mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
cc0615ad0a
This patch adds the minimum plumbing necessary to use IR-level fast-math-flags (FMF) in the backend without actually using them for anything yet. This is a follow-on to: http://reviews.llvm.org/rL235997 ...which split the existing nsw / nuw / exact flags and FMF into their own struct. There are 2 structural changes here: 1. The main diff is that we're preparing to extend the optimization flags to affect more than just binary SDNodes. Eg, IR intrinsics ( https://llvm.org/bugs/show_bug.cgi?id=21290 ) or non-binop nodes that don't even exist in IR such as FMA, FNEG, etc. 2. The other change is that we're actually copying the FP fast-math-flags from the IR instructions to SDNodes. Differential Revision: http://reviews.llvm.org/D8900 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236546 91177308-0d34-0410-b5e6-96231b3b80d8
2279 lines
77 KiB
C++
2279 lines
77 KiB
C++
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the SDNode class and derived classes, which are used to
|
|
// represent the nodes and operations present in a SelectionDAG. These nodes
|
|
// and operations are machine code level operations, with some similarities to
|
|
// the GCC RTL representation.
|
|
//
|
|
// Clients should include the SelectionDAG.h file instead of this file directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
|
|
namespace llvm {
|
|
|
|
class SelectionDAG;
|
|
class GlobalValue;
|
|
class MachineBasicBlock;
|
|
class MachineConstantPoolValue;
|
|
class SDNode;
|
|
class Value;
|
|
class MCSymbol;
|
|
template <typename T> struct DenseMapInfo;
|
|
template <typename T> struct simplify_type;
|
|
template <typename T> struct ilist_traits;
|
|
|
|
void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
|
|
bool force = false);
|
|
|
|
/// This represents a list of ValueType's that has been intern'd by
|
|
/// a SelectionDAG. Instances of this simple value class are returned by
|
|
/// SelectionDAG::getVTList(...).
|
|
///
|
|
struct SDVTList {
|
|
const EVT *VTs;
|
|
unsigned int NumVTs;
|
|
};
|
|
|
|
namespace ISD {
|
|
/// Node predicates
|
|
|
|
/// Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are ~0 or undef.
|
|
bool isBuildVectorAllOnes(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a
|
|
/// BUILD_VECTOR where all of the elements are 0 or undef.
|
|
bool isBuildVectorAllZeros(const SDNode *N);
|
|
|
|
/// \brief Return true if the specified node is a BUILD_VECTOR node of
|
|
/// all ConstantSDNode or undef.
|
|
bool isBuildVectorOfConstantSDNodes(const SDNode *N);
|
|
|
|
/// \brief Return true if the specified node is a BUILD_VECTOR node of
|
|
/// all ConstantFPSDNode or undef.
|
|
bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a
|
|
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
|
|
/// element is not an undef.
|
|
bool isScalarToVector(const SDNode *N);
|
|
|
|
/// Return true if the node has at least one operand
|
|
/// and all operands of the specified node are ISD::UNDEF.
|
|
bool allOperandsUndef(const SDNode *N);
|
|
} // end llvm:ISD namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Unlike LLVM values, Selection DAG nodes may return multiple
|
|
/// values as the result of a computation. Many nodes return multiple values,
|
|
/// from loads (which define a token and a return value) to ADDC (which returns
|
|
/// a result and a carry value), to calls (which may return an arbitrary number
|
|
/// of values).
|
|
///
|
|
/// As such, each use of a SelectionDAG computation must indicate the node that
|
|
/// computes it as well as which return value to use from that node. This pair
|
|
/// of information is represented with the SDValue value type.
|
|
///
|
|
class SDValue {
|
|
friend struct DenseMapInfo<SDValue>;
|
|
|
|
SDNode *Node; // The node defining the value we are using.
|
|
unsigned ResNo; // Which return value of the node we are using.
|
|
public:
|
|
SDValue() : Node(nullptr), ResNo(0) {}
|
|
SDValue(SDNode *node, unsigned resno);
|
|
|
|
/// get the index which selects a specific result in the SDNode
|
|
unsigned getResNo() const { return ResNo; }
|
|
|
|
/// get the SDNode which holds the desired result
|
|
SDNode *getNode() const { return Node; }
|
|
|
|
/// set the SDNode
|
|
void setNode(SDNode *N) { Node = N; }
|
|
|
|
inline SDNode *operator->() const { return Node; }
|
|
|
|
bool operator==(const SDValue &O) const {
|
|
return Node == O.Node && ResNo == O.ResNo;
|
|
}
|
|
bool operator!=(const SDValue &O) const {
|
|
return !operator==(O);
|
|
}
|
|
bool operator<(const SDValue &O) const {
|
|
return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
|
|
}
|
|
explicit operator bool() const {
|
|
return Node != nullptr;
|
|
}
|
|
|
|
SDValue getValue(unsigned R) const {
|
|
return SDValue(Node, R);
|
|
}
|
|
|
|
// Return true if this node is an operand of N.
|
|
bool isOperandOf(SDNode *N) const;
|
|
|
|
/// Return the ValueType of the referenced return value.
|
|
inline EVT getValueType() const;
|
|
|
|
/// Return the simple ValueType of the referenced return value.
|
|
MVT getSimpleValueType() const {
|
|
return getValueType().getSimpleVT();
|
|
}
|
|
|
|
/// Returns the size of the value in bits.
|
|
unsigned getValueSizeInBits() const {
|
|
return getValueType().getSizeInBits();
|
|
}
|
|
|
|
unsigned getScalarValueSizeInBits() const {
|
|
return getValueType().getScalarType().getSizeInBits();
|
|
}
|
|
|
|
// Forwarding methods - These forward to the corresponding methods in SDNode.
