[x] = LegalizeOp(Node->getOperand(x));
Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Result = TLI.LowerOperation(Result, DAG);
break;
case TargetLowering::Legal:
break;
}
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result.getValue(Op.getResNo());
}
case ISD::ATOMIC_LOAD_ADD_8:
case ISD::ATOMIC_LOAD_SUB_8:
case ISD::ATOMIC_LOAD_AND_8:
case ISD::ATOMIC_LOAD_OR_8:
case ISD::ATOMIC_LOAD_XOR_8:
case ISD::ATOMIC_LOAD_NAND_8:
case ISD::ATOMIC_LOAD_MIN_8:
case ISD::ATOMIC_LOAD_MAX_8:
case ISD::ATOMIC_LOAD_UMIN_8:
case ISD::ATOMIC_LOAD_UMAX_8:
case ISD::ATOMIC_SWAP_8:
case ISD::ATOMIC_LOAD_ADD_16:
case ISD::ATOMIC_LOAD_SUB_16:
case ISD::ATOMIC_LOAD_AND_16:
case ISD::ATOMIC_LOAD_OR_16:
case ISD::ATOMIC_LOAD_XOR_16:
case ISD::ATOMIC_LOAD_NAND_16:
case ISD::ATOMIC_LOAD_MIN_16:
case ISD::ATOMIC_LOAD_MAX_16:
case ISD::ATOMIC_LOAD_UMIN_16:
case ISD::ATOMIC_LOAD_UMAX_16:
case ISD::ATOMIC_SWAP_16:
case ISD::ATOMIC_LOAD_ADD_32:
case ISD::ATOMIC_LOAD_SUB_32:
case ISD::ATOMIC_LOAD_AND_32:
case ISD::ATOMIC_LOAD_OR_32:
case ISD::ATOMIC_LOAD_XOR_32:
case ISD::ATOMIC_LOAD_NAND_32:
case ISD::ATOMIC_LOAD_MIN_32:
case ISD::ATOMIC_LOAD_MAX_32:
case ISD::ATOMIC_LOAD_UMIN_32:
case ISD::ATOMIC_LOAD_UMAX_32:
case ISD::ATOMIC_SWAP_32:
case ISD::ATOMIC_LOAD_ADD_64:
case ISD::ATOMIC_LOAD_SUB_64:
case ISD::ATOMIC_LOAD_AND_64:
case ISD::ATOMIC_LOAD_OR_64:
case ISD::ATOMIC_LOAD_XOR_64:
case ISD::ATOMIC_LOAD_NAND_64:
case ISD::ATOMIC_LOAD_MIN_64:
case ISD::ATOMIC_LOAD_MAX_64:
case ISD::ATOMIC_LOAD_UMIN_64:
case ISD::ATOMIC_LOAD_UMAX_64:
case ISD::ATOMIC_SWAP_64: {
unsigned int num_operands = 3;
assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!");
SDValue Ops[3];
for (unsigned int x = 0; x < num_operands; ++x)
Ops[x] = LegalizeOp(Node->getOperand(x));
Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Result = TLI.LowerOperation(Result, DAG);
break;
case TargetLowering::Legal:
break;
}
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result.getValue(Op.getResNo());
}
case ISD::Constant: {
ConstantSDNode *CN = cast<ConstantSDNode>(Node);
unsigned opAction =
TLI.getOperationAction(ISD::Constant, CN->getValueType(0));
// We know we don't need to expand constants here, constants only have one
// value and we check that it is fine above.
if (opAction == TargetLowering::Custom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode())
Result = Tmp1;
}
break;
}
case ISD::ConstantFP: {
// Spill FP immediates to the constant pool if the target cannot directly
// codegen them. Targets often have some immediate values that can be
// efficiently generated into an FP register without a load. We explicitly
// leave these constants as ConstantFP nodes for the target to deal with.
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand: {
// Check to see if this FP immediate is already legal.
bool isLegal = false;
for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
E = TLI.legal_fpimm_end(); I != E; ++I) {
if (CFP->isExactlyValue(*I)) {
isLegal = true;
break;
}
}
// If this is a legal constant, turn it into a TargetConstantFP node.
if (isLegal)
break;
Result = ExpandConstantFP(CFP, true, DAG, TLI);
}
}
break;
}
case ISD::TokenFactor:
if (Node->getNumOperands() == 2) {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
} else if (Node->getNumOperands() == 3) {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Tmp3 = LegalizeOp(Node->getOperand(2));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
} else {
SmallVector<SDValue, 8> Ops;
// Legalize the operands.
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
break;
case ISD::FORMAL_ARGUMENTS:
case ISD::CALL:
// The only option for this is to custom lower it.
Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG);
assert(Tmp3.getNode() && "Target didn't custom lower this node!");
// A call within a calling sequence must be legalized to something
// other than the normal CALLSEQ_END. Violating this gets Legalize
// into an infinite loop.
assert ((!IsLegalizingCall ||
Node->getOpcode() != ISD::CALL ||
Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) &&
"Nested CALLSEQ_START..CALLSEQ_END not supported.");
// The number of incoming and outgoing values should match; unless the final
// outgoing value is a flag.
assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() ||
(Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 &&
Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) ==
MVT::Flag)) &&
"Lowering call/formal_arguments produced unexpected # results!");
// Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to
// remember that we legalized all of them, so it doesn't get relegalized.
for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) {
if (Tmp3.getNode()->getValueType(i) == MVT::Flag)
continue;
Tmp1 = LegalizeOp(Tmp3.getValue(i));
if (Op.getResNo() == i)
Tmp2 = Tmp1;
AddLegalizedOperand(SDValue(Node, i), Tmp1);
}
return Tmp2;
case ISD::EXTRACT_SUBREG: {
Tmp1 = LegalizeOp(Node->getOperand(0));
ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(1));
assert(idx && "Operand must be a constant");
Tmp2 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
}
break;
case ISD::INSERT_SUBREG: {
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
ConstantSDNode *idx = dyn_cast<ConstantSDNode>(Node->getOperand(2));
assert(idx && "Operand must be a constant");
Tmp3 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
}
break;
case ISD::BUILD_VECTOR:
switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand:
Result = ExpandBUILD_VECTOR(Result.getNode());
break;
}
break;
case ISD::INSERT_VECTOR_ELT:
Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec
Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo
// The type of the value to insert may not be legal, even though the vector
// type is legal. Legalize/Promote accordingly. We do not handle Expand
// here.
switch (getTypeAction(Node->getOperand(1).getValueType())) {
default: assert(0 && "Cannot expand insert element operand");
case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break;
case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break;
case Expand:
// FIXME: An alternative would be to check to see if the target is not
// going to custom lower this operation, we could bitcast to half elt
// width and perform two inserts at that width, if that is legal.
Tmp2 = Node->getOperand(1);
break;
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT,
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp4 = TLI.LowerOperation(Result, DAG);
if (Tmp4.getNode()) {
Result = Tmp4;
break;
}
// FALLTHROUGH
case TargetLowering::Promote:
// Fall thru for vector case
case TargetLowering::Expand: {
// If the insert index is a constant, codegen this as a scalar_to_vector,
// then a shuffle that inserts it into the right position in the vector.
if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Tmp3)) {
// SCALAR_TO_VECTOR requires that the type of the value being inserted
// match the element type of the vector being created.
if (Tmp2.getValueType() ==
Op.getValueType().getVectorElementType()) {
SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR,
Tmp1.getValueType(), Tmp2);
unsigned NumElts = Tmp1.getValueType().getVectorNumElements();
MVT ShufMaskVT =
MVT::getIntVectorWithNumElements(NumElts);
MVT ShufMaskEltVT = ShufMaskVT.getVectorElementType();
// We generate a shuffle of InVec and ScVec, so the shuffle mask
// should be 0,1,2,3,4,5... with the appropriate element replaced with
// elt 0 of the RHS.
SmallVector<SDValue, 8> ShufOps;
for (unsigned i = 0; i != NumElts; ++i) {
if (i != InsertPos->getZExtValue())
ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT));
else
ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT));
}
SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT,
&ShufOps[0], ShufOps.size());
Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(),
Tmp1, ScVec, ShufMask);
Result = LegalizeOp(Result);
break;
}
}
Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3);
break;
}
}
break;
case ISD::SCALAR_TO_VECTOR:
if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) {
Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
break;
}
Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal
Result = DAG.UpdateNodeOperands(Result, Tmp1);
switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR,
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand:
Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node));
break;
}
break;
case ISD::VECTOR_SHUFFLE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors,
Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
// Allow targets to custom lower the SHUFFLEs they support.
switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) {
default: assert(0 && "Unknown operation action!");
case TargetLowering::Legal:
assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) &&
"vector shuffle should not be created if not legal!");
break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
Result = Tmp3;
break;
}
// FALLTHROUGH
case TargetLowering::Expand: {
MVT VT = Node->getValueType(0);
MVT EltVT = VT.getVectorElementType();
MVT PtrVT = TLI.getPointerTy();
SDValue Mask = Node->getOperand(2);
unsigned NumElems = Mask.getNumOperands();
SmallVector<SDValue,8> Ops;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Arg = Mask.getOperand(i);
if (Arg.getOpcode() == ISD::UNDEF) {
Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
} else {
assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
if (Idx < NumElems)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1,
DAG.getConstant(Idx, PtrVT)));
else
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2,
DAG.getConstant(Idx - NumElems, PtrVT)));
}
}
Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
break;
}
case TargetLowering::Promote: {
// Change base type to a different vector type.
MVT OVT = Node->getValueType(0);
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
// Cast the two input vectors.
Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1);
Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2);
// Convert the shuffle mask to the right # elements.
Tmp3 = SDValue(isShuffleLegal(OVT, Node->getOperand(2)), 0);
assert(Tmp3.getNode() && "Shuffle not legal?");
Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3);
Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result);
break;
}
}
break;
case ISD::EXTRACT_VECTOR_ELT:
Tmp1 = Node->getOperand(0);
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
Result = ExpandEXTRACT_VECTOR_ELT(Result);
break;
case ISD::EXTRACT_SUBVECTOR:
Tmp1 = Node->getOperand(0);
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
Result = ExpandEXTRACT_SUBVECTOR(Result);
break;
case ISD::CONCAT_VECTORS: {
// Use extract/insert/build vector for now. We might try to be
// more clever later.
MVT PtrVT = TLI.getPointerTy();
SmallVector<SDValue, 8> Ops;
unsigned NumOperands = Node->getNumOperands();
for (unsigned i=0; i < NumOperands; ++i) {
SDValue SubOp = Node->getOperand(i);
MVT VVT = SubOp.getNode()->getValueType(0);
MVT EltVT = VVT.getVectorElementType();
unsigned NumSubElem = VVT.getVectorNumElements();
for (unsigned j=0; j < NumSubElem; ++j) {
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, SubOp,
DAG.getConstant(j, PtrVT)));
}
}
return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0),
&Ops[0], Ops.size()));
}
case ISD::CALLSEQ_START: {
SDNode *CallEnd = FindCallEndFromCallStart(Node);
// Recursively Legalize all of the inputs of the call end that do not lead
// to this call start. This ensures that any libcalls that need be inserted
// are inserted *before* the CALLSEQ_START.
{SmallPtrSet<SDNode*, 32> NodesLeadingTo;
for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
NodesLeadingTo);
}
// Now that we legalized all of the inputs (which may have inserted
// libcalls) create the new CALLSEQ_START node.
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Merge in the last call, to ensure that this call start after the last
// call ended.
if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
}
// Do not try to legalize the target-specific arguments (#1+).
if (Tmp1 != Node->getOperand(0)) {
SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
Ops[0] = Tmp1;
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
// Remember that the CALLSEQ_START is legalized.
AddLegalizedOperand(Op.getValue(0), Result);
if (Node->getNumValues() == 2) // If this has a flag result, remember it.
AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
// Now that the callseq_start and all of the non-call nodes above this call
// sequence have been legalized, legalize the call itself. During this
// process, no libcalls can/will be inserted, guaranteeing that no calls
// can overlap.
assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
// Note that we are selecting this call!
LastCALLSEQ_END = SDValue(CallEnd, 0);
IsLegalizingCall = true;
// Legalize the call, starting from the CALLSEQ_END.
LegalizeOp(LastCALLSEQ_END);
assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
return Result;
}
case ISD::CALLSEQ_END:
// If the CALLSEQ_START node hasn't been legalized first, legalize it. This
// will cause this node to be legalized as well as handling libcalls right.
if (LastCALLSEQ_END.getNode() != Node) {
LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
assert(I != LegalizedNodes.end() &&
"Legalizing the call start should have legalized this node!");
return I->second;
}
// Otherwise, the call start has been legalized and everything is going
// according to plan. Just legalize ourselves normally here.
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Do not try to legalize the target-specific arguments (#1+), except for
// an optional flag input.
if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
if (Tmp1 != Node->getOperand(0)) {
SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
Ops[0] = Tmp1;
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
} else {
Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
if (Tmp1 != Node->getOperand(0) ||
Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
Ops[0] = Tmp1;
Ops.back() = Tmp2;
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
}
}
assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
// This finishes up call legalization.
IsLegalizingCall = false;
// If the CALLSEQ_END node has a flag, remember that we legalized it.
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
if (Node->getNumValues() == 2)
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result.getValue(Op.getResNo());
case ISD::DYNAMIC_STACKALLOC: {
MVT VT = Node->getValueType(0);
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Expand: {
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDValue Chain = Tmp1.getOperand(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
SDValue Size = Tmp2.getOperand(1);
SDValue SP = DAG.getCopyFromReg(Chain, SPReg, VT);
Chain = SP.getValue(1);
unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
unsigned StackAlign =
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
if (Align > StackAlign)
SP = DAG.getNode(ISD::AND, VT, SP,
DAG.getConstant(-(uint64_t)Align, VT));
Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value
Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain
Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
DAG.getIntPtrConstant(0, true), SDValue());
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = LegalizeOp(Tmp2);
break;
}
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Tmp1, DAG);
if (Tmp3.getNode()) {
Tmp1 = LegalizeOp(Tmp3);
Tmp2 = LegalizeOp(Tmp3.getValue(1));
}
break;
case TargetLowering::Legal:
break;
}
// Since this op produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDValue(Node, 0), Tmp1);
AddLegalizedOperand(SDValue(Node, 1), Tmp2);
return Op.getResNo() ? Tmp2 : Tmp1;
}
case ISD::INLINEASM: {
SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
bool Changed = false;
// Legalize all of the operands of the inline asm, in case they are nodes
// that need to be expanded or something. Note we skip the asm string and
// all of the TargetConstant flags.
SDValue Op = LegalizeOp(Ops[0]);
Changed = Op != Ops[0];
Ops[0] = Op;
bool HasInFlag = Ops.back().getValueType() == MVT::Flag;
for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) {
unsigned NumVals = cast<ConstantSDNode>(Ops[i])->getZExtValue() >> 3;
for (++i; NumVals; ++i, --NumVals) {
SDValue Op = LegalizeOp(Ops[i]);
if (Op != Ops[i]) {
Changed = true;
Ops[i] = Op;
}
}
}
if (HasInFlag) {
Op = LegalizeOp(Ops.back());
Changed |= Op != Ops.back();
Ops.back() = Op;
}
if (Changed)
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
// INLINE asm returns a chain and flag, make sure to add both to the map.
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result.getValue(Op.getResNo());
}
case ISD::BR:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case ISD::BRIND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
switch (getTypeAction(Node->getOperand(1).getValueType())) {
default: assert(0 && "Indirect target must be legal type (pointer)!");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
break;
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
break;
case ISD::BR_JT:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
case TargetLowering::Expand: {
SDValue Chain = Result.getOperand(0);
SDValue Table = Result.getOperand(1);
SDValue Index = Result.getOperand(2);
MVT PTy = TLI.getPointerTy();
MachineFunction &MF = DAG.getMachineFunction();
unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize();
Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
SDValue LD;
switch (EntrySize) {
default: assert(0 && "Size of jump table not supported yet."); break;
case 4: LD = DAG.getLoad(MVT::i32, Chain, Addr,
PseudoSourceValue::getJumpTable(), 0); break;
case 8: LD = DAG.getLoad(MVT::i64, Chain, Addr,
PseudoSourceValue::getJumpTable(), 0); break;
}
Addr = LD;
if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase can be JumpTable, GOT or some sort of global base.
if (PTy != MVT::i32)
Addr = DAG.getNode(ISD::SIGN_EXTEND, PTy, Addr);
Addr = DAG.getNode(ISD::ADD, PTy, Addr,
TLI.getPICJumpTableRelocBase(Table, DAG));
}
Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr);
}
}
break;
case ISD::BRCOND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a return.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "It's impossible to expand bools");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition.
break;
case Promote: {
Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition.
// The top bits of the promoted condition are not necessarily zero, ensure
// that the value is properly zero extended.
unsigned BitWidth = Tmp2.getValueSizeInBits();
if (!DAG.MaskedValueIsZero(Tmp2,
APInt::getHighBitsSet(BitWidth, BitWidth-1)))
Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1);
break;
}
}
// Basic block destination (Op#2) is always legal.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
case TargetLowering::Expand:
// Expand brcond's setcc into its constituent parts and create a BR_CC
// Node.
if (Tmp2.getOpcode() == ISD::SETCC) {
Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2),
Tmp2.getOperand(0), Tmp2.getOperand(1),
Node->getOperand(2));
} else {
Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1,
DAG.getCondCode(ISD::SETNE), Tmp2,
DAG.getConstant(0, Tmp2.getValueType()),
Node->getOperand(2));
}
break;
}
break;
case ISD::BR_CC:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a branch.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = Node->getOperand(2); // LHS
Tmp3 = Node->getOperand(3); // RHS
Tmp4 = Node->getOperand(1); // CC
LegalizeSetCC(TLI.getSetCCResultType(Tmp2), Tmp2, Tmp3, Tmp4);
LastCALLSEQ_END = DAG.getEntryNode();
// If we didn't get both a LHS and RHS back from LegalizeSetCC,
// the LHS is a legal SETCC itself. In this case, we need to compare
// the result against zero to select between true and false values.
if (Tmp3.getNode() == 0) {
Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
Tmp4 = DAG.getCondCode(ISD::SETNE);
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3,
Node->getOperand(4));
switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) {
default: assert(0 && "Unexpected action for BR_CC!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp4 = TLI.LowerOperation(Result, DAG);
if (Tmp4.getNode()) Result = Tmp4;
break;
}
break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain.
Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD) {
MVT VT = Node->getValueType(0);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
Tmp3 = Result.getValue(0);
Tmp4 = Result.getValue(1);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
// If this is an unaligned load and the target doesn't support it,
// expand it.
if (!TLI.allowsUnalignedMemoryAccesses()) {
unsigned ABIAlignment = TLI.getTargetData()->
getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
if (LD->getAlignment() < ABIAlignment){
Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
TLI);
Tmp3 = Result.getOperand(0);
Tmp4 = Result.getOperand(1);
Tmp3 = LegalizeOp(Tmp3);
Tmp4 = LegalizeOp(Tmp4);
}
}
break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Tmp3, DAG);
if (Tmp1.getNode()) {
Tmp3 = LegalizeOp(Tmp1);
Tmp4 = LegalizeOp(Tmp1.getValue(1));
}
break;
case TargetLowering::Promote: {
// Only promote a load of vector type to another.
assert(VT.isVector() && "Cannot promote this load!");
// Change base type to a different vector type.
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset(),
LD->isVolatile(), LD->getAlignment());
Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1));
Tmp4 = LegalizeOp(Tmp1.getValue(1));
break;
}
}
// Since loads produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDValue(Node, 0), Tmp3);
AddLegalizedOperand(SDValue(Node, 1), Tmp4);
return Op.getResNo() ? Tmp4 : Tmp3;
} else {
MVT SrcVT = LD->getMemoryVT();
unsigned SrcWidth = SrcVT.getSizeInBits();
int SVOffset = LD->getSrcValueOffset();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
if (SrcWidth != SrcVT.getStoreSizeInBits() &&
// Some targets pretend to have an i1 loading operation, and actually
// load an i8. This trick is correct for ZEXTLOAD because the top 7
// bits are guaranteed to be zero; it helps the optimizers understand
// that these bits are zero. It is also useful for EXTLOAD, since it
// tells the optimizers that those bits are undefined. It would be
// nice to have an effective generic way of getting these benefits...
// Until such a way is found, don't insist on promoting i1 here.
(SrcVT != MVT::i1 ||
TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
// Promote to a byte-sized load if not loading an integral number of
// bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
unsigned NewWidth = SrcVT.getStoreSizeInBits();
MVT NVT = MVT::getIntegerVT(NewWidth);
SDValue Ch;
// The extra bits are guaranteed to be zero, since we stored them that
// way. A zext load from NVT thus automatically gives zext from SrcVT.
ISD::LoadExtType NewExtType =
ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
Result = DAG.getExtLoad(NewExtType, Node->getValueType(0),
Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
NVT, isVolatile, Alignment);
Ch = Result.getValue(1); // The chain.
if (ExtType == ISD::SEXTLOAD)
// Having the top bits zero doesn't help when sign extending.
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
// All the top bits are guaranteed to be zero - inform the optimizers.
Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result,
DAG.getValueType(SrcVT));
Tmp1 = LegalizeOp(Result);
Tmp2 = LegalizeOp(Ch);
} else if (SrcWidth & (SrcWidth - 1)) {
// If not loading a power-of-2 number of bits, expand as two loads.
assert(SrcVT.isExtended() && !SrcVT.isVector() &&
"Unsupported extload!");
unsigned RoundWidth = 1 << Log2_32(SrcWidth);
assert(RoundWidth < SrcWidth);
unsigned ExtraWidth = SrcWidth - RoundWidth;
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Load size not an integral number of bytes!");
MVT RoundVT = MVT::getIntegerVT(RoundWidth);
MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
SDValue Lo, Hi, Ch;
unsigned IncrementSize;
if (TLI.isLittleEndian()) {
// EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
// Load the bottom RoundWidth bits.