|
|
inline unsigned getOpcode() const;
|
|
inline unsigned getNumOperands() const;
|
|
inline const SDValue &getOperand(unsigned i) const;
|
|
inline uint64_t getConstantOperandVal(unsigned i) const;
|
|
inline bool isTargetMemoryOpcode() const;
|
|
inline bool isTargetOpcode() const;
|
|
inline bool isMachineOpcode() const;
|
|
inline unsigned getMachineOpcode() const;
|
|
inline const DebugLoc &getDebugLoc() const;
|
|
inline void dump() const;
|
|
inline void dumpr() const;
|
|
|
|
/// Return true if this operand (which must be a chain) reaches the
|
|
/// specified operand without crossing any side-effecting instructions.
|
|
/// In practice, this looks through token factors and non-volatile loads.
|
|
/// In order to remain efficient, this only
|
|
/// looks a couple of nodes in, it does not do an exhaustive search.
|
|
bool reachesChainWithoutSideEffects(SDValue Dest,
|
|
unsigned Depth = 2) const;
|
|
|
|
/// Return true if there are no nodes using value ResNo of Node.
|
|
inline bool use_empty() const;
|
|
|
|
/// Return true if there is exactly one node using value ResNo of Node.
|
|
inline bool hasOneUse() const;
|
|
};
|
|
|
|
|
|
template<> struct DenseMapInfo<SDValue> {
|
|
static inline SDValue getEmptyKey() {
|
|
SDValue V;
|
|
V.ResNo = -1U;
|
|
return V;
|
|
}
|
|
static inline SDValue getTombstoneKey() {
|
|
SDValue V;
|
|
V.ResNo = -2U;
|
|
return V;
|
|
}
|
|
static unsigned getHashValue(const SDValue &Val) {
|
|
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
|
|
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
|
|
}
|
|
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
template <> struct isPodLike<SDValue> { static const bool value = true; };
|
|
|
|
|
|
/// Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDValue> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(SDValue &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDValue> {
|
|
typedef /*const*/ SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(const SDValue &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
|
|
/// Represents a use of a SDNode. This class holds an SDValue,
|
|
/// which records the SDNode being used and the result number, a
|
|
/// pointer to the SDNode using the value, and Next and Prev pointers,
|
|
/// which link together all the uses of an SDNode.
|
|
///
|
|
class SDUse {
|
|
/// Val - The value being used.
|
|
SDValue Val;
|
|
/// User - The user of this value.
|
|
SDNode *User;
|
|
/// Prev, Next - Pointers to the uses list of the SDNode referred by
|
|
/// this operand.
|
|
SDUse **Prev, *Next;
|
|
|
|
SDUse(const SDUse &U) = delete;
|
|
void operator=(const SDUse &U) = delete;
|
|
|
|
public:
|
|
SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}
|
|
|
|
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
|
|
operator const SDValue&() const { return Val; }
|
|
|
|
/// If implicit conversion to SDValue doesn't work, the get() method returns
|
|
/// the SDValue.
|
|
const SDValue &get() const { return Val; }
|
|
|
|
/// This returns the SDNode that contains this Use.
|
|
SDNode *getUser() { return User; }
|
|
|
|
/// Get the next SDUse in the use list.
|
|
SDUse *getNext() const { return Next; }
|
|
|
|
/// Convenience function for get().getNode().
|
|
SDNode *getNode() const { return Val.getNode(); }
|
|
/// Convenience function for get().getResNo().
|
|
unsigned getResNo() const { return Val.getResNo(); }
|
|
/// Convenience function for get().getValueType().
|
|
EVT getValueType() const { return Val.getValueType(); }
|
|
|
|
/// Convenience function for get().operator==
|
|
bool operator==(const SDValue &V) const {
|
|
return Val == V;
|
|
}
|
|
|
|
/// Convenience function for get().operator!=
|
|
bool operator!=(const SDValue &V) const {
|
|
return Val != V;
|
|
}
|
|
|
|
/// Convenience function for get().operator<
|
|
bool operator<(const SDValue &V) const {
|
|
return Val < V;
|
|
}
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
friend class SDNode;
|
|
|
|
void setUser(SDNode *p) { User = p; }
|
|
|
|
/// Remove this use from its existing use list, assign it the
|
|
/// given value, and add it to the new value's node's use list.
|
|
inline void set(const SDValue &V);
|
|
/// Like set, but only supports initializing a newly-allocated
|
|
/// SDUse with a non-null value.
|
|
inline void setInitial(const SDValue &V);
|
|
/// Like set, but only sets the Node portion of the value,
|
|
/// leaving the ResNo portion unmodified.
|
|
inline void setNode(SDNode *N);
|
|
|
|
void addToList(SDUse **List) {
|
|
Next = *List;
|
|
if (Next) Next->Prev = &Next;
|
|
Prev = List;
|
|
*List = this;
|
|
}
|
|
|
|
void removeFromList() {
|
|
*Prev = Next;
|
|
if (Next) Next->Prev = Prev;
|
|
}
|
|
};
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDUse> {
|
|
typedef SDNode* SimpleType;
|
|
static SimpleType getSimplifiedValue(SDUse &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
|
|
|
|
/// Represents one node in the SelectionDAG.
|
|
///
|
|
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
|
|
private:
|
|
/// The operation that this node performs.
|
|
int16_t NodeType;
|
|
|
|
/// This is true if OperandList was new[]'d. If true,
|
|
/// then they will be delete[]'d when the node is destroyed.
|
|
uint16_t OperandsNeedDelete : 1;
|
|
|
|
/// This tracks whether this node has one or more dbg_value
|
|
/// nodes corresponding to it.
|
|
uint16_t HasDebugValue : 1;
|
|
|
|
protected:
|
|
/// This member is defined by this class, but is not used for
|
|
/// anything. Subclasses can use it to hold whatever state they find useful.
|
|
/// This field is initialized to zero by the ctor.
|
|
uint16_t SubclassData : 14;
|
|
|
|
private:
|
|
/// Unique id per SDNode in the DAG.
|
|
int NodeId;
|
|
|
|
/// The values that are used by this operation.
|
|
SDUse *OperandList;
|
|
|
|
/// The types of the values this node defines. SDNode's may
|
|
/// define multiple values simultaneously.
|
|
const EVT *ValueList;
|
|
|
|
/// List of uses for this SDNode.
|
|
SDUse *UseList;
|
|
|
|
/// The number of entries in the Operand/Value list.
|
|
unsigned short NumOperands, NumValues;
|
|
|
|
/// Source line information.
|
|
DebugLoc debugLoc;
|
|
|
|
// The ordering of the SDNodes. It roughly corresponds to the ordering of the
|
|
// original LLVM instructions.
|
|
// This is used for turning off scheduling, because we'll forgo
|
|
// the normal scheduling algorithms and output the instructions according to
|
|
// this ordering.
|
|
unsigned IROrder;
|
|
|
|
/// Return a pointer to the specified value type.
|
|
static const EVT *getValueTypeList(EVT VT);
|
|
|
|
friend class SelectionDAG;
|
|
friend struct ilist_traits<SDNode>;
|
|
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors
|
|
//
|
|
|
|
/// Return the SelectionDAG opcode value for this node. For
|
|
/// pre-isel nodes (those for which isMachineOpcode returns false), these
|
|
/// are the opcode values in the ISD and <target>ISD namespaces. For
|
|
/// post-isel opcodes, see getMachineOpcode.
|
|
unsigned getOpcode() const { return (unsigned short)NodeType; }
|
|
|
|
/// Test if this node has a target-specific opcode (in the
|
|
/// \<target\>ISD namespace).
|
|
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
|
|
|
|
/// Test if this node has a target-specific
|
|
/// memory-referencing opcode (in the \<target\>ISD namespace and
|
|
/// greater than FIRST_TARGET_MEMORY_OPCODE).
|
|
bool isTargetMemoryOpcode() const {
|
|
return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
|
|
}
|
|
|
|
/// Test if this node is a memory intrinsic (with valid pointer information).
|
|
/// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
|
|
/// non-memory intrinsics (with chains) that are not really instances of
|
|
/// MemSDNode. For such nodes, we need some extra state to determine the
|
|
/// proper classof relationship.
|
|
bool isMemIntrinsic() const {
|
|
return (NodeType == ISD::INTRINSIC_W_CHAIN ||
|
|
NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
|
|
}
|
|
|
|
/// Test if this node has a post-isel opcode, directly
|
|
/// corresponding to a MachineInstr opcode.
|
|
bool isMachineOpcode() const { return NodeType < 0; }
|
|
|
|
/// This may only be called if isMachineOpcode returns
|
|
/// true. It returns the MachineInstr opcode value that the node's opcode
|
|
/// corresponds to.
|
|
unsigned getMachineOpcode() const {
|
|
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
|
|
return ~NodeType;
|
|
}
|
|
|
|
/// Get this bit.
|
|
bool getHasDebugValue() const { return HasDebugValue; }
|
|
|
|
/// Set this bit.
|
|
void setHasDebugValue(bool b) { HasDebugValue = b; }
|
|
|
|
/// Return true if there are no uses of this node.
|
|
bool use_empty() const { return UseList == nullptr; }
|
|
|
|
/// Return true if there is exactly one use of this node.
|
|
bool hasOneUse() const {
|
|
return !use_empty() && std::next(use_begin()) == use_end();
|
|
}
|
|
|
|
/// Return the number of uses of this node. This method takes
|
|
/// time proportional to the number of uses.
|
|
size_t use_size() const { return std::distance(use_begin(), use_end()); }
|
|
|
|
/// Return the unique node id.
|
|
int getNodeId() const { return NodeId; }
|
|
|
|
/// Set unique node id.
|
|
void setNodeId(int Id) { NodeId = Id; }
|
|
|
|
/// Return the node ordering.
|
|
unsigned getIROrder() const { return IROrder; }
|
|
|
|
/// Set the node ordering.
|
|
void setIROrder(unsigned Order) { IROrder = Order; }
|
|
|
|
/// Return the source location info.
|
|
const DebugLoc &getDebugLoc() const { return debugLoc; }
|
|
|
|
/// Set source location info. Try to avoid this, putting
|
|
/// it in the constructor is preferable.
|
|
void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
|
|
|
|
/// This class provides iterator support for SDUse
|
|
/// operands that use a specific SDNode.
|
|
class use_iterator
|
|
: public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
|
|
SDUse *Op;
|
|
explicit use_iterator(SDUse *op) : Op(op) {
|
|
}
|
|
friend class SDNode;
|
|
public:
|
|
typedef std::iterator<std::forward_iterator_tag,
|
|
SDUse, ptrdiff_t>::reference reference;
|
|
typedef std::iterator<std::forward_iterator_tag,
|
|
SDUse, ptrdiff_t>::pointer pointer;
|
|
|
|
use_iterator(const use_iterator &I) : Op(I.Op) {}
|
|
use_iterator() : Op(nullptr) {}
|
|
|
|
bool operator==(const use_iterator &x) const {
|
|
return Op == x.Op;
|
|
}
|
|
bool operator!=(const use_iterator &x) const {
|
|
return !operator==(x);
|
|
}
|
|
|
|
/// Return true if this iterator is at the end of uses list.
|
|
bool atEnd() const { return Op == nullptr; }
|
|
|
|
// Iterator traversal: forward iteration only.
|
|
use_iterator &operator++() { // Preincrement
|
|
assert(Op && "Cannot increment end iterator!");
|
|
Op = Op->getNext();
|
|
return *this;
|
|
}
|
|
|
|
use_iterator operator++(int) { // Postincrement
|
|
use_iterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
/// Retrieve a pointer to the current user node.