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2,
LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
Alignment);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
DAG.getIntPtrConstant(IncrementSize));
Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2,
LD->getSrcValue(), SVOffset + IncrementSize,
ExtraVT, isVolatile,
MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Move the top bits to the right place.
Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi,
DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
// Join the hi and lo parts.
Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi);
} else {
// Big endian - avoid unaligned loads.
// EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
// Load the top RoundWidth bits.
Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2,
LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
Alignment);
// Load the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
DAG.getIntPtrConstant(IncrementSize));
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2,
LD->getSrcValue(), SVOffset + IncrementSize,
ExtraVT, isVolatile,
MinAlign(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Move the top bits to the right place.
Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi,
DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
// Join the hi and lo parts.
Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi);
}
Tmp1 = LegalizeOp(Result);
Tmp2 = LegalizeOp(Ch);
} else {
switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
if (isCustom) {
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
Tmp1 = LegalizeOp(Tmp3);
Tmp2 = LegalizeOp(Tmp3.getValue(1));
}
} else {
// If this is an unaligned load and the target doesn't support it,
// expand it.
if (!TLI.allowsUnalignedMemoryAccesses()) {
unsigned ABIAlignment = TLI.getTargetData()->
getABITypeAlignment(LD->getMemoryVT().getTypeForMVT());
if (LD->getAlignment() < ABIAlignment){
Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), DAG,
TLI);
Tmp1 = Result.getOperand(0);
Tmp2 = Result.getOperand(1);
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = LegalizeOp(Tmp2);
}
}
}
break;
case TargetLowering::Expand:
// f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) {
SDValue Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset(),
LD->isVolatile(), LD->getAlignment());
Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load);
Tmp1 = LegalizeOp(Result); // Relegalize new nodes.
Tmp2 = LegalizeOp(Load.getValue(1));
break;
}
assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
// Turn the unsupported load into an EXTLOAD followed by an explicit
// zero/sign extend inreg.
Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0),
Tmp1, Tmp2, LD->getSrcValue(),
LD->getSrcValueOffset(), SrcVT,
LD->isVolatile(), LD->getAlignment());
SDValue ValRes;
if (ExtType == ISD::SEXTLOAD)
ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result, DAG.getValueType(SrcVT));
else
ValRes = DAG.getZeroExtendInReg(Result, SrcVT);
Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes.
Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes.
break;
}
}
// Since loads produce two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDValue(Node, 0), Tmp1);
AddLegalizedOperand(SDValue(Node, 1), Tmp2);
return Op.getResNo() ? Tmp2 : Tmp1;
}
}
case ISD::EXTRACT_ELEMENT: {
MVT OpTy = Node->getOperand(0).getValueType();
switch (getTypeAction(OpTy)) {
default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!");
case Legal:
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
// 1 -> Hi
Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0),
DAG.getConstant(OpTy.getSizeInBits()/2,
TLI.getShiftAmountTy()));
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result);
} else {
// 0 -> Lo
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0),
Node->getOperand(0));
}
break;
case Expand:
// Get both the low and high parts.
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue())
Result = Tmp2; // 1 -> Hi
else
Result = Tmp1; // 0 -> Lo
break;
}
break;
}
case ISD::CopyToReg:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
assert(isTypeLegal(Node->getOperand(2).getValueType()) &&
"Register type must be legal!");
// Legalize the incoming value (must be a legal type).
Tmp2 = LegalizeOp(Node->getOperand(2));
if (Node->getNumValues() == 1) {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2);
} else {
assert(Node->getNumValues() == 2 && "Unknown CopyToReg");
if (Node->getNumOperands() == 4) {
Tmp3 = LegalizeOp(Node->getOperand(3));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2,
Tmp3);
} else {
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2);
}
// Since this produces two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result;
}
break;
case ISD::RET:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
// Ensure that libcalls are emitted before a return.
Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END);
Tmp1 = LegalizeOp(Tmp1);
LastCALLSEQ_END = DAG.getEntryNode();
switch (Node->getNumOperands()) {
case 3: // ret val
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2); // Signness
switch (getTypeAction(Tmp2.getValueType())) {
case Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3);
break;
case Expand:
if (!Tmp2.getValueType().isVector()) {
SDValue Lo, Hi;
ExpandOp(Tmp2, Lo, Hi);
// Big endian systems want the hi reg first.
if (TLI.isBigEndian())
std::swap(Lo, Hi);
if (Hi.getNode())
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3);
else
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3);
Result = LegalizeOp(Result);
} else {
SDNode *InVal = Tmp2.getNode();
int InIx = Tmp2.getResNo();
unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements();
MVT EVT = InVal->getValueType(InIx).getVectorElementType();
// Figure out if there is a simple type corresponding to this Vector
// type. If so, convert to the vector type.
MVT TVT = MVT::getVectorVT(EVT, NumElems);
if (TLI.isTypeLegal(TVT)) {
// Turn this into a return of the vector type.
Tmp2 = LegalizeOp(Tmp2);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
} else if (NumElems == 1) {
// Turn this into a return of the scalar type.
Tmp2 = ScalarizeVectorOp(Tmp2);
Tmp2 = LegalizeOp(Tmp2);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
// FIXME: Returns of gcc generic vectors smaller than a legal type
// should be returned in integer registers!
// The scalarized value type may not be legal, e.g. it might require
// promotion or expansion. Relegalize the return.
Result = LegalizeOp(Result);
} else {
// FIXME: Returns of gcc generic vectors larger than a legal vector
// type should be returned by reference!
SDValue Lo, Hi;
SplitVectorOp(Tmp2, Lo, Hi);
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3);
Result = LegalizeOp(Result);
}
}
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
Result = LegalizeOp(Result);
break;
}
break;
case 1: // ret void
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
default: { // ret <values>
SmallVector<SDValue, 8> NewValues;
NewValues.push_back(Tmp1);
for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2)
switch (getTypeAction(Node->getOperand(i).getValueType())) {
case Legal:
NewValues.push_back(LegalizeOp(Node->getOperand(i)));
NewValues.push_back(Node->getOperand(i+1));
break;
case Expand: {
SDValue Lo, Hi;
assert(!Node->getOperand(i).getValueType().isExtended() &&
"FIXME: TODO: implement returning non-legal vector types!");
ExpandOp(Node->getOperand(i), Lo, Hi);
NewValues.push_back(Lo);
NewValues.push_back(Node->getOperand(i+1));
if (Hi.getNode()) {
NewValues.push_back(Hi);
NewValues.push_back(Node->getOperand(i+1));
}
break;
}
case Promote:
assert(0 && "Can't promote multiple return value yet!");
}
if (NewValues.size() == Node->getNumOperands())
Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size());
else
Result = DAG.getNode(ISD::RET, MVT::Other,
&NewValues[0], NewValues.size());
break;
}
}
if (Result.getOpcode() == ISD::RET) {
switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
}
}
break;
case ISD::STORE: {
StoreSDNode *ST = cast<StoreSDNode>(Node);
Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain.
Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer.
int SVOffset = ST->getSrcValueOffset();
unsigned Alignment = ST->getAlignment();
bool isVolatile = ST->isVolatile();
if (!ST->isTruncatingStore()) {
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
// FIXME: We shouldn't do this for TargetConstantFP's.
// FIXME: move this to the DAG Combiner! Note that we can't regress due
// to phase ordering between legalized code and the dag combiner. This
// probably means that we need to integrate dag combiner and legalizer
// together.
// We generally can't do this one for long doubles.
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
if (CFP->getValueType(0) == MVT::f32 &&
getTypeAction(MVT::i32) == Legal) {
Tmp3 = DAG.getConstant(CFP->getValueAPF().
bitcastToAPInt().zextOrTrunc(32),
MVT::i32);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
break;
} else if (CFP->getValueType(0) == MVT::f64) {
// If this target supports 64-bit registers, do a single 64-bit store.
if (getTypeAction(MVT::i64) == Legal) {
Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
zextOrTrunc(64), MVT::i64);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
break;
} else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
// Otherwise, if the target supports 32-bit registers, use 2 32-bit
// stores. If the target supports neither 32- nor 64-bits, this
// xform is certainly not worth it.
const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
if (TLI.isBigEndian()) std::swap(Lo, Hi);
Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
DAG.getIntPtrConstant(4));
Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
isVolatile, MinAlign(Alignment, 4U));
Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
break;
}
}
}
switch (getTypeAction(ST->getMemoryVT())) {
case Legal: {
Tmp3 = LegalizeOp(ST->getValue());
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
ST->getOffset());
MVT VT = Tmp3.getValueType();
switch (TLI.getOperationAction(ISD::STORE, VT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
// If this is an unaligned store and the target doesn't support it,
// expand it.
if (!TLI.allowsUnalignedMemoryAccesses()) {
unsigned ABIAlignment = TLI.getTargetData()->
getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
if (ST->getAlignment() < ABIAlignment)
Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
TLI);
}
break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
case TargetLowering::Promote:
assert(VT.isVector() && "Unknown legal promote case!");
Tmp3 = DAG.getNode(ISD::BIT_CONVERT,
TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2,
ST->getSrcValue(), SVOffset, isVolatile,
Alignment);
break;
}
break;
}
case Promote:
if (!ST->getMemoryVT().isVector()) {
// Truncate the value and store the result.
Tmp3 = PromoteOp(ST->getValue());
Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, ST->getMemoryVT(),
isVolatile, Alignment);
break;
}
// Fall thru to expand for vector
case Expand: {
unsigned IncrementSize = 0;
SDValue Lo, Hi;
// If this is a vector type, then we have to calculate the increment as
// the product of the element size in bytes, and the number of elements
// in the high half of the vector.
if (ST->getValue().getValueType().isVector()) {
SDNode *InVal = ST->getValue().getNode();
int InIx = ST->getValue().getResNo();
MVT InVT = InVal->getValueType(InIx);
unsigned NumElems = InVT.getVectorNumElements();
MVT EVT = InVT.getVectorElementType();
// Figure out if there is a simple type corresponding to this Vector
// type. If so, convert to the vector type.
MVT TVT = MVT::getVectorVT(EVT, NumElems);
if (TLI.isTypeLegal(TVT)) {
// Turn this into a normal store of the vector type.
Tmp3 = LegalizeOp(ST->getValue());
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
Result = LegalizeOp(Result);
break;
} else if (NumElems == 1) {
// Turn this into a normal store of the scalar type.
Tmp3 = ScalarizeVectorOp(ST->getValue());
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
// The scalarized value type may not be legal, e.g. it might require
// promotion or expansion. Relegalize the scalar store.
Result = LegalizeOp(Result);
break;
} else {
// Check if we have widen this node with another value
std::map<SDValue, SDValue>::iterator I =
WidenNodes.find(ST->getValue());
if (I != WidenNodes.end()) {
Result = StoreWidenVectorOp(ST, Tmp1, Tmp2);
break;
}
else {
SplitVectorOp(ST->getValue(), Lo, Hi);
IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() *
EVT.getSizeInBits()/8;
}
}
} else {
ExpandOp(ST->getValue(), Lo, Hi);
IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0;
if (Hi.getNode() && TLI.isBigEndian())
std::swap(Lo, Hi);
}
Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
if (Hi.getNode() == NULL) {
// Must be int <-> float one-to-one expansion.
Result = Lo;
break;
}
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
DAG.getIntPtrConstant(IncrementSize));
assert(isTypeLegal(Tmp2.getValueType()) &&
"Pointers must be legal!");
SVOffset += IncrementSize;
Alignment = MinAlign(Alignment, IncrementSize);
Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
break;
} // case Expand
}
} else {
switch (getTypeAction(ST->getValue().getValueType())) {
case Legal:
Tmp3 = LegalizeOp(ST->getValue());
break;
case Promote:
if (!ST->getValue().getValueType().isVector()) {
// We can promote the value, the truncstore will still take care of it.
Tmp3 = PromoteOp(ST->getValue());
break;
}
// Vector case falls through to expand
case Expand:
// Just store the low part. This may become a non-trunc store, so make
// sure to use getTruncStore, not UpdateNodeOperands below.
ExpandOp(ST->getValue(), Tmp3, Tmp4);
return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, MVT::i8, isVolatile, Alignment);
}
MVT StVT = ST->getMemoryVT();
unsigned StWidth = StVT.getSizeInBits();
if (StWidth != StVT.getStoreSizeInBits()) {
// Promote to a byte-sized store with upper bits zero if not
// storing an integral number of bytes. For example, promote
// TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits());
Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT);
Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, NVT, isVolatile, Alignment);
} else if (StWidth & (StWidth - 1)) {
// If not storing a power-of-2 number of bits, expand as two stores.
assert(StVT.isExtended() && !StVT.isVector() &&
"Unsupported truncstore!");
unsigned RoundWidth = 1 << Log2_32(StWidth);
assert(RoundWidth < StWidth);
unsigned ExtraWidth = StWidth - RoundWidth;
assert(ExtraWidth < RoundWidth);
assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
"Store size not an integral number of bytes!");
MVT RoundVT = MVT::getIntegerVT(RoundWidth);
MVT ExtraVT = MVT::getIntegerVT(ExtraWidth);
SDValue Lo, Hi;
unsigned IncrementSize;
if (TLI.isLittleEndian()) {
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
// Store the bottom RoundWidth bits.
Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, RoundVT,
isVolatile, Alignment);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
DAG.getIntPtrConstant(IncrementSize));
Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3,
DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(),
SVOffset + IncrementSize, ExtraVT, isVolatile,
MinAlign(Alignment, IncrementSize));
} else {
// Big endian - avoid unaligned stores.
// TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
// Store the top RoundWidth bits.
Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3,
DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset,
RoundVT, isVolatile, Alignment);
// Store the remaining ExtraWidth bits.
IncrementSize = RoundWidth / 8;
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
DAG.getIntPtrConstant(IncrementSize));
Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset + IncrementSize, ExtraVT, isVolatile,
MinAlign(Alignment, IncrementSize));
}
// The order of the stores doesn't matter.
Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
} else {
if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
Tmp2 != ST->getBasePtr())
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
ST->getOffset());
switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
// If this is an unaligned store and the target doesn't support it,
// expand it.
if (!TLI.allowsUnalignedMemoryAccesses()) {
unsigned ABIAlignment = TLI.getTargetData()->
getABITypeAlignment(ST->getMemoryVT().getTypeForMVT());
if (ST->getAlignment() < ABIAlignment)
Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), DAG,
TLI);
}
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Result, DAG);
break;
case Expand:
// TRUNCSTORE:i16 i32 -> STORE i16
assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3);
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset,
isVolatile, Alignment);
break;
}
}
}
break;
}
case ISD::PCMARKER:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case ISD::STACKSAVE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Result = DAG.UpdateNodeOperands(Result, Tmp1);
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp3 = TLI.LowerOperation(Result, DAG);
if (Tmp3.getNode()) {
Tmp1 = LegalizeOp(Tmp3);
Tmp2 = LegalizeOp(Tmp3.getValue(1));
}
break;
case TargetLowering::Expand:
// Expand to CopyFromReg if the target set
// StackPointerRegisterToSaveRestore.
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP,
Node->getValueType(0));
Tmp2 = Tmp1.getValue(1);
} else {
Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0));
Tmp2 = Node->getOperand(0);
}
break;
}
// Since stacksave produce two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDValue(Node, 0), Tmp1);
AddLegalizedOperand(SDValue(Node, 1), Tmp2);
return Op.getResNo() ? Tmp2 : Tmp1;
case ISD::STACKRESTORE:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
case TargetLowering::Expand:
// Expand to CopyToReg if the target set
// StackPointerRegisterToSaveRestore.
if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
Result = DAG.getCopyToReg(Tmp1, SP, Tmp2);
} else {
Result = Tmp1;
}
break;
}
break;
case ISD::READCYCLECOUNTER:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain
Result = DAG.UpdateNodeOperands(Result, Tmp1);
switch (TLI.getOperationAction(ISD::READCYCLECOUNTER,
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal:
Tmp1 = Result.getValue(0);
Tmp2 = Result.getValue(1);
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Result, DAG);
Tmp1 = LegalizeOp(Result.getValue(0));
Tmp2 = LegalizeOp(Result.getValue(1));
break;
}
// Since rdcc produce two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDValue(Node, 0), Tmp1);
AddLegalizedOperand(SDValue(Node, 1), Tmp2);
return Result;
case ISD::SELECT:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "It's impossible to expand bools");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition.
break;
case Promote: {
assert(!Node->getOperand(0).getValueType().isVector() && "not possible");
Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition.
// Make sure the condition is either zero or one.
unsigned BitWidth = Tmp1.getValueSizeInBits();
if (!DAG.MaskedValueIsZero(Tmp1,
APInt::getHighBitsSet(BitWidth, BitWidth-1)))
Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1);
break;
}
}
Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal
Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom: {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
}
case TargetLowering::Expand:
if (Tmp1.getOpcode() == ISD::SETCC) {
Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1),
Tmp2, Tmp3,
cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
} else {
Result = DAG.getSelectCC(Tmp1,
DAG.getConstant(0, Tmp1.getValueType()),
Tmp2, Tmp3, ISD::SETNE);
}
break;
case TargetLowering::Promote: {
MVT NVT =
TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType());
unsigned ExtOp, TruncOp;
if (Tmp2.getValueType().isVector()) {
ExtOp = ISD::BIT_CONVERT;
TruncOp = ISD::BIT_CONVERT;
} else if (Tmp2.getValueType().isInteger()) {
ExtOp = ISD::ANY_EXTEND;
TruncOp = ISD::TRUNCATE;
} else {
ExtOp = ISD::FP_EXTEND;
TruncOp = ISD::FP_ROUND;
}
// Promote each of the values to the new type.
Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2);
Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3);
// Perform the larger operation, then round down.
Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3);
if (TruncOp != ISD::FP_ROUND)
Result = DAG.getNode(TruncOp, Node->getValueType(0), Result);
else
Result = DAG.getNode(TruncOp, Node->getValueType(0), Result,
DAG.getIntPtrConstant(0));
break;
}
}
break;
case ISD::SELECT_CC: {
Tmp1 = Node->getOperand(0); // LHS
Tmp2 = Node->getOperand(1); // RHS
Tmp3 = LegalizeOp(Node->getOperand(2)); // True
Tmp4 = LegalizeOp(Node->getOperand(3)); // False
SDValue CC = Node->getOperand(4);
LegalizeSetCC(TLI.getSetCCResultType(Tmp1), Tmp1, Tmp2, CC);
// If we didn't get both a LHS and RHS back from LegalizeSetCC,
// the LHS is a legal SETCC itself. In this case, we need to compare
// the result against zero to select between true and false values.
if (Tmp2.getNode() == 0) {
Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
CC = DAG.getCondCode(ISD::SETNE);
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC);
// Everything is legal, see if we should expand this op or something.
switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
}
break;
}
case ISD::SETCC:
Tmp1 = Node->getOperand(0);
Tmp2 = Node->getOperand(1);
Tmp3 = Node->getOperand(2);
LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3);
// If we had to Expand the SetCC operands into a SELECT node, then it may
// not always be possible to return a true LHS & RHS. In this case, just
// return the value we legalized, returned in the LHS
if (Tmp2.getNode() == 0) {
Result = Tmp1;
break;
}
switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) {
default: assert(0 && "Cannot handle this action for SETCC yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH.
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
if (isCustom) {
Tmp4 = TLI.LowerOperation(Result, DAG);
if (Tmp4.getNode()) Result = Tmp4;
}
break;
case TargetLowering::Promote: {
// First step, figure out the appropriate operation to use.
// Allow SETCC to not be supported for all legal data types
// Mostly this targets FP
MVT NewInTy = Node->getOperand(0).getValueType();
MVT OldVT = NewInTy; OldVT = OldVT;
// Scan for the appropriate larger type to use.
while (1) {
NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
assert(NewInTy.isInteger() == OldVT.isInteger() &&
"Fell off of the edge of the integer world");
assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() &&
"Fell off of the edge of the floating point world");
// If the target supports SETCC of this type, use it.
if (TLI.isOperationLegal(ISD::SETCC, NewInTy))
break;
}
if (NewInTy.isInteger())
assert(0 && "Cannot promote Legal Integer SETCC yet");
else {
Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1);
Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2);
}
Tmp1 = LegalizeOp(Tmp1);
Tmp2 = LegalizeOp(Tmp2);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
Result = LegalizeOp(Result);
break;
}
case TargetLowering::Expand:
// Expand a setcc node into a select_cc of the same condition, lhs, and
// rhs that selects between const 1 (true) and const 0 (false).
MVT VT = Node->getValueType(0);
Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2,
DAG.getConstant(1, VT), DAG.getConstant(0, VT),
Tmp3);
break;
}
break;
case ISD::VSETCC: {
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
SDValue CC = Node->getOperand(2);
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC);
// Everything is legal, see if we should expand this op or something.
switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
}
break;
}
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: {
SmallVector<SDValue, 8> Ops;
bool Changed = false;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
Ops.push_back(LegalizeOp(Node->getOperand(i)));
Changed |= Ops.back() != Node->getOperand(i);
}
if (Changed)
Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
switch (TLI.getOperationAction(Node->getOpcode(),
Node->getValueType(0))) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) {
SDValue Tmp2, RetVal(0, 0);
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
Tmp2 = LegalizeOp(Tmp1.getValue(i));
AddLegalizedOperand(SDValue(Node, i), Tmp2);
if (i == Op.getResNo())
RetVal = Tmp2;
}
assert(RetVal.getNode() && "Illegal result number");
return RetVal;
}
break;
}
// Since these produce multiple values, make sure to remember that we
// legalized all of them.