|
|
SDNode *operator*() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return Op->getUser();
|
|
}
|
|
|
|
SDNode *operator->() const { return operator*(); }
|
|
|
|
SDUse &getUse() const { return *Op; }
|
|
|
|
/// Retrieve the operand # of this use in its user.
|
|
unsigned getOperandNo() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return (unsigned)(Op - Op->getUser()->OperandList);
|
|
}
|
|
};
|
|
|
|
/// Provide iteration support to walk over all uses of an SDNode.
|
|
use_iterator use_begin() const {
|
|
return use_iterator(UseList);
|
|
}
|
|
|
|
static use_iterator use_end() { return use_iterator(nullptr); }
|
|
|
|
inline iterator_range<use_iterator> uses() {
|
|
return iterator_range<use_iterator>(use_begin(), use_end());
|
|
}
|
|
inline iterator_range<use_iterator> uses() const {
|
|
return iterator_range<use_iterator>(use_begin(), use_end());
|
|
}
|
|
|
|
/// Return true if there are exactly NUSES uses of the indicated value.
|
|
/// This method ignores uses of other values defined by this operation.
|
|
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
|
|
|
|
/// Return true if there are any use of the indicated value.
|
|
/// This method ignores uses of other values defined by this operation.
|
|
bool hasAnyUseOfValue(unsigned Value) const;
|
|
|
|
/// Return true if this node is the only use of N.
|
|
bool isOnlyUserOf(SDNode *N) const;
|
|
|
|
/// Return true if this node is an operand of N.
|
|
bool isOperandOf(SDNode *N) const;
|
|
|
|
/// Return true if this node is a predecessor of N.
|
|
/// NOTE: Implemented on top of hasPredecessor and every bit as
|
|
/// expensive. Use carefully.
|
|
bool isPredecessorOf(const SDNode *N) const {
|
|
return N->hasPredecessor(this);
|
|
}
|
|
|
|
/// Return true if N is a predecessor of this node.
|
|
/// N is either an operand of this node, or can be reached by recursively
|
|
/// traversing up the operands.
|
|
/// NOTE: This is an expensive method. Use it carefully.
|
|
bool hasPredecessor(const SDNode *N) const;
|
|
|
|
/// Return true if N is a predecessor of this node.
|
|
/// N is either an operand of this node, or can be reached by recursively
|
|
/// traversing up the operands.
|
|
/// In this helper the Visited and worklist sets are held externally to
|
|
/// cache predecessors over multiple invocations. If you want to test for
|
|
/// multiple predecessors this method is preferable to multiple calls to
|
|
/// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
|
|
/// changes.
|
|
/// NOTE: This is still very expensive. Use carefully.
|
|
bool hasPredecessorHelper(const SDNode *N,
|
|
SmallPtrSetImpl<const SDNode *> &Visited,
|
|
SmallVectorImpl<const SDNode *> &Worklist) const;
|
|
|
|
/// Return the number of values used by this operation.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// Helper method returns the integer value of a ConstantSDNode operand.
|
|
uint64_t getConstantOperandVal(unsigned Num) const;
|
|
|
|
const SDValue &getOperand(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return OperandList[Num];
|
|
}
|
|
|
|
typedef SDUse* op_iterator;
|
|
op_iterator op_begin() const { return OperandList; }
|
|
op_iterator op_end() const { return OperandList+NumOperands; }
|
|
ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
|
|
|
|
SDVTList getVTList() const {
|
|
SDVTList X = { ValueList, NumValues };
|
|
return X;
|
|
}
|
|
|
|
/// If this node has a glue operand, return the node
|
|
/// to which the glue operand points. Otherwise return NULL.
|
|
SDNode *getGluedNode() const {
|
|
if (getNumOperands() != 0 &&
|
|
getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return getOperand(getNumOperands()-1).getNode();
|
|
return nullptr;
|
|
}
|
|
|
|
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
|
// real target node glued to it. If so, return the target node.
|
|
const SDNode *getGluedMachineNode() const {
|
|
const SDNode *FoundNode = this;
|
|
|
|
// Climb up glue edges until a machine-opcode node is found, or the
|
|
// end of the chain is reached.
|
|
while (!FoundNode->isMachineOpcode()) {
|
|
const SDNode *N = FoundNode->getGluedNode();
|
|
if (!N) break;
|
|
FoundNode = N;
|
|
}
|
|
|
|
return FoundNode;
|
|
}
|
|
|
|
/// If this node has a glue value with a user, return
|
|
/// the user (there is at most one). Otherwise return NULL.
|
|
SDNode *getGluedUser() const {
|
|
for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
|
|
if (UI.getUse().get().getValueType() == MVT::Glue)
|
|
return *UI;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the number of values defined/returned by this operator.
|
|
unsigned getNumValues() const { return NumValues; }
|
|
|
|
/// Return the type of a specified result.
|
|
EVT getValueType(unsigned ResNo) const {
|
|
assert(ResNo < NumValues && "Illegal result number!");
|
|
return ValueList[ResNo];
|
|
}
|
|
|
|
/// Return the type of a specified result as a simple type.
|
|
MVT getSimpleValueType(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSimpleVT();
|
|
}
|
|
|
|
/// Returns MVT::getSizeInBits(getValueType(ResNo)).
|
|
unsigned getValueSizeInBits(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSizeInBits();
|
|
}
|
|
|
|
typedef const EVT* value_iterator;
|
|
value_iterator value_begin() const { return ValueList; }
|
|
value_iterator value_end() const { return ValueList+NumValues; }
|
|
|
|
/// Return the opcode of this operation for printing.
|
|
std::string getOperationName(const SelectionDAG *G = nullptr) const;
|
|
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
|
|
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
|
|
void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
|
|
|
|
/// Print a SelectionDAG node and all children down to
|
|
/// the leaves. The given SelectionDAG allows target-specific nodes
|
|
/// to be printed in human-readable form. Unlike printr, this will
|
|
/// print the whole DAG, including children that appear multiple
|
|
/// times.
|
|
///
|
|
void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
|
|
|
|
/// Print a SelectionDAG node and children up to
|
|
/// depth "depth." The given SelectionDAG allows target-specific
|
|
/// nodes to be printed in human-readable form. Unlike printr, this
|
|
/// will print children that appear multiple times wherever they are
|
|
/// used.
|
|
///
|
|
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
|
|
unsigned depth = 100) const;
|
|
|
|
|
|
/// Dump this node, for debugging.
|
|
void dump() const;
|
|
|
|
/// Dump (recursively) this node and its use-def subgraph.
|
|
void dumpr() const;
|
|
|
|
/// Dump this node, for debugging.
|
|
/// The given SelectionDAG allows target-specific nodes to be printed
|
|
/// in human-readable form.
|
|
void dump(const SelectionDAG *G) const;
|
|
|
|
/// Dump (recursively) this node and its use-def subgraph.
|
|
/// The given SelectionDAG allows target-specific nodes to be printed
|
|
/// in human-readable form.
|
|
void dumpr(const SelectionDAG *G) const;
|
|
|
|
/// printrFull to dbgs(). The given SelectionDAG allows
|
|
/// target-specific nodes to be printed in human-readable form.
|
|
/// Unlike dumpr, this will print the whole DAG, including children
|
|
/// that appear multiple times.
|
|
void dumprFull(const SelectionDAG *G = nullptr) const;
|
|
|
|
/// printrWithDepth to dbgs(). The given
|
|
/// SelectionDAG allows target-specific nodes to be printed in
|
|
/// human-readable form. Unlike dumpr, this will print children
|
|
/// that appear multiple times wherever they are used.
|
|
///
|
|
void dumprWithDepth(const SelectionDAG *G = nullptr,
|
|
unsigned depth = 100) const;
|
|
|
|
/// Gather unique data for the node.
|
|
void Profile(FoldingSetNodeID &ID) const;
|
|
|
|
/// This method should only be used by the SDUse class.
|
|
void addUse(SDUse &U) { U.addToList(&UseList); }
|
|
|
|
protected:
|
|
static SDVTList getSDVTList(EVT VT) {
|
|
SDVTList Ret = { getValueTypeList(VT), 1 };
|
|
return Ret;
|
|
}
|
|
|
|
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
ArrayRef<SDValue> Ops)
|
|
: NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
|
|
SubclassData(0), NodeId(-1),
|
|
OperandList(Ops.size() ? new SDUse[Ops.size()] : nullptr),
|
|
ValueList(VTs.VTs), UseList(nullptr), NumOperands(Ops.size()),
|
|
NumValues(VTs.NumVTs), debugLoc(std::move(dl)), IROrder(Order) {
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
assert(NumOperands == Ops.size() &&
|
|
"NumOperands wasn't wide enough for its operands!");
|
|
assert(NumValues == VTs.NumVTs &&
|
|
"NumValues wasn't wide enough for its operands!");
|
|
for (unsigned i = 0; i != Ops.size(); ++i) {
|
|
assert(OperandList && "no operands available");
|
|
OperandList[i].setUser(this);
|
|
OperandList[i].setInitial(Ops[i]);
|
|
}
|
|
checkForCycles(this);
|
|
}
|
|
|
|
/// This constructor adds no operands itself; operands can be
|
|
/// set later with InitOperands.
|
|
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
|
|
: NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
|
|
SubclassData(0), NodeId(-1), OperandList(nullptr), ValueList(VTs.VTs),
|
|
UseList(nullptr), NumOperands(0), NumValues(VTs.NumVTs),
|
|
debugLoc(std::move(dl)), IROrder(Order) {
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
assert(NumValues == VTs.NumVTs &&
|
|
"NumValues wasn't wide enough for its operands!");
|
|
}
|
|
|
|
/// Initialize the operands list of this with 1 operand.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
NumOperands = 1;
|
|
OperandList = Ops;
|
|
checkForCycles(this);
|
|
}
|
|
|
|
/// Initialize the operands list of this with 2 operands.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
Ops[1].setUser(this);
|
|
Ops[1].setInitial(Op1);
|
|
NumOperands = 2;
|
|
OperandList = Ops;
|
|
checkForCycles(this);
|
|
}
|
|
|
|
/// Initialize the operands list of this with 3 operands.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
|
|
const SDValue &Op2) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
Ops[1].setUser(this);
|
|
Ops[1].setInitial(Op1);
|
|
Ops[2].setUser(this);
|
|
Ops[2].setInitial(Op2);
|
|
NumOperands = 3;
|
|
OperandList = Ops;
|
|
checkForCycles(this);
|
|
}
|
|
|
|
/// Initialize the operands list of this with 4 operands.
|
|
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
|
|
const SDValue &Op2, const SDValue &Op3) {
|
|
Ops[0].setUser(this);
|
|
Ops[0].setInitial(Op0);
|
|
Ops[1].setUser(this);
|
|
Ops[1].setInitial(Op1);
|
|
Ops[2].setUser(this);
|
|
Ops[2].setInitial(Op2);
|
|
Ops[3].setUser(this);
|
|
Ops[3].setInitial(Op3);
|
|
NumOperands = 4;
|
|
OperandList = Ops;
|
|
checkForCycles(this);
|
|
}
|
|
|
|
/// Initialize the operands list of this with N operands.