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
AddLegalizedOperand(SDValue(Node, i), Result.getValue(i));
return Result.getValue(Op.getResNo());
}
// Binary operators
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::UDIV:
case ISD::SDIV:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FPOW:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "Not possible");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS.
break;
}
if ((Node->getOpcode() == ISD::SHL ||
Node->getOpcode() == ISD::SRL ||
Node->getOpcode() == ISD::SRA) &&
!Node->getValueType(0).isVector()) {
if (TLI.getShiftAmountTy().bitsLT(Tmp2.getValueType()))
Tmp2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Tmp2);
else if (TLI.getShiftAmountTy().bitsGT(Tmp2.getValueType()))
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Tmp2);
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "BinOp legalize operation not supported");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) {
Result = Tmp1;
break;
}
// Fall through if the custom lower can't deal with the operation
case TargetLowering::Expand: {
MVT VT = Op.getValueType();
// See if multiply or divide can be lowered using two-result operations.
SDVTList VTs = DAG.getVTList(VT, VT);
if (Node->getOpcode() == ISD::MUL) {
// We just need the low half of the multiply; try both the signed
// and unsigned forms. If the target supports both SMUL_LOHI and
// UMUL_LOHI, form a preference by checking which forms of plain
// MULH it supports.
bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT);
bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT);
bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT);
bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT);
unsigned OpToUse = 0;
if (HasSMUL_LOHI && !HasMULHS) {
OpToUse = ISD::SMUL_LOHI;
} else if (HasUMUL_LOHI && !HasMULHU) {
OpToUse = ISD::UMUL_LOHI;
} else if (HasSMUL_LOHI) {
OpToUse = ISD::SMUL_LOHI;
} else if (HasUMUL_LOHI) {
OpToUse = ISD::UMUL_LOHI;
}
if (OpToUse) {
Result = SDValue(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).getNode(), 0);
break;
}
}
if (Node->getOpcode() == ISD::MULHS &&
TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) {
Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).getNode(),
1);
break;
}
if (Node->getOpcode() == ISD::MULHU &&
TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) {
Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).getNode(),
1);
break;
}
if (Node->getOpcode() == ISD::SDIV &&
TLI.isOperationLegal(ISD::SDIVREM, VT)) {
Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(),
0);
break;
}
if (Node->getOpcode() == ISD::UDIV &&
TLI.isOperationLegal(ISD::UDIVREM, VT)) {
Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(),
0);
break;
}
// Check to see if we have a libcall for this operator.
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
bool isSigned = false;
switch (Node->getOpcode()) {
case ISD::UDIV:
case ISD::SDIV:
if (VT == MVT::i32) {
LC = Node->getOpcode() == ISD::UDIV
? RTLIB::UDIV_I32 : RTLIB::SDIV_I32;
isSigned = Node->getOpcode() == ISD::SDIV;
}
break;
case ISD::MUL:
if (VT == MVT::i32)
LC = RTLIB::MUL_I32;
break;
case ISD::FPOW:
LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
RTLIB::POW_PPCF128);
break;
default: break;
}
if (LC != RTLIB::UNKNOWN_LIBCALL) {
SDValue Dummy;
Result = ExpandLibCall(LC, Node, isSigned, Dummy);
break;
}
assert(Node->getValueType(0).isVector() &&
"Cannot expand this binary operator!");
// Expand the operation into a bunch of nasty scalar code.
Result = LegalizeOp(UnrollVectorOp(Op));
break;
}
case TargetLowering::Promote: {
switch (Node->getOpcode()) {
default: assert(0 && "Do not know how to promote this BinOp!");
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
MVT OVT = Node->getValueType(0);
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
assert(OVT.isVector() && "Cannot promote this BinOp!");
// Bit convert each of the values to the new type.
Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1);
Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Bit convert the result back the original type.
Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result);
break;
}
}
}
}
break;
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::SDIVREM:
case ISD::UDIVREM:
// These nodes will only be produced by target-specific lowering, so
// they shouldn't be here if they aren't legal.
assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) &&
"This must be legal!");
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
break;
case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type!
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "Not possible");
case Legal:
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS.
break;
case Promote:
Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS.
break;
}
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default: assert(0 && "Operation not supported");
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
case TargetLowering::Legal: break;
case TargetLowering::Expand: {
// If this target supports fabs/fneg natively and select is cheap,
// do this efficiently.
if (!TLI.isSelectExpensive() &&
TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) ==
TargetLowering::Legal &&
TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) ==
TargetLowering::Legal) {
// Get the sign bit of the RHS.
MVT IVT =
Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64;
SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2);
SignBit = DAG.getSetCC(TLI.getSetCCResultType(SignBit),
SignBit, DAG.getConstant(0, IVT), ISD::SETLT);
// Get the absolute value of the result.
SDValue AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1);
// Select between the nabs and abs value based on the sign bit of
// the input.
Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit,
DAG.getNode(ISD::FNEG, AbsVal.getValueType(),
AbsVal),
AbsVal);
Result = LegalizeOp(Result);
break;
}
// Otherwise, do bitwise ops!
MVT NVT =
Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64;
Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result);
Result = LegalizeOp(Result);
break;
}
}
break;
case ISD::ADDC:
case ISD::SUBC:
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
// Since this produces two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result;
case ISD::ADDE:
case ISD::SUBE:
Tmp1 = LegalizeOp(Node->getOperand(0));
Tmp2 = LegalizeOp(Node->getOperand(1));
Tmp3 = LegalizeOp(Node->getOperand(2));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3);
// Since this produces two values, make sure to remember that we legalized
// both of them.
AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
return Result;
case ISD::BUILD_PAIR: {
MVT PairTy = Node->getValueType(0);
// TODO: handle the case where the Lo and Hi operands are not of legal type
Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo
Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi
switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) {
case TargetLowering::Promote:
case TargetLowering::Custom:
assert(0 && "Cannot promote/custom this yet!");
case TargetLowering::Legal:
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2);
break;
case TargetLowering::Expand:
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1);
Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2);
Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2,
DAG.getConstant(PairTy.getSizeInBits()/2,
TLI.getShiftAmountTy()));
Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2);
break;
}
break;
}
case ISD::UREM:
case ISD::SREM:
case ISD::FREM:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Promote: assert(0 && "Cannot promote this yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case TargetLowering::Expand: {
unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV;
bool isSigned = DivOpc == ISD::SDIV;
MVT VT = Node->getValueType(0);
// See if remainder can be lowered using two-result operations.
SDVTList VTs = DAG.getVTList(VT, VT);
if (Node->getOpcode() == ISD::SREM &&
TLI.isOperationLegal(ISD::SDIVREM, VT)) {
Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), 1);
break;
}
if (Node->getOpcode() == ISD::UREM &&
TLI.isOperationLegal(ISD::UDIVREM, VT)) {
Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), 1);
break;
}
if (VT.isInteger()) {
if (TLI.getOperationAction(DivOpc, VT) ==
TargetLowering::Legal) {
// X % Y -> X-X/Y*Y
Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2);
Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2);
Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result);
} else if (VT.isVector()) {
Result = LegalizeOp(UnrollVectorOp(Op));
} else {
assert(VT == MVT::i32 &&
"Cannot expand this binary operator!");
RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM
? RTLIB::UREM_I32 : RTLIB::SREM_I32;
SDValue Dummy;
Result = ExpandLibCall(LC, Node, isSigned, Dummy);
}
} else {
assert(VT.isFloatingPoint() &&
"remainder op must have integer or floating-point type");
if (VT.isVector()) {
Result = LegalizeOp(UnrollVectorOp(Op));
} else {
// Floating point mod -> fmod libcall.
RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64,
RTLIB::REM_F80, RTLIB::REM_PPCF128);
SDValue Dummy;
Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
}
}
break;
}
}
break;
case ISD::VAARG: {
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
MVT VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
Result = Result.getValue(0);
Tmp1 = Result.getValue(1);
if (isCustom) {
Tmp2 = TLI.LowerOperation(Result, DAG);
if (Tmp2.getNode()) {
Result = LegalizeOp(Tmp2);
Tmp1 = LegalizeOp(Tmp2.getValue(1));
}
}
break;
case TargetLowering::Expand: {
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0);
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList,
DAG.getConstant(TLI.getTargetData()->getABITypeSize(VT.getTypeForMVT()),
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0);
// Load the actual argument out of the pointer VAList
Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0);
Tmp1 = LegalizeOp(Result.getValue(1));
Result = LegalizeOp(Result);
break;
}
}
// Since VAARG produces two values, make sure to remember that we
// legalized both of them.
AddLegalizedOperand(SDValue(Node, 0), Result);
AddLegalizedOperand(SDValue(Node, 1), Tmp1);
return Op.getResNo() ? Tmp1 : Result;
}
case ISD::VACOPY:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer.
Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer.
switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3,
Node->getOperand(3), Node->getOperand(4));
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case TargetLowering::Expand:
// This defaults to loading a pointer from the input and storing it to the
// output, returning the chain.
const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VS, 0);
Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VD, 0);
break;
}
break;
case ISD::VAEND:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
if (isCustom) {
Tmp1 = TLI.LowerOperation(Tmp1, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case TargetLowering::Expand:
Result = Tmp1; // Default to a no-op, return the chain
break;
}
break;
case ISD::VASTART:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2));
switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Legal: break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
}
break;
case ISD::ROTL:
case ISD::ROTR:
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2);
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
default:
assert(0 && "ROTL/ROTR legalize operation not supported");
break;
case TargetLowering::Legal:
break;
case TargetLowering::Custom:
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
break;
case TargetLowering::Promote:
assert(0 && "Do not know how to promote ROTL/ROTR");
break;
case TargetLowering::Expand:
assert(0 && "Do not know how to expand ROTL/ROTR");
break;
}
break;
case ISD::BSWAP:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Op
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Custom:
assert(0 && "Cannot custom legalize this yet!");
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case TargetLowering::Promote: {
MVT OVT = Tmp1.getValueType();
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1);
Result = DAG.getNode(ISD::SRL, NVT, Tmp1,
DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
break;
}
case TargetLowering::Expand:
Result = ExpandBSWAP(Tmp1);
break;
}
break;
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTLZ:
Tmp1 = LegalizeOp(Node->getOperand(0)); // Op
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Custom:
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
TargetLowering::Custom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) {
Result = Tmp1;
}
}
break;
case TargetLowering::Promote: {
MVT OVT = Tmp1.getValueType();
MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
// Zero extend the argument.
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
// Perform the larger operation, then subtract if needed.
Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1);
switch (Node->getOpcode()) {
case ISD::CTPOP:
Result = Tmp1;
break;
case ISD::CTTZ:
//if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1), Tmp1,
DAG.getConstant(NVT.getSizeInBits(), NVT),
ISD::SETEQ);
Result = DAG.getNode(ISD::SELECT, NVT, Tmp2,
DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
break;
case ISD::CTLZ:
// Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
Result = DAG.getNode(ISD::SUB, NVT, Tmp1,
DAG.getConstant(NVT.getSizeInBits() -
OVT.getSizeInBits(), NVT));
break;
}
break;
}
case TargetLowering::Expand:
Result = ExpandBitCount(Node->getOpcode(), Tmp1);
break;
}
break;
// Unary operators
case ISD::FABS:
case ISD::FNEG:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
Tmp1 = LegalizeOp(Node->getOperand(0));
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) {
case TargetLowering::Promote:
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case TargetLowering::Expand:
switch (Node->getOpcode()) {
default: assert(0 && "Unreachable!");
case ISD::FNEG:
// Expand Y = FNEG(X) -> Y = SUB -0.0, X
Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0));
Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1);
break;
case ISD::FABS: {
// Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
MVT VT = Node->getValueType(0);
Tmp2 = DAG.getConstantFP(0.0, VT);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1), Tmp1, Tmp2,
ISD::SETUGT);
Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1);
Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3);
break;
}
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT: {
MVT VT = Node->getValueType(0);
// Expand unsupported unary vector operators by unrolling them.
if (VT.isVector()) {
Result = LegalizeOp(UnrollVectorOp(Op));
break;
}
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch(Node->getOpcode()) {
case ISD::FSQRT:
LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128);
break;
case ISD::FSIN:
LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64,
RTLIB::SIN_F80, RTLIB::SIN_PPCF128);
break;
case ISD::FCOS:
LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64,
RTLIB::COS_F80, RTLIB::COS_PPCF128);
break;
case ISD::FLOG:
LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64,
RTLIB::LOG_F80, RTLIB::LOG_PPCF128);
break;
case ISD::FLOG2:
LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128);
break;
case ISD::FLOG10:
LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128);
break;
case ISD::FEXP:
LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64,
RTLIB::EXP_F80, RTLIB::EXP_PPCF128);
break;
case ISD::FEXP2:
LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128);
break;
case ISD::FTRUNC:
LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128);
break;
case ISD::FFLOOR:
LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128);
break;
case ISD::FCEIL:
LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128);
break;
case ISD::FRINT:
LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64,
RTLIB::RINT_F80, RTLIB::RINT_PPCF128);
break;
case ISD::FNEARBYINT:
LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128);
break;
break;
default: assert(0 && "Unreachable!");
}
SDValue Dummy;
Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
break;
}
}
break;
}
break;
case ISD::FPOWI: {
MVT VT = Node->getValueType(0);
// Expand unsupported unary vector operators by unrolling them.
if (VT.isVector()) {
Result = LegalizeOp(UnrollVectorOp(Op));
break;
}
// We always lower FPOWI into a libcall. No target support for it yet.
RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64,
RTLIB::POWI_F80, RTLIB::POWI_PPCF128);
SDValue Dummy;
Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
break;
}
case ISD::BIT_CONVERT:
if (!isTypeLegal(Node->getOperand(0).getValueType())) {
Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
Node->getValueType(0));
} else if (Op.getOperand(0).getValueType().isVector()) {
// The input has to be a vector type, we have to either scalarize it, pack
// it, or convert it based on whether the input vector type is legal.
SDNode *InVal = Node->getOperand(0).getNode();
int InIx = Node->getOperand(0).getResNo();
unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements();
MVT EVT = InVal->getValueType(InIx).getVectorElementType();
// Figure out if there is a simple type corresponding to this Vector
// type. If so, convert to the vector type.
MVT TVT = MVT::getVectorVT(EVT, NumElems);
if (TLI.isTypeLegal(TVT)) {
// Turn this into a bit convert of the vector input.
Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0),
LegalizeOp(Node->getOperand(0)));
break;
} else if (NumElems == 1) {
// Turn this into a bit convert of the scalar input.
Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0),
ScalarizeVectorOp(Node->getOperand(0)));
break;
} else {
// FIXME: UNIMP! Store then reload
assert(0 && "Cast from unsupported vector type not implemented yet!");
}
} else {
switch (TLI.getOperationAction(ISD::BIT_CONVERT,
Node->getOperand(0).getValueType())) {
default: assert(0 && "Unknown operation action!");
case TargetLowering::Expand:
Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
Node->getValueType(0));
break;
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
}
}
break;
case ISD::CONVERT_RNDSAT: {
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
switch (CvtCode) {
default: assert(0 && "Unknown cvt code!");
case ISD::CVT_SF:
case ISD::CVT_UF:
break;
case ISD::CVT_FF:
case ISD::CVT_FS:
case ISD::CVT_FU:
case ISD::CVT_SS:
case ISD::CVT_SU:
case ISD::CVT_US:
case ISD::CVT_UU: {
SDValue DTyOp = Node->getOperand(1);
SDValue STyOp = Node->getOperand(2);
SDValue RndOp = Node->getOperand(3);
SDValue SatOp = Node->getOperand(4);
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "Shouldn't need to expand other operators here!");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp,
RndOp, SatOp);
if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
TargetLowering::Custom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case Promote:
Result = PromoteOp(Node->getOperand(0));
// For FP, make Op1 a i32
Result = DAG.getConvertRndSat(Result.getValueType(), Result,
DTyOp, STyOp, RndOp, SatOp, CvtCode);
break;
}
break;
}
} // end switch CvtCode
break;
}
// Conversion operators. The source and destination have different types.
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: {
bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
Result = LegalizeINT_TO_FP(Result, isSigned,
Node->getValueType(0), Node->getOperand(0));
break;
}
case ISD::TRUNCATE:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case Expand:
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
// Since the result is legal, we should just be able to truncate the low
// part of the source.
Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1);
break;
case Promote:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result);
break;
}
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){
default: assert(0 && "Unknown operation action!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case TargetLowering::Promote:
Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0),
Node->getOpcode() == ISD::FP_TO_SINT);
break;
case TargetLowering::Expand:
if (Node->getOpcode() == ISD::FP_TO_UINT) {
SDValue True, False;
MVT VT = Node->getOperand(0).getValueType();
MVT NVT = Node->getValueType(0);
const uint64_t zero[] = {0, 0};
APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
APInt x = APInt::getSignBit(NVT.getSizeInBits());
(void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
Tmp2 = DAG.getConstantFP(apf, VT);
Tmp3 = DAG.getSetCC(TLI.getSetCCResultType(Node->getOperand(0)),
Node->getOperand(0), Tmp2, ISD::SETLT);
True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0));
False = DAG.getNode(ISD::FP_TO_SINT, NVT,
DAG.getNode(ISD::FSUB, VT, Node->getOperand(0),
Tmp2));
False = DAG.getNode(ISD::XOR, NVT, False,
DAG.getConstant(x, NVT));
Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False);
break;
} else {
assert(0 && "Do not know how to expand FP_TO_SINT yet!");
}
break;
}
break;
case Expand: {
MVT VT = Op.getValueType();
MVT OVT = Node->getOperand(0).getValueType();
// Convert ppcf128 to i32
if (OVT == MVT::ppcf128 && VT == MVT::i32) {
if (Node->getOpcode() == ISD::FP_TO_SINT) {
Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128,
Node->getOperand(0), DAG.getValueType(MVT::f64));
Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result,
DAG.getIntPtrConstant(1));
Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result);
} else {
const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
APFloat apf = APFloat(APInt(128, 2, TwoE31));
Tmp2 = DAG.getConstantFP(apf, OVT);
// X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
// FIXME: generated code sucks.
Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2,
DAG.getNode(ISD::ADD, MVT::i32,
DAG.getNode(ISD::FP_TO_SINT, VT,
DAG.getNode(ISD::FSUB, OVT,
Node->getOperand(0), Tmp2)),
DAG.getConstant(0x80000000, MVT::i32)),
DAG.getNode(ISD::FP_TO_SINT, VT,
Node->getOperand(0)),
DAG.getCondCode(ISD::SETGE));
}
break;
}
// Convert f32 / f64 to i32 / i64 / i128.
RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ?
RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!");
SDValue Dummy;
Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy);
break;
}
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1));
Result = LegalizeOp(Result);
break;
}
break;
case ISD::FP_EXTEND: {
MVT DstVT = Op.getValueType();
MVT SrcVT = Op.getOperand(0).getValueType();
if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) {
// The only other way we can lower this is to turn it into a STORE,
// LOAD pair, targetting a temporary location (a stack slot).
Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT);
break;
}
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "Shouldn't need to expand other operators here!");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1);
break;
}
break;
}
case ISD::FP_ROUND: {
MVT DstVT = Op.getValueType();
MVT SrcVT = Op.getOperand(0).getValueType();
if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) {
if (SrcVT == MVT::ppcf128) {
SDValue Lo;
ExpandOp(Node->getOperand(0), Lo, Result);
// Round it the rest of the way (e.g. to f32) if needed.
if (DstVT!=MVT::f64)
Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1));
break;
}
// The only other way we can lower this is to turn it into a STORE,
// LOAD pair, targetting a temporary location (a stack slot).
Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT);
break;
}
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "Shouldn't need to expand other operators here!");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case Promote:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1,
Node->getOperand(1));
break;
}
break;
}
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "Shouldn't need to expand other operators here!");
case Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) ==
TargetLowering::Custom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case Promote:
switch (Node->getOpcode()) {
case ISD::ANY_EXTEND:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1);
break;
case ISD::ZERO_EXTEND:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result);
Result = DAG.getZeroExtendInReg(Result,
Node->getOperand(0).getValueType());
break;
case ISD::SIGN_EXTEND:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result);
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result,
DAG.getValueType(Node->getOperand(0).getValueType()));
break;
}
}
break;
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG: {
Tmp1 = LegalizeOp(Node->getOperand(0));
MVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
// If this operation is not supported, convert it to a shl/shr or load/store
// pair.
switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) {
default: assert(0 && "This action not supported for this op yet!");
case TargetLowering::Legal:
Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1));
break;
case TargetLowering::Expand:
// If this is an integer extend and shifts are supported, do that.
if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) {
// NOTE: we could fall back on load/store here too for targets without
// SAR. However, it is doubtful that any exist.
unsigned BitsDiff = Node->getValueType(0).getSizeInBits() -
ExtraVT.getSizeInBits();
SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy());
Result = DAG.getNode(ISD::SHL, Node->getValueType(0),
Node->getOperand(0), ShiftCst);
Result = DAG.getNode(ISD::SRA, Node->getValueType(0),
Result, ShiftCst);
} else if (Node->getOpcode() == ISD::FP_ROUND_INREG) {
// The only way we can lower this is to turn it into a TRUNCSTORE,
// EXTLOAD pair, targetting a temporary location (a stack slot).
// NOTE: there is a choice here between constantly creating new stack
// slots and always reusing the same one. We currently always create
// new ones, as reuse may inhibit scheduling.
Result = EmitStackConvert(Node->getOperand(0), ExtraVT,
Node->getValueType(0));
} else {
assert(0 && "Unknown op");
}
break;
}
break;
}
case ISD::TRAMPOLINE: {
SDValue Ops[6];
for (unsigned i = 0; i != 6; ++i)
Ops[i] = LegalizeOp(Node->getOperand(i));
Result = DAG.UpdateNodeOperands(Result, Ops, 6);
// The only option for this node is to custom lower it.
Result = TLI.LowerOperation(Result, DAG);
assert(Result.getNode() && "Should always custom lower!");
// Since trampoline produces two values, make sure to remember that we
// legalized both of them.