|
|
void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
|
|
for (unsigned i = 0; i != N; ++i) {
|
|
Ops[i].setUser(this);
|
|
Ops[i].setInitial(Vals[i]);
|
|
}
|
|
NumOperands = N;
|
|
assert(NumOperands == N &&
|
|
"NumOperands wasn't wide enough for its operands!");
|
|
OperandList = Ops;
|
|
checkForCycles(this);
|
|
}
|
|
|
|
/// Release the operands and set this node to have zero operands.
|
|
void DropOperands();
|
|
};
|
|
|
|
/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
|
|
/// into SDNode creation functions.
|
|
/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
|
|
/// from the original Instruction, and IROrder is the ordinal position of
|
|
/// the instruction.
|
|
/// When an SDNode is created after the DAG is being built, both DebugLoc and
|
|
/// the IROrder are propagated from the original SDNode.
|
|
/// So SDLoc class provides two constructors besides the default one, one to
|
|
/// be used by the DAGBuilder, the other to be used by others.
|
|
class SDLoc {
|
|
private:
|
|
// Ptr could be used for either Instruction* or SDNode*. It is used for
|
|
// Instruction* if IROrder is not -1.
|
|
const void *Ptr;
|
|
int IROrder;
|
|
|
|
public:
|
|
SDLoc() : Ptr(nullptr), IROrder(0) {}
|
|
SDLoc(const SDNode *N) : Ptr(N), IROrder(-1) {
|
|
assert(N && "null SDNode");
|
|
}
|
|
SDLoc(const SDValue V) : Ptr(V.getNode()), IROrder(-1) {
|
|
assert(Ptr && "null SDNode");
|
|
}
|
|
SDLoc(const Instruction *I, int Order) : Ptr(I), IROrder(Order) {
|
|
assert(Order >= 0 && "bad IROrder");
|
|
}
|
|
unsigned getIROrder() {
|
|
if (IROrder >= 0 || Ptr == nullptr) {
|
|
return (unsigned)IROrder;
|
|
}
|
|
const SDNode *N = (const SDNode*)(Ptr);
|
|
return N->getIROrder();
|
|
}
|
|
DebugLoc getDebugLoc() {
|
|
if (!Ptr) {
|
|
return DebugLoc();
|
|
}
|
|
if (IROrder >= 0) {
|
|
const Instruction *I = (const Instruction*)(Ptr);
|
|
return I->getDebugLoc();
|
|
}
|
|
const SDNode *N = (const SDNode*)(Ptr);
|
|
return N->getDebugLoc();
|
|
}
|
|
};
|
|
|
|
|
|
// Define inline functions from the SDValue class.
|
|
|
|
inline SDValue::SDValue(SDNode *node, unsigned resno)
|
|
: Node(node), ResNo(resno) {
|
|
assert((!Node || ResNo < Node->getNumValues()) &&
|
|
"Invalid result number for the given node!");
|
|
assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
|
|
}
|
|
|
|
inline unsigned SDValue::getOpcode() const {
|
|
return Node->getOpcode();
|
|
}
|
|
inline EVT SDValue::getValueType() const {
|
|
return Node->getValueType(ResNo);
|
|
}
|
|
inline unsigned SDValue::getNumOperands() const {
|
|
return Node->getNumOperands();
|
|
}
|
|
inline const SDValue &SDValue::getOperand(unsigned i) const {
|
|
return Node->getOperand(i);
|
|
}
|
|
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
|
|
return Node->getConstantOperandVal(i);
|
|
}
|
|
inline bool SDValue::isTargetOpcode() const {
|
|
return Node->isTargetOpcode();
|
|
}
|
|
inline bool SDValue::isTargetMemoryOpcode() const {
|
|
return Node->isTargetMemoryOpcode();
|
|
}
|
|
inline bool SDValue::isMachineOpcode() const {
|
|
return Node->isMachineOpcode();
|
|
}
|
|
inline unsigned SDValue::getMachineOpcode() const {
|
|
return Node->getMachineOpcode();
|
|
}
|
|
inline bool SDValue::use_empty() const {
|
|
return !Node->hasAnyUseOfValue(ResNo);
|
|
}
|
|
inline bool SDValue::hasOneUse() const {
|
|
return Node->hasNUsesOfValue(1, ResNo);
|
|
}
|
|
inline const DebugLoc &SDValue::getDebugLoc() const {
|
|
return Node->getDebugLoc();
|
|
}
|
|
inline void SDValue::dump() const {
|
|
return Node->dump();
|
|
}
|
|
inline void SDValue::dumpr() const {
|
|
return Node->dumpr();
|
|
}
|
|
// Define inline functions from the SDUse class.
|
|
|
|
inline void SDUse::set(const SDValue &V) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val = V;
|
|
if (V.getNode()) V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setInitial(const SDValue &V) {
|
|
Val = V;
|
|
V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setNode(SDNode *N) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val.setNode(N);
|
|
if (N) N->addUse(*this);
|
|
}
|
|
|
|
/// These are IR-level optimization flags that may be propagated to SDNodes.
|
|
/// TODO: This data structure should be shared by the IR optimizer and the
|
|
/// the backend.
|
|
struct SDNodeFlags {
|
|
private:
|
|
bool NoUnsignedWrap : 1;
|
|
bool NoSignedWrap : 1;
|
|
bool Exact : 1;
|
|
bool UnsafeAlgebra : 1;
|
|
bool NoNaNs : 1;
|
|
bool NoInfs : 1;
|
|
bool NoSignedZeros : 1;
|
|
bool AllowReciprocal : 1;
|
|
|
|
public:
|
|
/// Default constructor turns off all optimization flags.
|
|
SDNodeFlags() {
|
|
NoUnsignedWrap = false;
|
|
NoSignedWrap = false;
|
|
Exact = false;
|
|
UnsafeAlgebra = false;
|
|
NoNaNs = false;
|
|
NoInfs = false;
|
|
NoSignedZeros = false;
|
|
AllowReciprocal = false;
|
|
}
|
|
|
|
// These are mutators for each flag.
|
|
void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
|
|
void setNoSignedWrap(bool b) { NoSignedWrap = b; }
|
|
void setExact(bool b) { Exact = b; }
|
|
void setUnsafeAlgebra(bool b) { UnsafeAlgebra = b; }
|
|
void setNoNaNs(bool b) { NoNaNs = b; }
|
|
void setNoInfs(bool b) { NoInfs = b; }
|
|
void setNoSignedZeros(bool b) { NoSignedZeros = b; }
|
|
void setAllowReciprocal(bool b) { AllowReciprocal = b; }
|
|
|
|
// These are accessors for each flag.
|
|
bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
|
|
bool hasNoSignedWrap() const { return NoSignedWrap; }
|
|
bool hasExact() const { return Exact; }
|
|
bool hasUnsafeAlgebra() const { return UnsafeAlgebra; }
|
|
bool hasNoNaNs() const { return NoNaNs; }
|
|
bool hasNoInfs() const { return NoInfs; }
|
|
bool hasNoSignedZeros() const { return NoSignedZeros; }
|
|
bool hasAllowReciprocal() const { return AllowReciprocal; }
|
|
|
|
/// Return a raw encoding of the flags.
|
|
/// This function should only be used to add data to the NodeID value.
|
|
unsigned getRawFlags() const {
|
|
return (NoUnsignedWrap << 0) | (NoSignedWrap << 1) | (Exact << 2) |
|
|
(UnsafeAlgebra << 3) | (NoNaNs << 4) | (NoInfs << 5) |
|
|
(NoSignedZeros << 6) | (AllowReciprocal << 7);
|
|
}
|
|
};
|
|
|
|
/// Returns true if the opcode is an operation with optional optimization flags.
|
|
static bool mayHaveOptimizationFlags(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::MUL:
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::SHL:
|
|
case ISD::FADD:
|
|
case ISD::FDIV:
|
|
case ISD::FMUL:
|
|
case ISD::FREM:
|
|
case ISD::FSUB:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
/// This class is an extension of SDNode used from instructions that may have
|
|
/// associated extra flags.
|
|
class SDNodeWithFlags : public SDNode {
|
|
public:
|
|
SDNodeFlags Flags;
|
|
SDNodeWithFlags(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
ArrayRef<SDValue> Ops, const SDNodeFlags &NodeFlags)
|
|
: SDNode(Opc, Order, dl, VTs, Ops) {
|
|
Flags = NodeFlags;
|
|
}
|
|
|
|
// This is used to implement dyn_cast, isa, and other type queries.
|
|
static bool classof(const SDNode *N) {
|
|
return mayHaveOptimizationFlags(N->getOpcode());
|
|
}
|
|
};
|
|
|
|
/// This class is used for single-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class UnarySDNode : public SDNode {
|
|
SDUse Op;
|
|
public:
|
|
UnarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
SDValue X)
|
|
: SDNode(Opc, Order, dl, VTs) {
|
|
InitOperands(&Op, X);
|
|
}
|
|
};
|
|
|
|
/// This class is used for two-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class BinarySDNode : public SDNode {
|
|
SDUse Ops[2];
|
|
public:
|
|
BinarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
SDValue X, SDValue Y)
|
|
: SDNode(Opc, Order, dl, VTs) {
|
|
InitOperands(Ops, X, Y);
|
|
}
|
|
};
|
|
|
|
/// This class is used for three-operand SDNodes. This is solely
|
|
/// to allow co-allocation of node operands with the node itself.
|
|
class TernarySDNode : public SDNode {
|
|
SDUse Ops[3];
|
|
public:
|
|
TernarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
SDValue X, SDValue Y, SDValue Z)
|
|
: SDNode(Opc, Order, dl, VTs) {
|
|
InitOperands(Ops, X, Y, Z);
|
|
}
|
|
};
|
|
|
|
|
|
/// This class is used to form a handle around another node that
|
|
/// is persistent and is updated across invocations of replaceAllUsesWith on its
|
|
/// operand. This node should be directly created by end-users and not added to
|
|
/// the AllNodes list.
|
|
class HandleSDNode : public SDNode {
|
|
SDUse Op;
|
|
public:
|
|
explicit HandleSDNode(SDValue X)
|
|
: SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
|
|
InitOperands(&Op, X);
|
|
}
|
|
~HandleSDNode();
|
|
const SDValue &getValue() const { return Op; }
|
|
};
|
|
|
|
class AddrSpaceCastSDNode : public UnarySDNode {
|
|
private:
|
|
unsigned SrcAddrSpace;
|
|
unsigned DestAddrSpace;
|
|
|
|
public:
|
|
AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, SDValue X,
|
|
unsigned SrcAS, unsigned DestAS);
|
|
|
|
unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
|
|
unsigned getDestAddressSpace() const { return DestAddrSpace; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ADDRSPACECAST;
|
|
}
|
|
};
|
|
|
|
/// Abstact virtual class for operations for memory operations
|
|
class MemSDNode : public SDNode {
|
|
private:
|
|
// VT of in-memory value.
|
|
EVT MemoryVT;
|
|
|
|
protected:
|
|
/// Memory reference information.
|
|
MachineMemOperand *MMO;
|
|
|
|
public:
|
|
MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
EVT MemoryVT, MachineMemOperand *MMO);
|
|
|
|
MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
ArrayRef<SDValue> Ops, EVT MemoryVT, MachineMemOperand *MMO);
|
|
|
|
bool readMem() const { return MMO->isLoad(); }
|
|
bool writeMem() const { return MMO->isStore(); }
|
|
|
|
/// Returns alignment and volatility of the memory access
|
|
unsigned getOriginalAlignment() const {
|
|
return MMO->getBaseAlignment();
|
|
}
|
|
unsigned getAlignment() const {
|
|
return MMO->getAlignment();
|
|
}
|
|
|
|
/// Return the SubclassData value, which contains an
|
|
/// encoding of the volatile flag, as well as bits used by subclasses. This
|
|
/// function should only be used to compute a FoldingSetNodeID value.