Tmp1 = LegalizeOp(Result.getValue(1));
Result = LegalizeOp(Result);
AddLegalizedOperand(SDValue(Node, 0), Result);
AddLegalizedOperand(SDValue(Node, 1), Tmp1);
return Op.getResNo() ? Tmp1 : Result;
}
case ISD::FLT_ROUNDS_: {
MVT VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action not supported for this op yet!");
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) break;
// Fall Thru
case TargetLowering::Legal:
// If this operation is not supported, lower it to constant 1
Result = DAG.getConstant(1, VT);
break;
}
break;
}
case ISD::TRAP: {
MVT VT = Node->getValueType(0);
switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
default: assert(0 && "This action not supported for this op yet!");
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Node->getOperand(0));
Result = DAG.UpdateNodeOperands(Result, Tmp1);
break;
case TargetLowering::Custom:
Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) break;
// Fall Thru
case TargetLowering::Expand:
// If this operation is not supported, lower it to 'abort()' call
Tmp1 = LegalizeOp(Node->getOperand(0));
TargetLowering::ArgListTy Args;
std::pair<SDValue,SDValue> CallResult =
TLI.LowerCallTo(Tmp1, Type::VoidTy,
false, false, false, false, CallingConv::C, false,
DAG.getExternalSymbol("abort", TLI.getPointerTy()),
Args, DAG);
Result = CallResult.second;
break;
}
break;
}
}
assert(Result.getValueType() == Op.getValueType() &&
"Bad legalization!");
// Make sure that the generated code is itself legal.
if (Result != Op)
Result = LegalizeOp(Result);
// Note that LegalizeOp may be reentered even from single-use nodes, which
// means that we always must cache transformed nodes.
AddLegalizedOperand(Op, Result);
return Result;
}
/// PromoteOp - Given an operation that produces a value in an invalid type,
/// promote it to compute the value into a larger type. The produced value will
/// have the correct bits for the low portion of the register, but no guarantee
/// is made about the top bits: it may be zero, sign-extended, or garbage.
SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) {
MVT VT = Op.getValueType();
MVT NVT = TLI.getTypeToTransformTo(VT);
assert(getTypeAction(VT) == Promote &&
"Caller should expand or legalize operands that are not promotable!");
assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() &&
"Cannot promote to smaller type!");
SDValue Tmp1, Tmp2, Tmp3;
SDValue Result;
SDNode *Node = Op.getNode();
DenseMap<SDValue, SDValue>::iterator I = PromotedNodes.find(Op);
if (I != PromotedNodes.end()) return I->second;
switch (Node->getOpcode()) {
case ISD::CopyFromReg:
assert(0 && "CopyFromReg must be legal!");
default:
#ifndef NDEBUG
cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to promote this operator!");
abort();
case ISD::UNDEF:
Result = DAG.getNode(ISD::UNDEF, NVT);
break;
case ISD::Constant:
if (VT != MVT::i1)
Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op);
else
Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op);
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold zext?");
break;
case ISD::ConstantFP:
Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op);
assert(isa<ConstantFPSDNode>(Result) && "Didn't constant fold fp_extend?");
break;
case ISD::SETCC:
assert(isTypeLegal(TLI.getSetCCResultType(Node->getOperand(0)))
&& "SetCC type is not legal??");
Result = DAG.getNode(ISD::SETCC,
TLI.getSetCCResultType(Node->getOperand(0)),
Node->getOperand(0), Node->getOperand(1),
Node->getOperand(2));
break;
case ISD::TRUNCATE:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
Result = LegalizeOp(Node->getOperand(0));
assert(Result.getValueType().bitsGE(NVT) &&
"This truncation doesn't make sense!");
if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT
Result = DAG.getNode(ISD::TRUNCATE, NVT, Result);
break;
case Promote:
// The truncation is not required, because we don't guarantee anything
// about high bits anyway.
Result = PromoteOp(Node->getOperand(0));
break;
case Expand:
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
// Truncate the low part of the expanded value to the result type
Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1);
}
break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "BUG: Smaller reg should have been promoted!");
case Legal:
// Input is legal? Just do extend all the way to the larger type.
Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0));
break;
case Promote:
// Promote the reg if it's smaller.
Result = PromoteOp(Node->getOperand(0));
// The high bits are not guaranteed to be anything. Insert an extend.
if (Node->getOpcode() == ISD::SIGN_EXTEND)
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result,
DAG.getValueType(Node->getOperand(0).getValueType()));
else if (Node->getOpcode() == ISD::ZERO_EXTEND)
Result = DAG.getZeroExtendInReg(Result,
Node->getOperand(0).getValueType());
break;
}
break;
case ISD::CONVERT_RNDSAT: {
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
"can only promote integers");
Result = DAG.getConvertRndSat(NVT, Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
Node->getOperand(3), Node->getOperand(4),
CvtCode);
break;
}
case ISD::BIT_CONVERT:
Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
Node->getValueType(0));
Result = PromoteOp(Result);
break;
case ISD::FP_EXTEND:
assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
case ISD::FP_ROUND:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "BUG: Cannot expand FP regs!");
case Promote: assert(0 && "Unreachable with 2 FP types!");
case Legal:
if (Node->getConstantOperandVal(1) == 0) {
// Input is legal? Do an FP_ROUND_INREG.
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0),
DAG.getValueType(VT));
} else {
// Just remove the truncate, it isn't affecting the value.
Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0),
Node->getOperand(1));
}
break;
}
break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0));
break;
case Promote:
Result = PromoteOp(Node->getOperand(0));
if (Node->getOpcode() == ISD::SINT_TO_FP)
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(),
Result,
DAG.getValueType(Node->getOperand(0).getValueType()));
else
Result = DAG.getZeroExtendInReg(Result,
Node->getOperand(0).getValueType());
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Result);
break;
case Expand:
Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT,
Node->getOperand(0));
// Round if we cannot tolerate excess precision.
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
}
break;
case ISD::SIGN_EXTEND_INREG:
Result = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result,
Node->getOperand(1));
break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal:
case Expand:
Tmp1 = Node->getOperand(0);
break;
case Promote:
// The input result is prerounded, so we don't have to do anything
// special.
Tmp1 = PromoteOp(Node->getOperand(0));
break;
}
// If we're promoting a UINT to a larger size, check to see if the new node
// will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
// we can use that instead. This allows us to generate better code for
// FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
// legal, such as PowerPC.
if (Node->getOpcode() == ISD::FP_TO_UINT &&
!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
(TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) ||
TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){
Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1);
} else {
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
}
break;
case ISD::FABS:
case ISD::FNEG:
Tmp1 = PromoteOp(Node->getOperand(0));
assert(Tmp1.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
// NOTE: we do not have to do any extra rounding here for
// NoExcessFPPrecision, because we know the input will have the appropriate
// precision, and these operations don't modify precision at all.
break;
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
Tmp1 = PromoteOp(Node->getOperand(0));
assert(Tmp1.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::FPOW:
case ISD::FPOWI: {
// Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall
// directly as well, which may be better.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = Node->getOperand(1);
if (Node->getOpcode() == ISD::FPOW)
Tmp2 = PromoteOp(Tmp2);
assert(Tmp1.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
}
case ISD::ATOMIC_CMP_SWAP_8:
case ISD::ATOMIC_CMP_SWAP_16:
case ISD::ATOMIC_CMP_SWAP_32:
case ISD::ATOMIC_CMP_SWAP_64: {
AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node);
Tmp2 = PromoteOp(Node->getOperand(2));
Tmp3 = PromoteOp(Node->getOperand(3));
Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getChain(),
AtomNode->getBasePtr(), Tmp2, Tmp3,
AtomNode->getSrcValue(),
AtomNode->getAlignment());
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
}
case ISD::ATOMIC_LOAD_ADD_8:
case ISD::ATOMIC_LOAD_SUB_8:
case ISD::ATOMIC_LOAD_AND_8:
case ISD::ATOMIC_LOAD_OR_8:
case ISD::ATOMIC_LOAD_XOR_8:
case ISD::ATOMIC_LOAD_NAND_8:
case ISD::ATOMIC_LOAD_MIN_8:
case ISD::ATOMIC_LOAD_MAX_8:
case ISD::ATOMIC_LOAD_UMIN_8:
case ISD::ATOMIC_LOAD_UMAX_8:
case ISD::ATOMIC_SWAP_8:
case ISD::ATOMIC_LOAD_ADD_16:
case ISD::ATOMIC_LOAD_SUB_16:
case ISD::ATOMIC_LOAD_AND_16:
case ISD::ATOMIC_LOAD_OR_16:
case ISD::ATOMIC_LOAD_XOR_16:
case ISD::ATOMIC_LOAD_NAND_16:
case ISD::ATOMIC_LOAD_MIN_16:
case ISD::ATOMIC_LOAD_MAX_16:
case ISD::ATOMIC_LOAD_UMIN_16:
case ISD::ATOMIC_LOAD_UMAX_16:
case ISD::ATOMIC_SWAP_16:
case ISD::ATOMIC_LOAD_ADD_32:
case ISD::ATOMIC_LOAD_SUB_32:
case ISD::ATOMIC_LOAD_AND_32:
case ISD::ATOMIC_LOAD_OR_32:
case ISD::ATOMIC_LOAD_XOR_32:
case ISD::ATOMIC_LOAD_NAND_32:
case ISD::ATOMIC_LOAD_MIN_32:
case ISD::ATOMIC_LOAD_MAX_32:
case ISD::ATOMIC_LOAD_UMIN_32:
case ISD::ATOMIC_LOAD_UMAX_32:
case ISD::ATOMIC_SWAP_32:
case ISD::ATOMIC_LOAD_ADD_64:
case ISD::ATOMIC_LOAD_SUB_64:
case ISD::ATOMIC_LOAD_AND_64:
case ISD::ATOMIC_LOAD_OR_64:
case ISD::ATOMIC_LOAD_XOR_64:
case ISD::ATOMIC_LOAD_NAND_64:
case ISD::ATOMIC_LOAD_MIN_64:
case ISD::ATOMIC_LOAD_MAX_64:
case ISD::ATOMIC_LOAD_UMIN_64:
case ISD::ATOMIC_LOAD_UMAX_64:
case ISD::ATOMIC_SWAP_64: {
AtomicSDNode* AtomNode = cast<AtomicSDNode>(Node);
Tmp2 = PromoteOp(Node->getOperand(2));
Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getChain(),
AtomNode->getBasePtr(), Tmp2,
AtomNode->getSrcValue(),
AtomNode->getAlignment());
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Floating point operations will give excess precision that we may not be
// able to tolerate. If we DO allow excess precision, just leave it,
// otherwise excise it.
// FIXME: Why would we need to round FP ops more than integer ones?
// Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C))
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::SDIV:
case ISD::SREM:
// These operators require that their input be sign extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
if (NVT.isInteger()) {
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
DAG.getValueType(VT));
Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2,
DAG.getValueType(VT));
}
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Perform FP_ROUND: this is probably overly pessimistic.
if (NVT.isFloatingPoint() && NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::FDIV:
case ISD::FREM:
case ISD::FCOPYSIGN:
// These operators require that their input be fp extended.
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "not implemented");
case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break;
case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break;
}
switch (getTypeAction(Node->getOperand(1).getValueType())) {
case Expand: assert(0 && "not implemented");
case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break;
case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break;
}
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
// Perform FP_ROUND: this is probably overly pessimistic.
if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result,
DAG.getValueType(VT));
break;
case ISD::UDIV:
case ISD::UREM:
// These operators require that their input be zero extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp2 = PromoteOp(Node->getOperand(1));
assert(NVT.isInteger() && "Operators don't apply to FP!");
Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT);
Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2);
break;
case ISD::SHL:
Tmp1 = PromoteOp(Node->getOperand(0));
Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1));
break;
case ISD::SRA:
// The input value must be properly sign extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
DAG.getValueType(VT));
Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1));
break;
case ISD::SRL:
// The input value must be properly zero extended.
Tmp1 = PromoteOp(Node->getOperand(0));
Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1));
break;
case ISD::VAARG:
Tmp1 = Node->getOperand(0); // Get the chain.
Tmp2 = Node->getOperand(1); // Get the pointer.
if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) {
Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2));
Result = TLI.LowerOperation(Tmp3, DAG);
} else {
const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0);
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList,
DAG.getConstant(VT.getSizeInBits()/8,
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0);
// Load the actual argument out of the pointer VAList
Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT);
}
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node)
? ISD::EXTLOAD : LD->getExtensionType();
Result = DAG.getExtLoad(ExtType, NVT,
LD->getChain(), LD->getBasePtr(),
LD->getSrcValue(), LD->getSrcValueOffset(),
LD->getMemoryVT(),
LD->isVolatile(),
LD->getAlignment());
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
}
case ISD::SELECT: {
Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0
Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1
MVT VT2 = Tmp2.getValueType();
assert(VT2 == Tmp3.getValueType()
&& "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match");
// Ensure that the resulting node is at least the same size as the operands'
// value types, because we cannot assume that TLI.getSetCCValueType() is
// constant.
Result = DAG.getNode(ISD::SELECT, VT2, Node->getOperand(0), Tmp2, Tmp3);
break;
}
case ISD::SELECT_CC:
Tmp2 = PromoteOp(Node->getOperand(2)); // True
Tmp3 = PromoteOp(Node->getOperand(3)); // False
Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4));
break;
case ISD::BSWAP:
Tmp1 = Node->getOperand(0);
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1);
Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1);
Result = DAG.getNode(ISD::SRL, NVT, Tmp1,
DAG.getConstant(NVT.getSizeInBits() -
VT.getSizeInBits(),
TLI.getShiftAmountTy()));
break;
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTLZ:
// Zero extend the argument
Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0));
// Perform the larger operation, then subtract if needed.
Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1);
switch(Node->getOpcode()) {
case ISD::CTPOP:
Result = Tmp1;
break;
case ISD::CTTZ:
// if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1), Tmp1,
DAG.getConstant(NVT.getSizeInBits(), NVT),
ISD::SETEQ);
Result = DAG.getNode(ISD::SELECT, NVT, Tmp2,
DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1);
break;
case ISD::CTLZ:
//Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
Result = DAG.getNode(ISD::SUB, NVT, Tmp1,
DAG.getConstant(NVT.getSizeInBits() -
VT.getSizeInBits(), NVT));
break;
}
break;
case ISD::EXTRACT_SUBVECTOR:
Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op));
break;
case ISD::EXTRACT_VECTOR_ELT:
Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op));
break;
}
assert(Result.getNode() && "Didn't set a result!");
// Make sure the result is itself legal.
Result = LegalizeOp(Result);
// Remember that we promoted this!
AddPromotedOperand(Op, Result);
return Result;
}
/// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into
/// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic,
/// based on the vector type. The return type of this matches the element type
/// of the vector, which may not be legal for the target.
SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) {
// We know that operand #0 is the Vec vector. If the index is a constant
// or if the invec is a supported hardware type, we can use it. Otherwise,
// lower to a store then an indexed load.
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
MVT TVT = Vec.getValueType();
unsigned NumElems = TVT.getVectorNumElements();
switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) {
default: assert(0 && "This action is not supported yet!");
case TargetLowering::Custom: {
Vec = LegalizeOp(Vec);
Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
SDValue Tmp3 = TLI.LowerOperation(Op, DAG);
if (Tmp3.getNode())
return Tmp3;
break;
}
case TargetLowering::Legal:
if (isTypeLegal(TVT)) {
Vec = LegalizeOp(Vec);
Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
return Op;
}
break;
case TargetLowering::Promote:
assert(TVT.isVector() && "not vector type");
// fall thru to expand since vectors are by default are promote
case TargetLowering::Expand:
break;
}
if (NumElems == 1) {
// This must be an access of the only element. Return it.
Op = ScalarizeVectorOp(Vec);
} else if (!TLI.isTypeLegal(TVT) && isa<ConstantSDNode>(Idx)) {
unsigned NumLoElts = 1 << Log2_32(NumElems-1);
ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx);
SDValue Lo, Hi;
SplitVectorOp(Vec, Lo, Hi);
if (CIdx->getZExtValue() < NumLoElts) {
Vec = Lo;
} else {
Vec = Hi;
Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts,
Idx.getValueType());
}
// It's now an extract from the appropriate high or low part. Recurse.
Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
Op = ExpandEXTRACT_VECTOR_ELT(Op);
} else {
// Store the value to a temporary stack slot, then LOAD the scalar
// element back out.
SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
SDValue Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0);
// Add the offset to the index.
unsigned EltSize = Op.getValueType().getSizeInBits()/8;
Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx,
DAG.getConstant(EltSize, Idx.getValueType()));
if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx);
else
Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx);
StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr);
Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0);
}
return Op;
}
/// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now
/// we assume the operation can be split if it is not already legal.
SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) {
// We know that operand #0 is the Vec vector. For now we assume the index
// is a constant and that the extracted result is a supported hardware type.
SDValue Vec = Op.getOperand(0);
SDValue Idx = LegalizeOp(Op.getOperand(1));
unsigned NumElems = Vec.getValueType().getVectorNumElements();
if (NumElems == Op.getValueType().getVectorNumElements()) {
// This must be an access of the desired vector length. Return it.
return Vec;
}
ConstantSDNode *CIdx = cast<ConstantSDNode>(Idx);
SDValue Lo, Hi;
SplitVectorOp(Vec, Lo, Hi);
if (CIdx->getZExtValue() < NumElems/2) {
Vec = Lo;
} else {
Vec = Hi;
Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2,
Idx.getValueType());
}
// It's now an extract from the appropriate high or low part. Recurse.
Op = DAG.UpdateNodeOperands(Op, Vec, Idx);
return ExpandEXTRACT_SUBVECTOR(Op);
}
/// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC
/// with condition CC on the current target. This usually involves legalizing
/// or promoting the arguments. In the case where LHS and RHS must be expanded,
/// there may be no choice but to create a new SetCC node to represent the
/// legalized value of setcc lhs, rhs. In this case, the value is returned in
/// LHS, and the SDValue returned in RHS has a nil SDNode value.
void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS,
SDValue &RHS,
SDValue &CC) {
SDValue Tmp1, Tmp2, Tmp3, Result;
switch (getTypeAction(LHS.getValueType())) {
case Legal:
Tmp1 = LegalizeOp(LHS); // LHS
Tmp2 = LegalizeOp(RHS); // RHS
break;
case Promote:
Tmp1 = PromoteOp(LHS); // LHS
Tmp2 = PromoteOp(RHS); // RHS
// If this is an FP compare, the operands have already been extended.
if (LHS.getValueType().isInteger()) {
MVT VT = LHS.getValueType();
MVT NVT = TLI.getTypeToTransformTo(VT);
// Otherwise, we have to insert explicit sign or zero extends. Note
// that we could insert sign extends for ALL conditions, but zero extend
// is cheaper on many machines (an AND instead of two shifts), so prefer
// it.
switch (cast<CondCodeSDNode>(CC)->get()) {
default: assert(0 && "Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
// ALL of these operations will work if we either sign or zero extend
// the operands (including the unsigned comparisons!). Zero extend is
// usually a simpler/cheaper operation, so prefer it.
Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT);
Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT);
break;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1,
DAG.getValueType(VT));
Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2,
DAG.getValueType(VT));
Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes.
Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes.
break;
}
}
break;
case Expand: {
MVT VT = LHS.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
// Expand into one or more soft-fp libcall(s).
RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
switch (cast<CondCodeSDNode>(CC)->get()) {
case ISD::SETEQ:
case ISD::SETOEQ:
LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
break;
case ISD::SETNE:
case ISD::SETUNE:
LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64;
break;
case ISD::SETGE:
case ISD::SETOGE:
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
break;
case ISD::SETLT:
case ISD::SETOLT:
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
break;
case ISD::SETLE:
case ISD::SETOLE:
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
break;
case ISD::SETGT:
case ISD::SETOGT:
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
break;
case ISD::SETUO:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
break;
case ISD::SETO:
LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64;
break;
default:
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64;
switch (cast<CondCodeSDNode>(CC)->get()) {
case ISD::SETONE:
// SETONE = SETOLT | SETOGT
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
// Fallthrough
case ISD::SETUGT:
LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64;
break;
case ISD::SETUGE:
LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64;
break;
case ISD::SETULT:
LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64;
break;
case ISD::SETULE:
LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64;
break;
case ISD::SETUEQ:
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64;
break;
default: assert(0 && "Unsupported FP setcc!");
}
}
SDValue Dummy;
SDValue Ops[2] = { LHS, RHS };
Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2).getNode(),
false /*sign irrelevant*/, Dummy);
Tmp2 = DAG.getConstant(0, MVT::i32);
CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1));
if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Tmp1), Tmp1, Tmp2,
CC);
LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2).getNode(),
false /*sign irrelevant*/, Dummy);
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHS), LHS, Tmp2,
DAG.getCondCode(TLI.getCmpLibcallCC(LC2)));
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp2 = SDValue();
}
LHS = LegalizeOp(Tmp1);
RHS = Tmp2;
return;
}
SDValue LHSLo, LHSHi, RHSLo, RHSHi;
ExpandOp(LHS, LHSLo, LHSHi);
ExpandOp(RHS, RHSLo, RHSHi);
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
if (VT==MVT::ppcf128) {
// FIXME: This generated code sucks. We want to generate
// FCMPU crN, hi1, hi2
// BNE crN, L:
// FCMPU crN, lo1, lo2
// The following can be improved, but not that much.
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
ISD::SETOEQ);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, CCCode);
Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
ISD::SETUNE);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi, CCCode);
Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
Tmp2 = SDValue();
break;
}
switch (CCCode) {
case ISD::SETEQ:
case ISD::SETNE:
if (RHSLo == RHSHi)
if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
if (RHSCST->isAllOnesValue()) {
// Comparison to -1.
Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
Tmp2 = RHSLo;
break;
}
Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
break;
default:
// If this is a comparison of the sign bit, just look at the top part.
// X > -1, x < 0
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(RHS))
if ((cast<CondCodeSDNode>(CC)->get() == ISD::SETLT &&
CST->isNullValue()) || // X < 0
(cast<CondCodeSDNode>(CC)->get() == ISD::SETGT &&
CST->isAllOnesValue())) { // X > -1
Tmp1 = LHSHi;
Tmp2 = RHSHi;
break;
}
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (CCCode) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo,
LowCC, false, DagCombineInfo);
if (!Tmp1.getNode())
Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo), LHSLo, RHSLo, LowCC);
Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
CCCode, false, DagCombineInfo);
if (!Tmp2.getNode())
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi), LHSHi,
RHSHi,CC);
ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
if ((Tmp1C && Tmp1C->isNullValue()) ||
(Tmp2C && Tmp2C->isNullValue() &&
(CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
(Tmp2C && Tmp2C->getAPIntValue() == 1 &&
(CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
// low part is known false, returns high part.
// For LE / GE, if high part is known false, ignore the low part.
// For LT / GT, if high part is known true, ignore the low part.
Tmp1 = Tmp2;
Tmp2 = SDValue();
} else {
Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
ISD::SETEQ, false, DagCombineInfo);
if (!Result.getNode())
Result=DAG.getSetCC(TLI.getSetCCResultType(LHSHi), LHSHi, RHSHi,
ISD::SETEQ);
Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
Result, Tmp1, Tmp2));
Tmp1 = Result;
Tmp2 = SDValue();
}
}
}
}
LHS = Tmp1;
RHS = Tmp2;
}
/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
/// condition code CC on the current target. This routine assumes LHS and rHS
/// have already been legalized by LegalizeSetCCOperands. It expands SETCC with
/// illegal condition code into AND / OR of multiple SETCC values.
void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT,
SDValue &LHS, SDValue &RHS,
SDValue &CC) {
MVT OpVT = LHS.getValueType();
ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
switch (TLI.getCondCodeAction(CCCode, OpVT)) {
default: assert(0 && "Unknown condition code action!");
case TargetLowering::Legal:
// Nothing to do.
break;
case TargetLowering::Expand: {
ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
unsigned Opc = 0;
switch (CCCode) {
default: assert(0 && "Don't know how to expand this condition!"); abort();
case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break;
case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break;
case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break;
case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break;
// FIXME: Implement more expansions.
}
SDValue SetCC1 = DAG.getSetCC(VT, LHS, RHS, CC1);
SDValue SetCC2 = DAG.getSetCC(VT, LHS, RHS, CC2);
LHS = DAG.getNode(Opc, VT, SetCC1, SetCC2);
RHS = SDValue();
CC = SDValue();
break;
}
}
}
/// EmitStackConvert - Emit a store/load combination to the stack. This stores
/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
/// a load from the stack slot to DestVT, extending it if needed.
/// The resultant code need not be legal.
SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
MVT SlotVT,
MVT DestVT) {
// Create the stack frame object.
unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment(
SrcOp.getValueType().getTypeForMVT());
SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
int SPFI = StackPtrFI->getIndex();
unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
unsigned SlotSize = SlotVT.getSizeInBits();
unsigned DestSize = DestVT.getSizeInBits();
unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(
DestVT.getTypeForMVT());
// Emit a store to the stack slot. Use a truncstore if the input value is
// later than DestVT.
SDValue Store;
if (SrcSize > SlotSize)
Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr,
PseudoSourceValue::getFixedStack(SPFI), 0,
SlotVT, false, SrcAlign);
else {
assert(SrcSize == SlotSize && "Invalid store");
Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr,
PseudoSourceValue::getFixedStack(SPFI), 0,
false, SrcAlign);
}
// Result is a load from the stack slot.
if (SlotSize == DestSize)
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0, false, DestAlign);
assert(SlotSize < DestSize && "Unknown extension!");
return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT,
false, DestAlign);
}
SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
// Create a vector sized/aligned stack slot, store the value to element #0,
// then load the whole vector back out.
SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
int SPFI = StackPtrFI->getIndex();
SDValue Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr,
PseudoSourceValue::getFixedStack(SPFI), 0);
return DAG.getLoad(Node->getValueType(0), Ch, StackPtr,
PseudoSourceValue::getFixedStack(SPFI), 0);
}
/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
/// support the operation, but do support the resultant vector type.
SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
// If the only non-undef value is the low element, turn this into a
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
unsigned NumElems = Node->getNumOperands();
bool isOnlyLowElement = true;
SDValue SplatValue = Node->getOperand(0);
// FIXME: it would be far nicer to change this into map<SDValue,uint64_t>
// and use a bitmask instead of a list of elements.
std::map<SDValue, std::vector<unsigned> > Values;
Values[SplatValue].push_back(0);
bool isConstant = true;
if (!isa<ConstantFPSDNode>(SplatValue) && !isa<ConstantSDNode>(SplatValue) &&
SplatValue.getOpcode() != ISD::UNDEF)
isConstant = false;
for (unsigned i = 1; i < NumElems; ++i) {
SDValue V = Node->getOperand(i);
Values[V].push_back(i);
if (V.getOpcode() != ISD::UNDEF)
isOnlyLowElement = false;
if (SplatValue != V)
SplatValue = SDValue(0,0);
// If this isn't a constant element or an undef, we can't use a constant
// pool load.
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V) &&
V.getOpcode() != ISD::UNDEF)
isConstant = false;
}
if (isOnlyLowElement) {
// If the low element is an undef too, then this whole things is an undef.
if (Node->getOperand(0).getOpcode() == ISD::UNDEF)
return DAG.getNode(ISD::UNDEF, Node->getValueType(0));
// Otherwise, turn this into a scalar_to_vector node.
return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0),
Node->getOperand(0));
}
// If all elements are constants, create a load from the constant pool.
if (isConstant) {
MVT VT = Node->getValueType(0);
std::vector<Constant*> CV;
for (unsigned i = 0, e = NumElems; i != e; ++i) {
if (ConstantFPSDNode *V =
dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
} else if (ConstantSDNode *V =
dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
} else {
assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
const Type *OpNTy =
Node->getOperand(0).getValueType().getTypeForMVT();
CV.push_back(UndefValue::get(OpNTy));
}
}
Constant *CP = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, Alignment);
}
if (SplatValue.getNode()) { // Splat of one value?
// Build the shuffle constant vector: <0, 0, 0, 0>
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
SDValue Zero = DAG.getConstant(0, MaskVT.getVectorElementType());
std::vector<SDValue> ZeroVec(NumElems, Zero);
SDValue SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&ZeroVec[0], ZeroVec.size());
// If the target supports VECTOR_SHUFFLE and this shuffle mask, use it.
if (isShuffleLegal(Node->getValueType(0), SplatMask)) {
// Get the splatted value into the low element of a vector register.
SDValue LowValVec =
DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue);
// Return shuffle(LowValVec, undef, <0,0,0,0>)
return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec,
DAG.getNode(ISD::UNDEF, Node->getValueType(0)),
SplatMask);
}
}
// If there are only two unique elements, we may be able to turn this into a
// vector shuffle.
if (Values.size() == 2) {
// Get the two values in deterministic order.
SDValue Val1 = Node->getOperand(1);
SDValue Val2;
std::map<SDValue, std::vector<unsigned> >::iterator MI = Values.begin();
if (MI->first != Val1)
Val2 = MI->first;
else
Val2 = (++MI)->first;
// If Val1 is an undef, make sure end ends up as Val2, to ensure that our
// vector shuffle has the undef vector on the RHS.
if (Val1.getOpcode() == ISD::UNDEF)
std::swap(Val1, Val2);
// Build the shuffle constant vector: e.g. <0, 4, 0, 4>
MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
MVT MaskEltVT = MaskVT.getVectorElementType();
std::vector<SDValue> MaskVec(NumElems);
// Set elements of the shuffle mask for Val1.
std::vector<unsigned> &Val1Elts = Values[Val1];
for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i)
MaskVec[Val1Elts[i]] = DAG.getConstant(0, MaskEltVT);
// Set elements of the shuffle mask for Val2.
std::vector<unsigned> &Val2Elts = Values[Val2];
for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i)
if (Val2.getOpcode() != ISD::UNDEF)
MaskVec[Val2Elts[i]] = DAG.getConstant(NumElems, MaskEltVT);
else
MaskVec[Val2Elts[i]] = DAG.getNode(ISD::UNDEF, MaskEltVT);
SDValue ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
&MaskVec[0], MaskVec.size());
// If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it.
if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) &&
isShuffleLegal(Node->getValueType(0), ShuffleMask)) {
Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val1);
Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val2);
SDValue Ops[] = { Val1, Val2, ShuffleMask };
// Return shuffle(LoValVec, HiValVec, <0,1,0,1>)
return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), Ops, 3);
}
}
// Otherwise, we can't handle this case efficiently. Allocate a sufficiently
// aligned object on the stack, store each element into it, then load
// the result as a vector.
MVT VT = Node->getValueType(0);
// Create the stack frame object.
SDValue FIPtr = DAG.CreateStackTemporary(VT);
// Emit a store of each element to the stack slot.
SmallVector<SDValue, 8> Stores;
unsigned TypeByteSize = Node->getOperand(0).getValueType().getSizeInBits()/8;
// Store (in the right endianness) the elements to memory.
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
// Ignore undef elements.
if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
unsigned Offset = TypeByteSize*i;
SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx);
Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx,
NULL, 0));
}
SDValue StoreChain;
if (!Stores.empty()) // Not all undef elements?
StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&Stores[0], Stores.size());
else
StoreChain = DAG.getEntryNode();
// Result is a load from the stack slot.
return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0);
}
void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp,
SDValue Op, SDValue Amt,
SDValue &Lo, SDValue &Hi) {
// Expand the subcomponents.
SDValue LHSL, LHSH;
ExpandOp(Op, LHSL, LHSH);
SDValue Ops[] = { LHSL, LHSH, Amt };
MVT VT = LHSL.getValueType();
Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
Hi = Lo.getValue(1);
}
/// ExpandShift - Try to find a clever way to expand this shift operation out to
/// smaller elements. If we can't find a way that is more efficient than a
/// libcall on this target, return false. Otherwise, return true with the
/// low-parts expanded into Lo and Hi.
bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op,SDValue Amt,
SDValue &Lo, SDValue &Hi) {
assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) &&
"This is not a shift!");
MVT NVT = TLI.getTypeToTransformTo(Op.getValueType());
SDValue ShAmt = LegalizeOp(Amt);
MVT ShTy = ShAmt.getValueType();
unsigned ShBits = ShTy.getSizeInBits();
unsigned VTBits = Op.getValueType().getSizeInBits();
unsigned NVTBits = NVT.getSizeInBits();
// Handle the case when Amt is an immediate.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Amt.getNode())) {
unsigned Cst = CN->getZExtValue();
// Expand the incoming operand to be shifted, so that we have its parts
SDValue InL, InH;
ExpandOp(Op, InL, InH);
switch(Opc) {
case ISD::SHL:
if (Cst > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Cst > NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy));
} else if (Cst == NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy));
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)),
DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy)));
}
return true;
case ISD::SRL:
if (Cst > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Cst > NVTBits) {
Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy));
Hi = DAG.getConstant(0, NVT);
} else if (Cst == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, NVT);
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy));
}
return true;
case ISD::SRA:
if (Cst > VTBits) {
Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Cst > NVTBits) {
Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(Cst-NVTBits, ShTy));
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Cst == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy)));
Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy));
}
return true;
}
}
// Okay, the shift amount isn't constant. However, if we can tell that it is
// >= 32 or < 32, we can still simplify it, without knowing the actual value.
APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
APInt KnownZero, KnownOne;
DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne);
// If we know that if any of the high bits of the shift amount are one, then
// we can do this as a couple of simple shifts.
if (KnownOne.intersects(Mask)) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt,
DAG.getConstant(~Mask, Amt.getValueType()));
// Expand the incoming operand to be shifted, so that we have its parts
SDValue InL, InH;
ExpandOp(Op, InL, InH);
switch(Opc) {
case ISD::SHL:
Lo = DAG.getConstant(0, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits-1, Amt.getValueType()));
Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that the high bits of the shift amount are all zero, then we can
// do this as a couple of simple shifts.
if ((KnownZero & Mask) == Mask) {
// Compute 32-amt.
SDValue Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(),
DAG.getConstant(NVTBits, Amt.getValueType()),
Amt);
// Expand the incoming operand to be shifted, so that we have its parts
SDValue InL, InH;
ExpandOp(Op, InL, InH);
switch(Opc) {
case ISD::SHL:
Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH, Amt),
DAG.getNode(ISD::SRL, NVT, InL, Amt2));
return true;
case ISD::SRL:
Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt);
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, Amt),
DAG.getNode(ISD::SHL, NVT, InH, Amt2));
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt);
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL, Amt),
DAG.getNode(ISD::SHL, NVT, InH, Amt2));
return true;
}
}
return false;
}
// ExpandLibCall - Expand a node into a call to a libcall. If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument. If it does fit into a single register, return the result
// and leave the Hi part unset.
SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
bool isSigned, SDValue &Hi) {
assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
// The input chain to this libcall is the entry node of the function.
// Legalizing the call will automatically add the previous call to the
// dependence.
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
MVT ArgVT = Node->getOperand(i).getValueType();
const Type *ArgTy = ArgVT.getTypeForMVT();
Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = isSigned;
Entry.isZExt = !isSigned;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
TLI.getPointerTy());
// Splice the libcall in wherever FindInputOutputChains tells us to.
const Type *RetTy = Node->getValueType(0).getTypeForMVT();
std::pair<SDValue,SDValue> CallInfo =
TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
CallingConv::C, false, Callee, Args, DAG);
// Legalize the call sequence, starting with the chain. This will advance
// the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
// was added by LowerCallTo (guaranteeing proper serialization of calls).
LegalizeOp(CallInfo.second);
SDValue Result;
switch (getTypeAction(CallInfo.first.getValueType())) {
default: assert(0 && "Unknown thing");
case Legal:
Result = CallInfo.first;
break;
case Expand:
ExpandOp(CallInfo.first, Result, Hi);
break;
}
return Result;
}
/// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation.
///
SDValue SelectionDAGLegalize::
LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op) {
bool isCustom = false;
SDValue Tmp1;
switch (getTypeAction(Op.getValueType())) {
case Legal:
switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
Op.getValueType())) {
default: assert(0 && "Unknown operation action!");
case TargetLowering::Custom:
isCustom = true;
// FALLTHROUGH
case TargetLowering::Legal:
Tmp1 = LegalizeOp(Op);
if (Result.getNode())
Result = DAG.UpdateNodeOperands(Result, Tmp1);
else
Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
DestTy, Tmp1);
if (isCustom) {
Tmp1 = TLI.LowerOperation(Result, DAG);
if (Tmp1.getNode()) Result = Tmp1;
}
break;
case TargetLowering::Expand:
Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy);
break;
case TargetLowering::Promote:
Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned);
break;
}
break;
case Expand:
Result = ExpandIntToFP(isSigned, DestTy, Op);
break;
case Promote:
Tmp1 = PromoteOp(Op);
if (isSigned) {
Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(),
Tmp1, DAG.getValueType(Op.getValueType()));
} else {
Tmp1 = DAG.getZeroExtendInReg(Tmp1,
Op.getValueType());
}
if (Result.getNode())
Result = DAG.UpdateNodeOperands(Result, Tmp1);
else
Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
DestTy, Tmp1);
Result = LegalizeOp(Result); // The 'op' is not necessarily legal!
break;
}
return Result;
}
/// ExpandIntToFP - Expand a [US]INT_TO_FP operation.
///
SDValue SelectionDAGLegalize::
ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source) {
MVT SourceVT = Source.getValueType();
bool ExpandSource = getTypeAction(SourceVT) == Expand;
// Expand unsupported int-to-fp vector casts by unrolling them.
if (DestTy.isVector()) {
if (!ExpandSource)
return LegalizeOp(UnrollVectorOp(Source));
MVT DestEltTy = DestTy.getVectorElementType();
if (DestTy.getVectorNumElements() == 1) {
SDValue Scalar = ScalarizeVectorOp(Source);
SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned,
DestEltTy, Scalar);
return DAG.getNode(ISD::BUILD_VECTOR, DestTy, Result);
}
SDValue Lo, Hi;
SplitVectorOp(Source, Lo, Hi);
MVT SplitDestTy = MVT::getVectorVT(DestEltTy,
DestTy.getVectorNumElements() / 2);
SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, Lo);
SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, Hi);
return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, DestTy, LoResult,
HiResult));
}
// Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc.
if (!isSigned && SourceVT != MVT::i32) {
// The integer value loaded will be incorrectly if the 'sign bit' of the
// incoming integer is set. To handle this, we dynamically test to see if
// it is set, and, if so, add a fudge factor.
SDValue Hi;
if (ExpandSource) {
SDValue Lo;
ExpandOp(Source, Lo, Hi);
Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, Lo, Hi);
} else {
// The comparison for the sign bit will use the entire operand.
Hi = Source;
}
// Check to see if the target has a custom way to lower this. If so, use
// it. (Note we've already expanded the operand in this case.)
switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Legal:
case TargetLowering::Expand:
break; // This case is handled below.
case TargetLowering::Custom: {
SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, DestTy,
Source), DAG);
if (NV.getNode())
return LegalizeOp(NV);
break; // The target decided this was legal after all
}
}
// If this is unsigned, and not supported, first perform the conversion to
// signed, then adjust the result if the sign bit is set.
SDValue SignedConv = ExpandIntToFP(true, DestTy, Source);
SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi), Hi,
DAG.getConstant(0, Hi.getValueType()),
ISD::SETLT);
SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
SDValue CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
uint64_t FF = 0x5f800000ULL;
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
Alignment = std::min(Alignment, 4u);
SDValue FudgeInReg;
if (DestTy == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, Alignment);
else if (DestTy.bitsGT(MVT::f32))
// FIXME: Avoid the extend by construction the right constantpool?
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(),
CPIdx,
PseudoSourceValue::getConstantPool(), 0,
MVT::f32, false, Alignment);
else
assert(0 && "Unexpected conversion");
MVT SCVT = SignedConv.getValueType();
if (SCVT != DestTy) {
// Destination type needs to be expanded as well. The FADD now we are
// constructing will be expanded into a libcall.
if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) {
assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits());
SignedConv = DAG.getNode(ISD::BUILD_PAIR, DestTy,
SignedConv, SignedConv.getValue(1));
}
SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv);
}
return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
}
// Check to see if the target has a custom way to lower this. If so, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Legal:
case TargetLowering::Expand:
break; // This case is handled below.
case TargetLowering::Custom: {
SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
Source), DAG);
if (NV.getNode())
return LegalizeOp(NV);
break; // The target decided this was legal after all
}
}
// Expand the source, then glue it back together for the call. We must expand
// the source in case it is shared (this pass of legalize must traverse it).
if (ExpandSource) {
SDValue SrcLo, SrcHi;
ExpandOp(Source, SrcLo, SrcHi);
Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, SrcLo, SrcHi);
}
RTLIB::Libcall LC = isSigned ?
RTLIB::getSINTTOFP(SourceVT, DestTy) :
RTLIB::getUINTTOFP(SourceVT, DestTy);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type");
Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source);
SDValue HiPart;
SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart);
if (Result.getValueType() != DestTy && HiPart.getNode())
Result = DAG.getNode(ISD::BUILD_PAIR, DestTy, Result, HiPart);
return Result;
}
/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
/// INT_TO_FP operation of the specified operand when the target requests that
/// we expand it. At this point, we know that the result and operand types are
/// legal for the target.
SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
SDValue Op0,
MVT DestVT) {
if (Op0.getValueType() == MVT::i32) {
// simple 32-bit [signed|unsigned] integer to float/double expansion
// Get the stack frame index of a 8 byte buffer.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
// word offset constant for Hi/Lo address computation
SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
// set up Hi and Lo (into buffer) address based on endian
SDValue Hi = StackSlot;
SDValue Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff);
if (TLI.isLittleEndian())
std::swap(Hi, Lo);
// if signed map to unsigned space
SDValue Op0Mapped;
if (isSigned) {
// constant used to invert sign bit (signed to unsigned mapping)
SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit);
} else {
Op0Mapped = Op0;
}
// store the lo of the constructed double - based on integer input
SDValue Store1 = DAG.getStore(DAG.getEntryNode(),
Op0Mapped, Lo, NULL, 0);
// initial hi portion of constructed double
SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
// store the hi of the constructed double - biased exponent
SDValue Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0);
// load the constructed double
SDValue Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0);
// FP constant to bias correct the final result
SDValue Bias = DAG.getConstantFP(isSigned ?
BitsToDouble(0x4330000080000000ULL)
: BitsToDouble(0x4330000000000000ULL),
MVT::f64);
// subtract the bias
SDValue Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias);
// final result
SDValue Result;
// handle final rounding
if (DestVT == MVT::f64) {
// do nothing
Result = Sub;
} else if (DestVT.bitsLT(MVT::f64)) {
Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub,
DAG.getIntPtrConstant(0));
} else if (DestVT.bitsGT(MVT::f64)) {
Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub);
}
return Result;
}
assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0);
SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op0), Op0,
DAG.getConstant(0, Op0.getValueType()),
ISD::SETLT);
SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
SDValue CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
// If the sign bit of the integer is set, the large number will be treated
// as a negative number. To counteract this, the dynamic code adds an
// offset depending on the data type.
uint64_t FF;
switch (Op0.getValueType().getSimpleVT()) {
default: assert(0 && "Unsupported integer type!");
case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
}
if (TLI.isLittleEndian()) FF <<= 32;
static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
unsigned Alignment = 1 << cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
Alignment = std::min(Alignment, 4u);
SDValue FudgeInReg;
if (DestVT == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
false, Alignment);
else {
FudgeInReg =
LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT,
DAG.getEntryNode(), CPIdx,
PseudoSourceValue::getConstantPool(), 0,
MVT::f32, false, Alignment));
}
return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg);
}
/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
/// *INT_TO_FP operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
/// operation that takes a larger input.
SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
MVT DestVT,
bool isSigned) {
// First step, figure out the appropriate *INT_TO_FP operation to use.
MVT NewInTy = LegalOp.getValueType();
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1);
assert(NewInTy.isInteger() && "Ran out of possibilities!");
// If the target supports SINT_TO_FP of this type, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewInTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::SINT_TO_FP;
break;
}
if (OpToUse) break;
if (isSigned) continue;
// If the target supports UINT_TO_FP of this type, use it.
switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewInTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::UINT_TO_FP;
break;
}
if (OpToUse) break;
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use. Zero extend our input to the
// desired type then run the operation on it.
return DAG.getNode(OpToUse, DestVT,
DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
NewInTy, LegalOp));
}
/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
/// FP_TO_*INT operation of the specified operand when the target requests that
/// we promote it. At this point, we know that the result and operand types are
/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
/// operation that returns a larger result.
SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
MVT DestVT,
bool isSigned) {
// First step, figure out the appropriate FP_TO*INT operation to use.
MVT NewOutTy = DestVT;
unsigned OpToUse = 0;
// Scan for the appropriate larger type to use.
while (1) {
NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1);
assert(NewOutTy.isInteger() && "Ran out of possibilities!");
// If the target supports FP_TO_SINT returning this type, use it.
switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewOutTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::FP_TO_SINT;
break;
}
if (OpToUse) break;
// If the target supports FP_TO_UINT of this type, use it.
switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) {
default: break;
case TargetLowering::Legal:
if (!TLI.isTypeLegal(NewOutTy))
break; // Can't use this datatype.
// FALL THROUGH.
case TargetLowering::Custom:
OpToUse = ISD::FP_TO_UINT;
break;
}
if (OpToUse) break;
// Otherwise, try a larger type.
}
// Okay, we found the operation and type to use.
SDValue Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp);
// If the operation produces an invalid type, it must be custom lowered. Use
// the target lowering hooks to expand it. Just keep the low part of the
// expanded operation, we know that we're truncating anyway.
if (getTypeAction(NewOutTy) == Expand) {
Operation = SDValue(TLI.ReplaceNodeResults(Operation.getNode(), DAG), 0);
assert(Operation.getNode() && "Didn't return anything");
}
// Truncate the result of the extended FP_TO_*INT operation to the desired
// size.
return DAG.getNode(ISD::TRUNCATE, DestVT, Operation);
}
/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
///
SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op) {
MVT VT = Op.getValueType();
MVT SHVT = TLI.getShiftAmountTy();
SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
switch (VT.getSimpleVT()) {
default: assert(0 && "Unhandled Expand type in BSWAP!"); abort();
case MVT::i16:
Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2);
case MVT::i32:
Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT));
Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT));
Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT));
Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3);
Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1);
return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2);
case MVT::i64:
Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT));
Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT));
Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT));
Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT));
Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT));
Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT));
Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT));
Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT));
Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7);
Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5);
Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3);
Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1);
Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6);
Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2);
return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4);
}
}
/// ExpandBitCount - Expand the specified bitcount instruction into operations.
///
SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op) {
switch (Opc) {
default: assert(0 && "Cannot expand this yet!");
case ISD::CTPOP: {
static const uint64_t mask[6] = {
0x5555555555555555ULL, 0x3333333333333333ULL,
0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
};
MVT VT = Op.getValueType();
MVT ShVT = TLI.getShiftAmountTy();
unsigned len = VT.getSizeInBits();
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
//x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
SDValue Tmp2 = DAG.getConstant(mask[i], VT);
SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2),
DAG.getNode(ISD::AND, VT,
DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2));
}
return Op;
}
case ISD::CTLZ: {
// for now, we do this:
// x = x | (x >> 1);
// x = x | (x >> 2);
// ...
// x = x | (x >>16);
// x = x | (x >>32); // for 64-bit input
// return popcount(~x);
//
// but see also: http://www.hackersdelight.org/HDcode/nlz.cc
MVT VT = Op.getValueType();
MVT ShVT = TLI.getShiftAmountTy();
unsigned len = VT.getSizeInBits();
for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3));
}
Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT));
return DAG.getNode(ISD::CTPOP, VT, Op);
}
case ISD::CTTZ: {
// for now, we use: { return popcount(~x & (x - 1)); }
// unless the target has ctlz but not ctpop, in which case we use:
// { return 32 - nlz(~x & (x-1)); }
// see also http://www.hackersdelight.org/HDcode/ntz.cc
MVT VT = Op.getValueType();
SDValue Tmp2 = DAG.getConstant(~0ULL, VT);
SDValue Tmp3 = DAG.getNode(ISD::AND, VT,
DAG.getNode(ISD::XOR, VT, Op, Tmp2),
DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT)));
// If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
if (!TLI.isOperationLegal(ISD::CTPOP, VT) &&
TLI.isOperationLegal(ISD::CTLZ, VT))
return DAG.getNode(ISD::SUB, VT,
DAG.getConstant(VT.getSizeInBits(), VT),
DAG.getNode(ISD::CTLZ, VT, Tmp3));
return DAG.getNode(ISD::CTPOP, VT, Tmp3);
}
}
}
/// ExpandOp - Expand the specified SDValue into its two component pieces
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
/// LegalizedNodes map is filled in for any results that are not expanded, the
/// ExpandedNodes map is filled in for any results that are expanded, and the
/// Lo/Hi values are returned.
void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){
MVT VT = Op.getValueType();
MVT NVT = TLI.getTypeToTransformTo(VT);
SDNode *Node = Op.getNode();
assert(getTypeAction(VT) == Expand && "Not an expanded type!");
assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() ||
VT.isVector()) && "Cannot expand to FP value or to larger int value!");
// See if we already expanded it.
DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator I
= ExpandedNodes.find(Op);
if (I != ExpandedNodes.end()) {
Lo = I->second.first;
Hi = I->second.second;
return;
}
switch (Node->getOpcode()) {
case ISD::CopyFromReg:
assert(0 && "CopyFromReg must be legal!");
case ISD::FP_ROUND_INREG:
if (VT == MVT::ppcf128 &&
TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) ==
TargetLowering::Custom) {
SDValue SrcLo, SrcHi, Src;
ExpandOp(Op.getOperand(0), SrcLo, SrcHi);
Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi);
SDValue Result = TLI.LowerOperation(
DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG);
assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR);
Lo = Result.getNode()->getOperand(0);
Hi = Result.getNode()->getOperand(1);
break;
}
// fall through
default:
#ifndef NDEBUG
cerr << "NODE: "; Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator!");
abort();
case ISD::EXTRACT_ELEMENT:
ExpandOp(Node->getOperand(0), Lo, Hi);
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue())
return ExpandOp(Hi, Lo, Hi);
return ExpandOp(Lo, Lo, Hi);
case ISD::EXTRACT_VECTOR_ELT:
// ExpandEXTRACT_VECTOR_ELT tolerates invalid result types.
Lo = ExpandEXTRACT_VECTOR_ELT(Op);
return ExpandOp(Lo, Lo, Hi);
case ISD::UNDEF:
Lo = DAG.getNode(ISD::UNDEF, NVT);
Hi = DAG.getNode(ISD::UNDEF, NVT);
break;
case ISD::Constant: {
unsigned NVTBits = NVT.getSizeInBits();
const APInt &Cst = cast<ConstantSDNode>(Node)->getAPIntValue();
Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT);
Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT);
break;
}
case ISD::ConstantFP: {
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
if (CFP->getValueType(0) == MVT::ppcf128) {
APInt api = CFP->getValueAPF().bitcastToAPInt();
Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])),
MVT::f64);
Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])),
MVT::f64);
break;
}
Lo = ExpandConstantFP(CFP, false, DAG, TLI);
if (getTypeAction(Lo.getValueType()) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::BUILD_PAIR:
// Return the operands.
Lo = Node->getOperand(0);
Hi = Node->getOperand(1);
break;
case ISD::MERGE_VALUES:
if (Node->getNumValues() == 1) {
ExpandOp(Op.getOperand(0), Lo, Hi);
break;
}
// FIXME: For now only expand i64,chain = MERGE_VALUES (x, y)
assert(Op.getResNo() == 0 && Node->getNumValues() == 2 &&
Op.getValue(1).getValueType() == MVT::Other &&
"unhandled MERGE_VALUES");
ExpandOp(Op.getOperand(0), Lo, Hi);
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1)));
break;
case ISD::SIGN_EXTEND_INREG:
ExpandOp(Node->getOperand(0), Lo, Hi);
// sext_inreg the low part if needed.
Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1));
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(NVT.getSizeInBits()-1,
TLI.getShiftAmountTy()));
break;
case ISD::BSWAP: {
ExpandOp(Node->getOperand(0), Lo, Hi);
SDValue TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi);
Hi = DAG.getNode(ISD::BSWAP, NVT, Lo);
Lo = TempLo;
break;
}
case ISD::CTPOP:
ExpandOp(Node->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L)
DAG.getNode(ISD::CTPOP, NVT, Lo),
DAG.getNode(ISD::CTPOP, NVT, Hi));
Hi = DAG.getConstant(0, NVT);
break;
case ISD::CTLZ: {
// ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32)
ExpandOp(Node->getOperand(0), Lo, Hi);
SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT);
SDValue HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi);
SDValue TopNotZero = DAG.getSetCC(TLI.getSetCCResultType(HLZ), HLZ, BitsC,
ISD::SETNE);
SDValue LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo);
LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC);
Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart);
Hi = DAG.getConstant(0, NVT);
break;
}
case ISD::CTTZ: {
// cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32)
ExpandOp(Node->getOperand(0), Lo, Hi);
SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT);
SDValue LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo);
SDValue BotNotZero = DAG.getSetCC(TLI.getSetCCResultType(LTZ), LTZ, BitsC,
ISD::SETNE);
SDValue HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi);
HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC);
Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart);
Hi = DAG.getConstant(0, NVT);
break;
}
case ISD::VAARG: {
SDValue Ch = Node->getOperand(0); // Legalize the chain.
SDValue Ptr = Node->getOperand(1); // Legalize the pointer.
Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2));
Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2));
// Remember that we legalized the chain.
Hi = LegalizeOp(Hi);
AddLegalizedOperand(Op.getValue(1), Hi.getValue(1));
if (TLI.isBigEndian())
std::swap(Lo, Hi);
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDValue Ch = LD->getChain(); // Legalize the chain.
SDValue Ptr = LD->getBasePtr(); // Legalize the pointer.
ISD::LoadExtType ExtType = LD->getExtensionType();
const Value *SV = LD->getSrcValue();
int SVOffset = LD->getSrcValueOffset();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
if (ExtType == ISD::NON_EXTLOAD) {
Lo = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset,
isVolatile, Alignment);
if (VT == MVT::f32 || VT == MVT::f64) {
// f32->i32 or f64->i64 one to one expansion.
// Remember that we legalized the chain.
AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1)));
// Recursively expand the new load.
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
// Increment the pointer to the other half.
unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
SVOffset += IncrementSize;
Alignment = MinAlign(Alignment, IncrementSize);
Hi = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset,
isVolatile, Alignment);
// Build a factor node to remember that this load is independent of the
// other one.
SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
if (TLI.isBigEndian())
std::swap(Lo, Hi);
} else {
MVT EVT = LD->getMemoryVT();
if ((VT == MVT::f64 && EVT == MVT::f32) ||
(VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) {
// f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
SDValue Load = DAG.getLoad(EVT, Ch, Ptr, SV,
SVOffset, isVolatile, Alignment);
// Remember that we legalized the chain.
AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1)));
ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi);
break;
}
if (EVT == NVT)
Lo = DAG.getLoad(NVT, Ch, Ptr, SV,
SVOffset, isVolatile, Alignment);
else
Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, SV,
SVOffset, EVT, isVolatile,
Alignment);
// Remember that we legalized the chain.
AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1)));
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
unsigned LoSize = Lo.getValueType().getSizeInBits();
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else if (ExtType == ISD::ZEXTLOAD) {
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
} else /* if (ExtType == ISD::EXTLOAD) */ {
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
}
}
break;
}
case ISD::AND:
case ISD::OR:
case ISD::XOR: { // Simple logical operators -> two trivial pieces.
SDValue LL, LH, RL, RH;
ExpandOp(Node->getOperand(0), LL, LH);
ExpandOp(Node->getOperand(1), RL, RH);
Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL);
Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH);
break;
}
case ISD::SELECT: {
SDValue LL, LH, RL, RH;
ExpandOp(Node->getOperand(1), LL, LH);
ExpandOp(Node->getOperand(2), RL, RH);
if (getTypeAction(NVT) == Expand)
NVT = TLI.getTypeToExpandTo(NVT);
Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL);
if (VT != MVT::f32)
Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH);
break;
}
case ISD::SELECT_CC: {
SDValue TL, TH, FL, FH;
ExpandOp(Node->getOperand(2), TL, TH);
ExpandOp(Node->getOperand(3), FL, FH);
if (getTypeAction(NVT) == Expand)
NVT = TLI.getTypeToExpandTo(NVT);
Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
Node->getOperand(1), TL, FL, Node->getOperand(4));
if (VT != MVT::f32)
Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0),
Node->getOperand(1), TH, FH, Node->getOperand(4));
break;
}
case ISD::ANY_EXTEND:
// The low part is any extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0));
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
break;
case ISD::SIGN_EXTEND: {
// The low part is just a sign extension of the input (which degenerates to
// a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0));
// The high part is obtained by SRA'ing all but one of the bits of the lo
// part.
unsigned LoSize = Lo.getValueType().getSizeInBits();
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
break;
}
case ISD::ZERO_EXTEND:
// The low part is just a zero extension of the input (which degenerates to
// a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0));
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
break;
case ISD::TRUNCATE: {
// The input value must be larger than this value. Expand *it*.
SDValue NewLo;
ExpandOp(Node->getOperand(0), NewLo, Hi);
// The low part is now either the right size, or it is closer. If not the
// right size, make an illegal truncate so we recursively expand it.
if (NewLo.getValueType() != Node->getValueType(0))
NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo);
ExpandOp(NewLo, Lo, Hi);
break;
}
case ISD::BIT_CONVERT: {
SDValue Tmp;
if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){
// If the target wants to, allow it to lower this itself.
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "cannot expand FP!");
case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break;
case Promote: Tmp = PromoteOp (Node->getOperand(0)); break;
}
Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG);
}
// f32 / f64 must be expanded to i32 / i64.
if (VT == MVT::f32 || VT == MVT::f64) {
Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
// If source operand will be expanded to the same type as VT, i.e.
// i64 <- f64, i32 <- f32, expand the source operand instead.
MVT VT0 = Node->getOperand(0).getValueType();
if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) {
ExpandOp(Node->getOperand(0), Lo, Hi);
break;
}
// Turn this into a load/store pair by default.
if (Tmp.getNode() == 0)
Tmp = EmitStackConvert(Node->getOperand(0), VT, VT);
ExpandOp(Tmp, Lo, Hi);
break;
}
case ISD::READCYCLECOUNTER: {
assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) ==
TargetLowering::Custom &&
"Must custom expand ReadCycleCounter");
SDValue Tmp = TLI.LowerOperation(Op, DAG);
assert(Tmp.getNode() && "Node must be custom expanded!");
ExpandOp(Tmp.getValue(0), Lo, Hi);
AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain.
LegalizeOp(Tmp.getValue(1)));
break;
}
case ISD::ATOMIC_CMP_SWAP_64: {
// This operation does not need a loop.
SDValue Tmp = TLI.LowerOperation(Op, DAG);
assert(Tmp.getNode() && "Node must be custom expanded!");
ExpandOp(Tmp.getValue(0), Lo, Hi);
AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain.
LegalizeOp(Tmp.getValue(1)));
break;
}
case ISD::ATOMIC_LOAD_ADD_64:
case ISD::ATOMIC_LOAD_SUB_64:
case ISD::ATOMIC_LOAD_AND_64:
case ISD::ATOMIC_LOAD_OR_64:
case ISD::ATOMIC_LOAD_XOR_64:
case ISD::ATOMIC_LOAD_NAND_64:
case ISD::ATOMIC_SWAP_64: {
// These operations require a loop to be generated. We can't do that yet,
// so substitute a target-dependent pseudo and expand that later.
SDValue In2Lo, In2Hi, In2;
ExpandOp(Op.getOperand(2), In2Lo, In2Hi);
In2 = DAG.getNode(ISD::BUILD_PAIR, VT, In2Lo, In2Hi);
AtomicSDNode* Anode = cast<AtomicSDNode>(Node);
SDValue Replace =
DAG.getAtomic(Op.getOpcode(), Op.getOperand(0), Op.getOperand(1), In2,
Anode->getSrcValue(), Anode->getAlignment());
SDValue Result = TLI.LowerOperation(Replace, DAG);
ExpandOp(Result.getValue(0), Lo, Hi);
// Remember that we legalized the chain.
AddLegalizedOperand(SDValue(Node,1), LegalizeOp(Result.getValue(1)));
break;
}
// These operators cannot be expanded directly, emit them as calls to
// library functions.
case ISD::FP_TO_SINT: {
if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) {
SDValue Op;
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "cannot expand FP!");
case Legal: Op = LegalizeOp(Node->getOperand(0)); break;
case Promote: Op = PromoteOp (Node->getOperand(0)); break;
}
Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG);
// Now that the custom expander is done, expand the result, which is still
// VT.
if (Op.getNode()) {
ExpandOp(Op, Lo, Hi);
break;
}
}
RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(),
VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!");
Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi);
break;
}
case ISD::FP_TO_UINT: {
if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) {
SDValue Op;
switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Expand: assert(0 && "cannot expand FP!");
case Legal: Op = LegalizeOp(Node->getOperand(0)); break;
case Promote: Op = PromoteOp (Node->getOperand(0)); break;
}
Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG);
// Now that the custom expander is done, expand the result.
if (Op.getNode()) {
ExpandOp(Op, Lo, Hi);
break;
}
}
RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(),
VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi);
break;
}
case ISD::SHL: {
// If the target wants custom lowering, do so.
SDValue ShiftAmt = LegalizeOp(Node->getOperand(1));
if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) {
SDValue Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt);
Op = TLI.LowerOperation(Op, DAG);
if (Op.getNode()) {
// Now that the custom expander is done, expand the result, which is
// still VT.
ExpandOp(Op, Lo, Hi);
break;
}
}
// If ADDC/ADDE are supported and if the shift amount is a constant 1, emit
// this X << 1 as X+X.
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(ShiftAmt)) {
if (ShAmt->getAPIntValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) &&
TLI.isOperationLegal(ISD::ADDE, NVT)) {
SDValue LoOps[2], HiOps[3];
ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]);
SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag);
LoOps[1] = LoOps[0];
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[1] = HiOps[0];
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
break;
}
}
// If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi))
break;
// If this target supports SHL_PARTS, use it.
TargetLowering::LegalizeAction Action =
TLI.getOperationAction(ISD::SHL_PARTS, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
break;
}
// Otherwise, emit a libcall.
Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi);
break;
}
case ISD::SRA: {
// If the target wants custom lowering, do so.
SDValue ShiftAmt = LegalizeOp(Node->getOperand(1));
if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) {
SDValue Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt);
Op = TLI.LowerOperation(Op, DAG);
if (Op.getNode()) {
// Now that the custom expander is done, expand the result, which is
// still VT.
ExpandOp(Op, Lo, Hi);
break;
}
}
// If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi))
break;
// If this target supports SRA_PARTS, use it.
TargetLowering::LegalizeAction Action =
TLI.getOperationAction(ISD::SRA_PARTS, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
break;
}
// Otherwise, emit a libcall.
Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi);
break;
}
case ISD::SRL: {
// If the target wants custom lowering, do so.
SDValue ShiftAmt = LegalizeOp(Node->getOperand(1));
if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) {
SDValue Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt);
Op = TLI.LowerOperation(Op, DAG);
if (Op.getNode()) {
// Now that the custom expander is done, expand the result, which is
// still VT.
ExpandOp(Op, Lo, Hi);
break;
}
}
// If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi))
break;
// If this target supports SRL_PARTS, use it.
TargetLowering::LegalizeAction Action =
TLI.getOperationAction(ISD::SRL_PARTS, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi);
break;
}
// Otherwise, emit a libcall.
Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi);
break;
}
case ISD::ADD:
case ISD::SUB: {
// If the target wants to custom expand this, let them.
if (TLI.getOperationAction(Node->getOpcode(), VT) ==
TargetLowering::Custom) {
SDValue Result = TLI.LowerOperation(Op, DAG);
if (Result.getNode()) {
ExpandOp(Result, Lo, Hi);
break;
}
}
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
ExpandOp(Node->getOperand(0), LHSL, LHSH);
ExpandOp(Node->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDValue LoOps[2], HiOps[3];
LoOps[0] = LHSL;
LoOps[1] = RHSL;
HiOps[0] = LHSH;
HiOps[1] = RHSH;
//cascaded check to see if any smaller size has a a carry flag.
unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC;
bool hasCarry = false;
for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) {
MVT AVT = MVT::getIntegerVT(BitSize);
if (TLI.isOperationLegal(OpV, AVT)) {
hasCarry = true;
break;
}
}
if(hasCarry) {
if (Node->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
break;
} else {
if (Node->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADD, VTList, LoOps, 2);
Hi = DAG.getNode(ISD::ADD, VTList, HiOps, 2);
SDValue Cmp1 = DAG.getSetCC(TLI.getSetCCResultType(Lo),
Lo, LoOps[0], ISD::SETULT);
SDValue Carry1 = DAG.getNode(ISD::SELECT, NVT, Cmp1,
DAG.getConstant(1, NVT),
DAG.getConstant(0, NVT));
SDValue Cmp2 = DAG.getSetCC(TLI.getSetCCResultType(Lo),
Lo, LoOps[1], ISD::SETULT);
SDValue Carry2 = DAG.getNode(ISD::SELECT, NVT, Cmp2,
DAG.getConstant(1, NVT),
Carry1);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, Carry2);
} else {
Lo = DAG.getNode(ISD::SUB, VTList, LoOps, 2);
Hi = DAG.getNode(ISD::SUB, VTList, HiOps, 2);
SDValue Cmp = DAG.getSetCC(NVT, LoOps[0], LoOps[1], ISD::SETULT);
SDValue Borrow = DAG.getNode(ISD::SELECT, NVT, Cmp,
DAG.getConstant(1, NVT),
DAG.getConstant(0, NVT));
Hi = DAG.getNode(ISD::SUB, NVT, Hi, Borrow);
}
break;
}
}
case ISD::ADDC:
case ISD::SUBC: {
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
ExpandOp(Node->getOperand(0), LHSL, LHSH);
ExpandOp(Node->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDValue LoOps[2] = { LHSL, RHSL };
SDValue HiOps[3] = { LHSH, RHSH };
if (Node->getOpcode() == ISD::ADDC) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
// Remember that we legalized the flag.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
break;
}
case ISD::ADDE:
case ISD::SUBE: {
// Expand the subcomponents.
SDValue LHSL, LHSH, RHSL, RHSH;
ExpandOp(Node->getOperand(0), LHSL, LHSH);
ExpandOp(Node->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) };
SDValue HiOps[3] = { LHSH, RHSH };
Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3);
// Remember that we legalized the flag.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1)));
break;
}
case ISD::MUL: {
// If the target wants to custom expand this, let them.
if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) {
SDValue New = TLI.LowerOperation(Op, DAG);
if (New.getNode()) {
ExpandOp(New, Lo, Hi);
break;
}
}
bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT);
bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT);
if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
SDValue LL, LH, RL, RH;
ExpandOp(Node->getOperand(0), LL, LH);
ExpandOp(Node->getOperand(1), RL, RH);
unsigned OuterBitSize = Op.getValueSizeInBits();
unsigned InnerBitSize = RH.getValueSizeInBits();
unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1));
APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) &&
DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) {
// The inputs are both zero-extended.
if (HasUMUL_LOHI) {
// We can emit a umul_lohi.
Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDValue(Lo.getNode(), 1);
break;
}
if (HasMULHU) {
// We can emit a mulhu+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
break;
}
}
if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
// The input values are both sign-extended.
if (HasSMUL_LOHI) {
// We can emit a smul_lohi.
Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDValue(Lo.getNode(), 1);
break;
}
if (HasMULHS) {
// We can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
break;
}
}
if (HasUMUL_LOHI) {
// Lo,Hi = umul LHS, RHS.
SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI,
DAG.getVTList(NVT, NVT), LL, RL);
Lo = UMulLOHI;
Hi = UMulLOHI.getValue(1);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
break;
}
if (HasMULHU) {
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
break;
}
}
// If nothing else, we can make a libcall.
Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi);
break;
}
case ISD::SDIV:
Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi);
break;
case ISD::UDIV:
Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi);
break;
case ISD::SREM:
Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi);
break;
case ISD::UREM:
Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi);
break;
case ISD::FADD:
Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32,
RTLIB::ADD_F64,
RTLIB::ADD_F80,
RTLIB::ADD_PPCF128),
Node, false, Hi);
break;
case ISD::FSUB:
Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32,
RTLIB::SUB_F64,
RTLIB::SUB_F80,
RTLIB::SUB_PPCF128),
Node, false, Hi);
break;
case ISD::FMUL:
Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32,
RTLIB::MUL_F64,
RTLIB::MUL_F80,
RTLIB::MUL_PPCF128),
Node, false, Hi);
break;
case ISD::FDIV:
Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32,
RTLIB::DIV_F64,
RTLIB::DIV_F80,
RTLIB::DIV_PPCF128),
Node, false, Hi);
break;
case ISD::FP_EXTEND: {
if (VT == MVT::ppcf128) {
assert(Node->getOperand(0).getValueType()==MVT::f32 ||
Node->getOperand(0).getValueType()==MVT::f64);
const uint64_t zero = 0;
if (Node->getOperand(0).getValueType()==MVT::f32)
Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0));
else
Hi = Node->getOperand(0);
Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
break;
}
RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!");
Lo = ExpandLibCall(LC, Node, true, Hi);
break;
}
case ISD::FP_ROUND: {
RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(),
VT);
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!");
Lo = ExpandLibCall(LC, Node, true, Hi);
break;
}
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FTRUNC:
case ISD::FFLOOR:
case ISD::FCEIL:
case ISD::FRINT:
case ISD::FNEARBYINT:
case ISD::FPOW:
case ISD::FPOWI: {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
switch(Node->getOpcode()) {
case ISD::FSQRT:
LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128);
break;
case ISD::FSIN:
LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64,
RTLIB::SIN_F80, RTLIB::SIN_PPCF128);
break;
case ISD::FCOS:
LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64,
RTLIB::COS_F80, RTLIB::COS_PPCF128);
break;
case ISD::FLOG:
LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64,
RTLIB::LOG_F80, RTLIB::LOG_PPCF128);
break;
case ISD::FLOG2:
LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128);
break;
case ISD::FLOG10:
LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128);
break;
case ISD::FEXP:
LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64,
RTLIB::EXP_F80, RTLIB::EXP_PPCF128);
break;
case ISD::FEXP2:
LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128);
break;
case ISD::FTRUNC:
LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128);
break;
case ISD::FFLOOR:
LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128);
break;
case ISD::FCEIL:
LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128);
break;
case ISD::FRINT:
LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64,
RTLIB::RINT_F80, RTLIB::RINT_PPCF128);
break;
case ISD::FNEARBYINT:
LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64,
RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128);
break;
case ISD::FPOW:
LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
RTLIB::POW_PPCF128);
break;
case ISD::FPOWI:
LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80,
RTLIB::POWI_PPCF128);
break;
default: assert(0 && "Unreachable!");
}
Lo = ExpandLibCall(LC, Node, false, Hi);
break;
}
case ISD::FABS: {
if (VT == MVT::ppcf128) {
SDValue Tmp;
ExpandOp(Node->getOperand(0), Lo, Tmp);
Hi = DAG.getNode(ISD::FABS, NVT, Tmp);
// lo = hi==fabs(hi) ? lo : -lo;
Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp,
Lo, DAG.getNode(ISD::FNEG, NVT, Lo),
DAG.getCondCode(ISD::SETEQ));
break;
}
SDValue Mask = (VT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT)
: DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT);
Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask);
Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask);
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::FNEG: {
if (VT == MVT::ppcf128) {
ExpandOp(Node->getOperand(0), Lo, Hi);
Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo);
Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi);
break;
}
SDValue Mask = (VT == MVT::f64)
? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT)
: DAG.getConstantFP(BitsToFloat(1U << 31), VT);
Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask);
Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0));
Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask);
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::FCOPYSIGN: {
Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI);
if (getTypeAction(NVT) == Expand)
ExpandOp(Lo, Lo, Hi);
break;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: {
bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP;
MVT SrcVT = Node->getOperand(0).getValueType();
// Promote the operand if needed. Do this before checking for
// ppcf128 so conversions of i16 and i8 work.
if (getTypeAction(SrcVT) == Promote) {
SDValue Tmp = PromoteOp(Node->getOperand(0));
Tmp = isSigned
? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp,
DAG.getValueType(SrcVT))
: DAG.getZeroExtendInReg(Tmp, SrcVT);
Node = DAG.UpdateNodeOperands(Op, Tmp).getNode();
SrcVT = Node->getOperand(0).getValueType();
}
if (VT == MVT::ppcf128 && SrcVT == MVT::i32) {
static const uint64_t zero = 0;
if (isSigned) {
Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64,
Node->getOperand(0)));
Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
} else {
static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 };
Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64,
Node->getOperand(0)));
Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64);
Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
// X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32
ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0),
DAG.getConstant(0, MVT::i32),
DAG.getNode(ISD::FADD, MVT::ppcf128, Hi,
DAG.getConstantFP(
APFloat(APInt(128, 2, TwoE32)),
MVT::ppcf128)),
Hi,
DAG.getCondCode(ISD::SETLT)),
Lo, Hi);
}
break;
}
if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) {
// si64->ppcf128 done by libcall, below
static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 };
ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)),
Lo, Hi);
Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
// x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64
ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0),
DAG.getConstant(0, MVT::i64),
DAG.getNode(ISD::FADD, MVT::ppcf128, Hi,
DAG.getConstantFP(
APFloat(APInt(128, 2, TwoE64)),
MVT::ppcf128)),
Hi,
DAG.getCondCode(ISD::SETLT)),
Lo, Hi);
break;
}
Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT,
Node->getOperand(0));
if (getTypeAction(Lo.getValueType()) == Expand)
// float to i32 etc. can be 'expanded' to a single node.
ExpandOp(Lo, Lo, Hi);
break;
}
}
// Make sure the resultant values have been legalized themselves, unless this
// is a type that requires multi-step expansion.
if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) {
Lo = LegalizeOp(Lo);
if (Hi.getNode())
// Don't legalize the high part if it is expanded to a single node.
Hi = LegalizeOp(Hi);
}
// Remember in a map if the values will be reused later.
bool isNew =
ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second;
assert(isNew && "Value already expanded?!?");
}
/// SplitVectorOp - Given an operand of vector type, break it down into
/// two smaller values, still of vector type.
void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo,
SDValue &Hi) {
assert(Op.getValueType().isVector() && "Cannot split non-vector type!");
SDNode *Node = Op.getNode();
unsigned NumElements = Op.getValueType().getVectorNumElements();
assert(NumElements > 1 && "Cannot split a single element vector!");
MVT NewEltVT = Op.getValueType().getVectorElementType();
unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1);
unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo;
MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo);
MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi);
// See if we already split it.
std::map<SDValue, std::pair<SDValue, SDValue> >::iterator I
= SplitNodes.find(Op);
if (I != SplitNodes.end()) {
Lo = I->second.first;
Hi = I->second.second;
return;
}
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump(&DAG);
#endif
assert(0 && "Unhandled operation in SplitVectorOp!");
case ISD::UNDEF:
Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo);
Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi);
break;
case ISD::BUILD_PAIR:
Lo = Node->getOperand(0);
Hi = Node->getOperand(1);
break;
case ISD::INSERT_VECTOR_ELT: {
if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
SplitVectorOp(Node->getOperand(0), Lo, Hi);
unsigned Index = Idx->getZExtValue();
SDValue ScalarOp = Node->getOperand(1);
if (Index < NewNumElts_Lo)
Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp,
DAG.getIntPtrConstant(Index));
else
Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp,
DAG.getIntPtrConstant(Index - NewNumElts_Lo));
break;
}
SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0),
Node->getOperand(1),
Node->getOperand(2));
SplitVectorOp(Tmp, Lo, Hi);
break;
}
case ISD::VECTOR_SHUFFLE: {
// Build the low part.
SDValue Mask = Node->getOperand(2);
SmallVector<SDValue, 8> Ops;
MVT PtrVT = TLI.getPointerTy();
// Insert all of the elements from the input that are needed. We use
// buildvector of extractelement here because the input vectors will have
// to be legalized, so this makes the code simpler.
for (unsigned i = 0; i != NewNumElts_Lo; ++i) {
SDValue IdxNode = Mask.getOperand(i);
if (IdxNode.getOpcode() == ISD::UNDEF) {
Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT));
continue;
}
unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
SDValue InVec = Node->getOperand(0);
if (Idx >= NumElements) {
InVec = Node->getOperand(1);
Idx -= NumElements;
}
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec,
DAG.getConstant(Idx, PtrVT)));
}
Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size());
Ops.clear();
for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) {
SDValue IdxNode = Mask.getOperand(i);
if (IdxNode.getOpcode() == ISD::UNDEF) {
Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT));
continue;
}
unsigned Idx = cast<ConstantSDNode>(IdxNode)->getZExtValue();
SDValue InVec = Node->getOperand(0);
if (Idx >= NumElements) {
InVec = Node->getOperand(1);
Idx -= NumElements;
}
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec,
DAG.getConstant(Idx, PtrVT)));
}
Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &Ops[0], Ops.size());
break;
}
case ISD::BUILD_VECTOR: {
SmallVector<SDValue, 8> LoOps(Node->op_begin(),
Node->op_begin()+NewNumElts_Lo);
Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size());
SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumElts_Lo,
Node->op_end());
Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size());
break;
}
case ISD::CONCAT_VECTORS: {
// FIXME: Handle non-power-of-two vectors?
unsigned NewNumSubvectors = Node->getNumOperands() / 2;
if (NewNumSubvectors == 1) {
Lo = Node->getOperand(0);
Hi = Node->getOperand(1);
} else {
SmallVector<SDValue, 8> LoOps(Node->op_begin(),
Node->op_begin()+NewNumSubvectors);
Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size());
SmallVector<SDValue, 8> HiOps(Node->op_begin()+NewNumSubvectors,
Node->op_end());
Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size());
}
break;
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
MVT IdxVT = Idx.getValueType();
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Lo, Vec, Idx);
ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx);
if (CIdx) {
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Hi, Vec,
DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo,
IdxVT));
} else {
Idx = DAG.getNode(ISD::ADD, IdxVT, Idx,
DAG.getConstant(NewNumElts_Lo, IdxVT));
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Hi, Vec, Idx);
}
break;
}
case ISD::SELECT: {
SDValue Cond = Node->getOperand(0);
SDValue LL, LH, RL, RH;
SplitVectorOp(Node->getOperand(1), LL, LH);
SplitVectorOp(Node->getOperand(2), RL, RH);
if (Cond.getValueType().isVector()) {
// Handle a vector merge.
SDValue CL, CH;
SplitVectorOp(Cond, CL, CH);
Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL);
Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH);
} else {
// Handle a simple select with vector operands.
Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL);
Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH);
}
break;
}
case ISD::SELECT_CC: {
SDValue CondLHS = Node->getOperand(0);
SDValue CondRHS = Node->getOperand(1);
SDValue CondCode = Node->getOperand(4);
SDValue LL, LH, RL, RH;
SplitVectorOp(Node->getOperand(2), LL, LH);
SplitVectorOp(Node->getOperand(3), RL, RH);
// Handle a simple select with vector operands.
Lo = DAG.getNode(ISD::SELECT_CC, NewVT_Lo, CondLHS, CondRHS,
LL, RL, CondCode);
Hi = DAG.getNode(ISD::SELECT_CC, NewVT_Hi, CondLHS, CondRHS,
LH, RH, CondCode);
break;
}
case ISD::VSETCC: {
SDValue LL, LH, RL, RH;
SplitVectorOp(Node->getOperand(0), LL, LH);
SplitVectorOp(Node->getOperand(1), RL, RH);
Lo = DAG.getNode(ISD::VSETCC, NewVT_Lo, LL, RL, Node->getOperand(2));
Hi = DAG.getNode(ISD::VSETCC, NewVT_Hi, LH, RH, Node->getOperand(2));
break;
}
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::UREM:
case ISD::SREM:
case ISD::FREM: {
SDValue LL, LH, RL, RH;
SplitVectorOp(Node->getOperand(0), LL, LH);
SplitVectorOp(Node->getOperand(1), RL, RH);
Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL);
Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH);
break;
}
case ISD::FP_ROUND:
case ISD::FPOWI: {
SDValue L, H;
SplitVectorOp(Node->getOperand(0), L, H);
Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1));
Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1));
break;
}
case ISD::CTTZ:
case ISD::CTLZ:
case ISD::CTPOP:
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::TRUNCATE:
case ISD::ANY_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::FP_EXTEND: {
SDValue L, H;
SplitVectorOp(Node->getOperand(0), L, H);
Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L);
Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H);
break;
}
case ISD::CONVERT_RNDSAT: {
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
SDValue L, H;
SplitVectorOp(Node->getOperand(0), L, H);
SDValue DTyOpL = DAG.getValueType(NewVT_Lo);
SDValue DTyOpH = DAG.getValueType(NewVT_Hi);
SDValue STyOpL = DAG.getValueType(L.getValueType());
SDValue STyOpH = DAG.getValueType(H.getValueType());
SDValue RndOp = Node->getOperand(3);
SDValue SatOp = Node->getOperand(4);
Lo = DAG.getConvertRndSat(NewVT_Lo, L, DTyOpL, STyOpL,
RndOp, SatOp, CvtCode);
Hi = DAG.getConvertRndSat(NewVT_Hi, H, DTyOpH, STyOpH,
RndOp, SatOp, CvtCode);
break;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDValue Ch = LD->getChain();
SDValue Ptr = LD->getBasePtr();
ISD::LoadExtType ExtType = LD->getExtensionType();
const Value *SV = LD->getSrcValue();
int SVOffset = LD->getSrcValueOffset();
MVT MemoryVT = LD->getMemoryVT();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!");
SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType());
MVT MemNewEltVT = MemoryVT.getVectorElementType();
MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo);
MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi);
Lo = DAG.getLoad(ISD::UNINDEXED, ExtType,
NewVT_Lo, Ch, Ptr, Offset,
SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment);
unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
DAG.getIntPtrConstant(IncrementSize));
SVOffset += IncrementSize;
Alignment = MinAlign(Alignment, IncrementSize);
Hi = DAG.getLoad(ISD::UNINDEXED, ExtType,
NewVT_Hi, Ch, Ptr, Offset,
SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment);
// Build a factor node to remember that this load is independent of the
// other one.
SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF));
break;
}
case ISD::BIT_CONVERT: {
// We know the result is a vector. The input may be either a vector or a
// scalar value.
SDValue InOp = Node->getOperand(0);
if (!InOp.getValueType().isVector() ||
InOp.getValueType().getVectorNumElements() == 1) {
// The input is a scalar or single-element vector.
// Lower to a store/load so that it can be split.
// FIXME: this could be improved probably.
unsigned LdAlign = TLI.getTargetData()->getPrefTypeAlignment(
Op.getValueType().getTypeForMVT());
SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign);
int FI = cast<FrameIndexSDNode>(Ptr.getNode())->getIndex();
SDValue St = DAG.getStore(DAG.getEntryNode(),
InOp, Ptr,
PseudoSourceValue::getFixedStack(FI), 0);
InOp = DAG.getLoad(Op.getValueType(), St, Ptr,
PseudoSourceValue::getFixedStack(FI), 0);
}
// Split the vector and convert each of the pieces now.
SplitVectorOp(InOp, Lo, Hi);
Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo);
Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi);
break;
}
}
// Remember in a map if the values will be reused later.
bool isNew =
SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second;
assert(isNew && "Value already split?!?");
}
/// ScalarizeVectorOp - Given an operand of single-element vector type
/// (e.g. v1f32), convert it into the equivalent operation that returns a
/// scalar (e.g. f32) value.
SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) {
assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!");
SDNode *Node = Op.getNode();
MVT NewVT = Op.getValueType().getVectorElementType();
assert(Op.getValueType().getVectorNumElements() == 1);
// See if we already scalarized it.
std::map<SDValue, SDValue>::iterator I = ScalarizedNodes.find(Op);
if (I != ScalarizedNodes.end()) return I->second;
SDValue Result;
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Unknown vector operation in ScalarizeVectorOp!");
case ISD::ADD:
case ISD::FADD:
case ISD::SUB:
case ISD::FSUB:
case ISD::MUL:
case ISD::FMUL:
case ISD::SDIV:
case ISD::UDIV:
case ISD::FDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::FREM:
case ISD::FPOW:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Result = DAG.getNode(Node->getOpcode(),
NewVT,
ScalarizeVectorOp(Node->getOperand(0)),
ScalarizeVectorOp(Node->getOperand(1)));
break;
case ISD::FNEG:
case ISD::FABS:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS:
case ISD::FLOG:
case ISD::FLOG2:
case ISD::FLOG10:
case ISD::FEXP:
case ISD::FEXP2:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::TRUNCATE:
case ISD::FP_EXTEND:
Result = DAG.getNode(Node->getOpcode(),
NewVT,
ScalarizeVectorOp(Node->getOperand(0)));
break;
case ISD::CONVERT_RNDSAT: {
SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0));
Result = DAG.getConvertRndSat(NewVT, Op0,
DAG.getValueType(NewVT),
DAG.getValueType(Op0.getValueType()),
Node->getOperand(3),
Node->getOperand(4),
cast<CvtRndSatSDNode>(Node)->getCvtCode());
break;
}
case ISD::FPOWI:
case ISD::FP_ROUND:
Result = DAG.getNode(Node->getOpcode(),
NewVT,
ScalarizeVectorOp(Node->getOperand(0)),
Node->getOperand(1));
break;
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Node);
SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain.
SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer.
ISD::LoadExtType ExtType = LD->getExtensionType();
const Value *SV = LD->getSrcValue();
int SVOffset = LD->getSrcValueOffset();
MVT MemoryVT = LD->getMemoryVT();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!");
SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType());
Result = DAG.getLoad(ISD::UNINDEXED, ExtType,
NewVT, Ch, Ptr, Offset, SV, SVOffset,
MemoryVT.getVectorElementType(),
isVolatile, Alignment);
// Remember that we legalized the chain.
AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1)));
break;
}
case ISD::BUILD_VECTOR:
Result = Node->getOperand(0);
break;
case ISD::INSERT_VECTOR_ELT:
// Returning the inserted scalar element.
Result = Node->getOperand(1);
break;
case ISD::CONCAT_VECTORS:
assert(Node->getOperand(0).getValueType() == NewVT &&
"Concat of non-legal vectors not yet supported!");
Result = Node->getOperand(0);
break;
case ISD::VECTOR_SHUFFLE: {
// Figure out if the scalar is the LHS or RHS and return it.
SDValue EltNum = Node->getOperand(2).getOperand(0);
if (cast<ConstantSDNode>(EltNum)->getZExtValue())
Result = ScalarizeVectorOp(Node->getOperand(1));
else
Result = ScalarizeVectorOp(Node->getOperand(0));
break;
}
case ISD::EXTRACT_SUBVECTOR:
Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, Node->getOperand(0),
Node->getOperand(1));
break;
case ISD::BIT_CONVERT: {
SDValue Op0 = Op.getOperand(0);
if (Op0.getValueType().getVectorNumElements() == 1)
Op0 = ScalarizeVectorOp(Op0);
Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op0);
break;
}
case ISD::SELECT:
Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0),
ScalarizeVectorOp(Op.getOperand(1)),
ScalarizeVectorOp(Op.getOperand(2)));
break;
case ISD::SELECT_CC:
Result = DAG.getNode(ISD::SELECT_CC, NewVT, Node->getOperand(0),
Node->getOperand(1),
ScalarizeVectorOp(Op.getOperand(2)),
ScalarizeVectorOp(Op.getOperand(3)),
Node->getOperand(4));
break;
case ISD::VSETCC: {
SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0));
SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1));
Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Op0), Op0, Op1,
Op.getOperand(2));
Result = DAG.getNode(ISD::SELECT, NewVT, Result,
DAG.getConstant(-1ULL, NewVT),
DAG.getConstant(0ULL, NewVT));
break;
}
}
if (TLI.isTypeLegal(NewVT))
Result = LegalizeOp(Result);
bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second;
assert(isNew && "Value already scalarized?");
return Result;
}
SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) {
std::map<SDValue, SDValue>::iterator I = WidenNodes.find(Op);
if (I != WidenNodes.end()) return I->second;
MVT VT = Op.getValueType();
assert(VT.isVector() && "Cannot widen non-vector type!");
SDValue Result;
SDNode *Node = Op.getNode();
MVT EVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
unsigned NewNumElts = WidenVT.getVectorNumElements();
assert(NewNumElts > NumElts && "Cannot widen to smaller type!");
assert(NewNumElts < 17);
// When widen is called, it is assumed that it is more efficient to use a
// wide type. The default action is to widen to operation to a wider legal
// vector type and then do the operation if it is legal by calling LegalizeOp
// again. If there is no vector equivalent, we will unroll the operation, do
// it, and rebuild the vector. If most of the operations are vectorizible to
// the legal type, the resulting code will be more efficient. If this is not
// the case, the resulting code will preform badly as we end up generating
// code to pack/unpack the results. It is the function that calls widen
// that is responsible for seeing this doesn't happen.
switch (Node->getOpcode()) {
default:
#ifndef NDEBUG
Node->dump(&DAG);
#endif
assert(0 && "Unexpected operation in WidenVectorOp!");
break;
case ISD::CopyFromReg:
assert(0 && "CopyFromReg must be legal!");
case ISD::UNDEF:
case ISD::Constant:
case ISD::ConstantFP:
// To build a vector of these elements, clients should call BuildVector
// and with each element instead of creating a node with a vector type
assert(0 && "Unexpected operation in WidenVectorOp!");
case ISD::VAARG:
// Variable Arguments with vector types doesn't make any sense to me
assert(0 && "Unexpected operation in WidenVectorOp!");
break;
case ISD::BUILD_VECTOR: {
// Build a vector with undefined for the new nodes
SDValueVector NewOps(Node->op_begin(), Node->op_end());
for (unsigned i = NumElts; i < NewNumElts; ++i) {
NewOps.push_back(DAG.getNode(ISD::UNDEF,EVT));
}
Result = DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &NewOps[0], NewOps.size());
break;
}
case ISD::INSERT_VECTOR_ELT: {
SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, WidenVT, Tmp1,
Node->getOperand(1), Node->getOperand(2));
break;
}
case ISD::VECTOR_SHUFFLE: {
SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT);
// VECTOR_SHUFFLE 3rd operand must be a constant build vector that is
// used as permutation array. We build the vector here instead of widening
// because we don't want to legalize and have it turned to something else.
SDValue PermOp = Node->getOperand(2);
SDValueVector NewOps;
MVT PVT = PermOp.getValueType().getVectorElementType();
for (unsigned i = 0; i < NumElts; ++i) {
if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) {
NewOps.push_back(PermOp.getOperand(i));
} else {
unsigned Idx =
cast<ConstantSDNode>(PermOp.getOperand(i))->getZExtValue();
if (Idx < NumElts) {
NewOps.push_back(PermOp.getOperand(i));
}
else {
NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts,
PermOp.getOperand(i).getValueType()));
}
}
}
for (unsigned i = NumElts; i < NewNumElts; ++i) {
NewOps.push_back(DAG.getNode(ISD::UNDEF,PVT));
}
SDValue Tmp3 = DAG.getNode(ISD::BUILD_VECTOR,
MVT::getVectorVT(PVT, NewOps.size()),
&NewOps[0], NewOps.size());
Result = DAG.getNode(ISD::VECTOR_SHUFFLE, WidenVT, Tmp1, Tmp2, Tmp3);
break;
}
case ISD::LOAD: {
// If the load widen returns true, we can use a single load for the
// vector. Otherwise, it is returning a token factor for multiple
// loads.
SDValue TFOp;
if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT))
AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1)));
else
AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0)));
break;
}
case ISD::BIT_CONVERT: {
SDValue Tmp1 = Node->getOperand(0);
// Converts between two different types so we need to determine
// the correct widen type for the input operand.
MVT TVT = Tmp1.getValueType();
assert(TVT.isVector() && "can not widen non vector type");
MVT TEVT = TVT.getVectorElementType();
assert(WidenVT.getSizeInBits() % EVT.getSizeInBits() == 0 &&
"can not widen bit bit convert that are not multiple of element type");
MVT TWidenVT = MVT::getVectorVT(TEVT,
WidenVT.getSizeInBits()/EVT.getSizeInBits());
Tmp1 = WidenVectorOp(Tmp1, TWidenVT);
assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits());
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1);
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
SDValue Tmp1 = Node->getOperand(0);
// Converts between two different types so we need to determine
// the correct widen type for the input operand.
MVT TVT = Tmp1.getValueType();
assert(TVT.isVector() && "can not widen non vector type");
MVT TEVT = TVT.getVectorElementType();
MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts);
Tmp1 = WidenVectorOp(Tmp1, TWidenVT);
assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1);
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::FP_EXTEND:
assert(0 && "Case not implemented. Dynamically dead with 2 FP types!");
case ISD::TRUNCATE:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::FP_ROUND:
case ISD::SIGN_EXTEND_INREG:
case ISD::FABS:
case ISD::FNEG:
case ISD::FSQRT:
case ISD::FSIN:
case ISD::FCOS: {
// Unary op widening
SDValue Tmp1;
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
assert(Tmp1.getValueType() == WidenVT);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1);
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::CONVERT_RNDSAT: {
SDValue RndOp = Node->getOperand(3);
SDValue SatOp = Node->getOperand(4);
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
SDValue SrcOp = Node->getOperand(0);
// Converts between two different types so we need to determine
// the correct widen type for the input operand.
MVT SVT = SrcOp.getValueType();
assert(SVT.isVector() && "can not widen non vector type");
MVT SEVT = SVT.getVectorElementType();
MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts);
SrcOp = WidenVectorOp(SrcOp, SWidenVT);
assert(SrcOp.getValueType() == WidenVT);
SDValue DTyOp = DAG.getValueType(WidenVT);
SDValue STyOp = DAG.getValueType(SrcOp.getValueType());
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(Node)->getCvtCode();
Result = DAG.getConvertRndSat(WidenVT, SrcOp, DTyOp, STyOp,
RndOp, SatOp, CvtCode);
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::FPOW:
case ISD::FPOWI:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::SDIV:
case ISD::SREM:
case ISD::FDIV:
case ISD::FREM:
case ISD::FCOPYSIGN:
case ISD::UDIV:
case ISD::UREM:
case ISD::BSWAP: {
// Binary op widening
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT);
assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2);
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code by first
// Widening to the right type and then unroll the beast.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: {
// Binary op with one non vector operand
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
assert(Tmp1.getValueType() == WidenVT);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Node->getOperand(1));
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::EXTRACT_VECTOR_ELT: {
SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
assert(Tmp1.getValueType() == WidenVT);
Result = DAG.getNode(Node->getOpcode(), EVT, Tmp1, Node->getOperand(1));
break;
}
case ISD::CONCAT_VECTORS: {
// We concurrently support only widen on a multiple of the incoming vector.
// We could widen on a multiple of the incoming operand if necessary.
unsigned NumConcat = NewNumElts / NumElts;
assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector");
std::vector<SDValue> UnOps(NumElts, DAG.getNode(ISD::UNDEF,
VT.getVectorElementType()));
SDValue UndefVal = DAG.getNode(ISD::BUILD_VECTOR, VT,
&UnOps[0], UnOps.size());
SmallVector<SDValue, 8> MOps;
MOps.push_back(Op);
for (unsigned i = 1; i != NumConcat; ++i) {
MOps.push_back(UndefVal);
}
Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT,
&MOps[0], MOps.size()));
break;
}
case ISD::EXTRACT_SUBVECTOR: {
SDValue Tmp1;
// The incoming vector might already be the proper type
if (Node->getOperand(0).getValueType() != WidenVT)
Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT);
else
Tmp1 = Node->getOperand(0);
assert(Tmp1.getValueType() == WidenVT);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Node->getOperand(1));
break;
}
case ISD::SELECT: {
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
// Determine new condition widen type and widen
SDValue Cond1 = Node->getOperand(0);
MVT CondVT = Cond1.getValueType();
assert(CondVT.isVector() && "can not widen non vector type");
MVT CondEVT = CondVT.getVectorElementType();
MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts);
Cond1 = WidenVectorOp(Cond1, CondWidenVT);
assert(Cond1.getValueType() == CondWidenVT && "Condition not widen");
SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT);
SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT);
assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Tmp1, Tmp2);
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code by first
// Widening to the right type and then unroll the beast.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::SELECT_CC: {
TargetLowering::LegalizeAction action =
TLI.getOperationAction(Node->getOpcode(), WidenVT);
// Determine new condition widen type and widen
SDValue Cond1 = Node->getOperand(0);
SDValue Cond2 = Node->getOperand(1);
MVT CondVT = Cond1.getValueType();
assert(CondVT.isVector() && "can not widen non vector type");
assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs");
MVT CondEVT = CondVT.getVectorElementType();
MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts);
Cond1 = WidenVectorOp(Cond1, CondWidenVT);
Cond2 = WidenVectorOp(Cond2, CondWidenVT);
assert(Cond1.getValueType() == CondWidenVT &&
Cond2.getValueType() == CondWidenVT && "condition not widen");
SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT);
SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT);
assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT &&
"operands not widen");
Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Cond2, Tmp1,
Tmp2, Node->getOperand(4));
switch (action) {
default: assert(0 && "action not supported");
case TargetLowering::Legal:
break;
case TargetLowering::Promote:
// We defer the promotion to when we legalize the op
break;
case TargetLowering::Expand:
// Expand the operation into a bunch of nasty scalar code by first
// Widening to the right type and then unroll the beast.
Result = LegalizeOp(UnrollVectorOp(Result));
break;
}
break;
}
case ISD::VSETCC: {
// Determine widen for the operand
SDValue Tmp1 = Node->getOperand(0);
MVT TmpVT = Tmp1.getValueType();
assert(TmpVT.isVector() && "can not widen non vector type");
MVT TmpEVT = TmpVT.getVectorElementType();
MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts);
Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT);
SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT);
Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2,
Node->getOperand(2));
break;
}
case ISD::ATOMIC_CMP_SWAP_8:
case ISD::ATOMIC_CMP_SWAP_16:
case ISD::ATOMIC_CMP_SWAP_32:
case ISD::ATOMIC_CMP_SWAP_64:
case ISD::ATOMIC_LOAD_ADD_8:
case ISD::ATOMIC_LOAD_SUB_8:
case ISD::ATOMIC_LOAD_AND_8:
case ISD::ATOMIC_LOAD_OR_8:
case ISD::ATOMIC_LOAD_XOR_8:
case ISD::ATOMIC_LOAD_NAND_8:
case ISD::ATOMIC_LOAD_MIN_8:
case ISD::ATOMIC_LOAD_MAX_8:
case ISD::ATOMIC_LOAD_UMIN_8:
case ISD::ATOMIC_LOAD_UMAX_8:
case ISD::ATOMIC_SWAP_8:
case ISD::ATOMIC_LOAD_ADD_16:
case ISD::ATOMIC_LOAD_SUB_16:
case ISD::ATOMIC_LOAD_AND_16:
case ISD::ATOMIC_LOAD_OR_16:
case ISD::ATOMIC_LOAD_XOR_16:
case ISD::ATOMIC_LOAD_NAND_16:
case ISD::ATOMIC_LOAD_MIN_16:
case ISD::ATOMIC_LOAD_MAX_16:
case ISD::ATOMIC_LOAD_UMIN_16:
case ISD::ATOMIC_LOAD_UMAX_16:
case ISD::ATOMIC_SWAP_16:
case ISD::ATOMIC_LOAD_ADD_32:
case ISD::ATOMIC_LOAD_SUB_32:
case ISD::ATOMIC_LOAD_AND_32:
case ISD::ATOMIC_LOAD_OR_32:
case ISD::ATOMIC_LOAD_XOR_32:
case ISD::ATOMIC_LOAD_NAND_32:
case ISD::ATOMIC_LOAD_MIN_32:
case ISD::ATOMIC_LOAD_MAX_32:
case ISD::ATOMIC_LOAD_UMIN_32:
case ISD::ATOMIC_LOAD_UMAX_32:
case ISD::ATOMIC_SWAP_32:
case ISD::ATOMIC_LOAD_ADD_64:
case ISD::ATOMIC_LOAD_SUB_64:
case ISD::ATOMIC_LOAD_AND_64:
case ISD::ATOMIC_LOAD_OR_64:
case ISD::ATOMIC_LOAD_XOR_64:
case ISD::ATOMIC_LOAD_NAND_64:
case ISD::ATOMIC_LOAD_MIN_64:
case ISD::ATOMIC_LOAD_MAX_64:
case ISD::ATOMIC_LOAD_UMIN_64:
case ISD::ATOMIC_LOAD_UMAX_64:
case ISD::ATOMIC_SWAP_64: {
// For now, we assume that using vectors for these operations don't make
// much sense so we just split it. We return an empty result
SDValue X, Y;
SplitVectorOp(Op, X, Y);
return Result;
break;
}
} // end switch (Node->getOpcode())
assert(Result.getNode() && "Didn't set a result!");
if (Result != Op)
Result = LegalizeOp(Result);
AddWidenedOperand(Op, Result);
return Result;
}
// Utility function to find a legal vector type and its associated element
// type from a preferred width and whose vector type must be the same size
// as the VVT.
// TLI: Target lowering used to determine legal types
// Width: Preferred width of element type
// VVT: Vector value type whose size we must match.
// Returns VecEVT and EVT - the vector type and its associated element type
static void FindWidenVecType(TargetLowering &TLI, unsigned Width, MVT VVT,
MVT& EVT, MVT& VecEVT) {
// We start with the preferred width, make it a power of 2 and see if
// we can find a vector type of that width. If not, we reduce it by
// another power of 2. If we have widen the type, a vector of bytes should
// always be legal.
assert(TLI.isTypeLegal(VVT));
unsigned EWidth = Width + 1;
do {
assert(EWidth > 0);
EWidth = (1 << Log2_32(EWidth-1));
EVT = MVT::getIntegerVT(EWidth);
unsigned NumEVT = VVT.getSizeInBits()/EWidth;
VecEVT = MVT::getVectorVT(EVT, NumEVT);
} while (!TLI.isTypeLegal(VecEVT) ||
VVT.getSizeInBits() != VecEVT.getSizeInBits());
}
SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain,
SDValue Chain,
SDValue BasePtr,
const Value *SV,
int SVOffset,
unsigned Alignment,
bool isVolatile,
unsigned LdWidth,
MVT ResType) {
// We assume that we have good rules to handle loading power of two loads so
// we break down the operations to power of 2 loads. The strategy is to
// load the largest power of 2 that we can easily transform to a legal vector
// and then insert into that vector, and the cast the result into the legal
// vector that we want. This avoids unnecessary stack converts.
// TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and
// the load is nonvolatile, we an use a wider load for the value.
// Find a vector length we can load a large chunk
MVT EVT, VecEVT;
unsigned EVTWidth;
FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT);
EVTWidth = EVT.getSizeInBits();
SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, SVOffset,
isVolatile, Alignment);
SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecEVT, LdOp);
LdChain.push_back(LdOp.getValue(1));
// Check if we can load the element with one instruction
if (LdWidth == EVTWidth) {
return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp);
}
// The vector element order is endianness dependent.
unsigned Idx = 1;
LdWidth -= EVTWidth;
unsigned Offset = 0;
while (LdWidth > 0) {
unsigned Increment = EVTWidth / 8;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr,
DAG.getIntPtrConstant(Increment));
if (LdWidth < EVTWidth) {
// Our current type we are using is too large, use a smaller size by
// using a smaller power of 2
unsigned oEVTWidth = EVTWidth;
FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT);
EVTWidth = EVT.getSizeInBits();
// Readjust position and vector position based on new load type
Idx = Idx * (oEVTWidth/EVTWidth)+1;
VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp);
}
SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV,
SVOffset+Offset, isVolatile,
MinAlign(Alignment, Offset));
LdChain.push_back(LdOp.getValue(1));
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, VecEVT, VecOp, LdOp,
DAG.getIntPtrConstant(Idx++));
LdWidth -= EVTWidth;
}
return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp);
}
bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result,
SDValue& TFOp,
SDValue Op,
MVT NVT) {
// TODO: Add support for ConcatVec and the ability to load many vector
// types (e.g., v4i8). This will not work when a vector register
// to memory mapping is strange (e.g., vector elements are not
// stored in some sequential order).
// It must be true that the widen vector type is bigger than where
// we need to load from.
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
MVT LdVT = LD->getMemoryVT();
assert(LdVT.isVector() && NVT.isVector());
assert(LdVT.getVectorElementType() == NVT.getVectorElementType());
// Load information
SDValue Chain = LD->getChain();
SDValue BasePtr = LD->getBasePtr();
int SVOffset = LD->getSrcValueOffset();
unsigned Alignment = LD->getAlignment();
bool isVolatile = LD->isVolatile();
const Value *SV = LD->getSrcValue();
unsigned int LdWidth = LdVT.getSizeInBits();
// Load value as a large register
SDValueVector LdChain;
Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset,
Alignment, isVolatile, LdWidth, NVT);
if (LdChain.size() == 1) {
TFOp = LdChain[0];
return true;
}
else {
TFOp=DAG.getNode(ISD::TokenFactor, MVT::Other, &LdChain[0], LdChain.size());
return false;
}
}
void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain,
SDValue Chain,
SDValue BasePtr,
const Value *SV,
int SVOffset,
unsigned Alignment,
bool isVolatile,
SDValue ValOp,
unsigned StWidth) {
// Breaks the stores into a series of power of 2 width stores. For any
// width, we convert the vector to the vector of element size that we
// want to store. This avoids requiring a stack convert.
// Find a width of the element type we can store with
MVT VVT = ValOp.getValueType();
MVT EVT, VecEVT;
unsigned EVTWidth;
FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT);
EVTWidth = EVT.getSizeInBits();
SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, ValOp);
SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp,
DAG.getIntPtrConstant(0));
SDValue StOp = DAG.getStore(Chain, EOp, BasePtr, SV, SVOffset,
isVolatile, Alignment);
StChain.push_back(StOp);
// Check if we are done
if (StWidth == EVTWidth) {
return;
}
unsigned Idx = 1;
StWidth -= EVTWidth;
unsigned Offset = 0;
while (StWidth > 0) {
unsigned Increment = EVTWidth / 8;
Offset += Increment;
BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr,
DAG.getIntPtrConstant(Increment));
if (StWidth < EVTWidth) {
// Our current type we are using is too large, use a smaller size by
// using a smaller power of 2
unsigned oEVTWidth = EVTWidth;
FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT);
EVTWidth = EVT.getSizeInBits();
// Readjust position and vector position based on new load type
Idx = Idx * (oEVTWidth/EVTWidth)+1;
VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp);
}
EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp,
DAG.getIntPtrConstant(Idx));
StChain.push_back(DAG.getStore(Chain, EOp, BasePtr, SV,
SVOffset + Offset, isVolatile,
MinAlign(Alignment, Offset)));
StWidth -= EVTWidth;
}
}
SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST,
SDValue Chain,
SDValue BasePtr) {
// TODO: It might be cleaner if we can use SplitVector and have more legal
// vector types that can be stored into memory (e.g., v4xi8 can
// be stored as a word). This will not work when a vector register
// to memory mapping is strange (e.g., vector elements are not
// stored in some sequential order).
MVT StVT = ST->getMemoryVT();
SDValue ValOp = ST->getValue();
// Check if we have widen this node with another value
std::map<SDValue, SDValue>::iterator I = WidenNodes.find(ValOp);
if (I != WidenNodes.end())
ValOp = I->second;
MVT VVT = ValOp.getValueType();
// It must be true that we the widen vector type is bigger than where
// we need to store.
assert(StVT.isVector() && VVT.isVector());
assert(StVT.getSizeInBits() < VVT.getSizeInBits());
assert(StVT.getVectorElementType() == VVT.getVectorElementType());
// Store value
SDValueVector StChain;
genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(),
ST->getSrcValueOffset(), ST->getAlignment(),
ST->isVolatile(), ValOp, StVT.getSizeInBits());
if (StChain.size() == 1)
return StChain[0];
else
return DAG.getNode(ISD::TokenFactor, MVT::Other,&StChain[0],StChain.size());
}
// SelectionDAG::Legalize - This is the entry point for the file.
//
void SelectionDAG::Legalize() {
/// run - This is the main entry point to this class.
///
SelectionDAGLegalize(*this).LegalizeDAG();
}