|
|
unsigned getRawSubclassData() const {
|
|
return SubclassData;
|
|
}
|
|
|
|
// We access subclass data here so that we can check consistency
|
|
// with MachineMemOperand information.
|
|
bool isVolatile() const { return (SubclassData >> 5) & 1; }
|
|
bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
|
|
bool isInvariant() const { return (SubclassData >> 7) & 1; }
|
|
|
|
AtomicOrdering getOrdering() const {
|
|
return AtomicOrdering((SubclassData >> 8) & 15);
|
|
}
|
|
SynchronizationScope getSynchScope() const {
|
|
return SynchronizationScope((SubclassData >> 12) & 1);
|
|
}
|
|
|
|
// Returns the offset from the location of the access.
|
|
int64_t getSrcValueOffset() const { return MMO->getOffset(); }
|
|
|
|
/// Returns the AA info that describes the dereference.
|
|
AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
|
|
|
|
/// Returns the Ranges that describes the dereference.
|
|
const MDNode *getRanges() const { return MMO->getRanges(); }
|
|
|
|
/// Return the type of the in-memory value.
|
|
EVT getMemoryVT() const { return MemoryVT; }
|
|
|
|
/// Return a MachineMemOperand object describing the memory
|
|
/// reference performed by operation.
|
|
MachineMemOperand *getMemOperand() const { return MMO; }
|
|
|
|
const MachinePointerInfo &getPointerInfo() const {
|
|
return MMO->getPointerInfo();
|
|
}
|
|
|
|
/// Return the address space for the associated pointer
|
|
unsigned getAddressSpace() const {
|
|
return getPointerInfo().getAddrSpace();
|
|
}
|
|
|
|
/// Update this MemSDNode's MachineMemOperand information
|
|
/// to reflect the alignment of NewMMO, if it has a greater alignment.
|
|
/// This must only be used when the new alignment applies to all users of
|
|
/// this MachineMemOperand.
|
|
void refineAlignment(const MachineMemOperand *NewMMO) {
|
|
MMO->refineAlignment(NewMMO);
|
|
}
|
|
|
|
const SDValue &getChain() const { return getOperand(0); }
|
|
const SDValue &getBasePtr() const {
|
|
return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
|
|
// with either an intrinsic or a target opcode.
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE ||
|
|
N->getOpcode() == ISD::PREFETCH ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD ||
|
|
N->getOpcode() == ISD::ATOMIC_STORE ||
|
|
N->getOpcode() == ISD::MLOAD ||
|
|
N->getOpcode() == ISD::MSTORE ||
|
|
N->getOpcode() == ISD::MGATHER ||
|
|
N->getOpcode() == ISD::MSCATTER ||
|
|
N->isMemIntrinsic() ||
|
|
N->isTargetMemoryOpcode();
|
|
}
|
|
};
|
|
|
|
/// A SDNode reprenting atomic operations.
|
|
class AtomicSDNode : public MemSDNode {
|
|
SDUse Ops[4];
|
|
|
|
/// For cmpxchg instructions, the ordering requirements when a store does not
|
|
/// occur.
|
|
AtomicOrdering FailureOrdering;
|
|
|
|
void InitAtomic(AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SynchronizationScope SynchScope) {
|
|
// This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
|
|
assert((SuccessOrdering & 15) == SuccessOrdering &&
|
|
"Ordering may not require more than 4 bits!");
|
|
assert((FailureOrdering & 15) == FailureOrdering &&
|
|
"Ordering may not require more than 4 bits!");
|
|
assert((SynchScope & 1) == SynchScope &&
|
|
"SynchScope may not require more than 1 bit!");
|
|
SubclassData |= SuccessOrdering << 8;
|
|
SubclassData |= SynchScope << 12;
|
|
this->FailureOrdering = FailureOrdering;
|
|
assert(getSuccessOrdering() == SuccessOrdering &&
|
|
"Ordering encoding error!");
|
|
assert(getFailureOrdering() == FailureOrdering &&
|
|
"Ordering encoding error!");
|
|
assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
|
|
}
|
|
|
|
public:
|
|
// Opc: opcode for atomic
|
|
// VTL: value type list
|
|
// Chain: memory chain for operaand
|
|
// Ptr: address to update as a SDValue
|
|
// Cmp: compare value
|
|
// Swp: swap value
|
|
// SrcVal: address to update as a Value (used for MemOperand)
|
|
// Align: alignment of memory
|
|
AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
|
|
EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp,
|
|
MachineMemOperand *MMO, AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope)
|
|
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
|
|
InitAtomic(Ordering, Ordering, SynchScope);
|
|
InitOperands(Ops, Chain, Ptr, Cmp, Swp);
|
|
}
|
|
AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
|
|
EVT MemVT,
|
|
SDValue Chain, SDValue Ptr,
|
|
SDValue Val, MachineMemOperand *MMO,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope)
|
|
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
|
|
InitAtomic(Ordering, Ordering, SynchScope);
|
|
InitOperands(Ops, Chain, Ptr, Val);
|
|
}
|
|
AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
|
|
EVT MemVT,
|
|
SDValue Chain, SDValue Ptr,
|
|
MachineMemOperand *MMO,
|
|
AtomicOrdering Ordering, SynchronizationScope SynchScope)
|
|
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
|
|
InitAtomic(Ordering, Ordering, SynchScope);
|
|
InitOperands(Ops, Chain, Ptr);
|
|
}
|
|
AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL, EVT MemVT,
|
|
const SDValue* AllOps, SDUse *DynOps, unsigned NumOps,
|
|
MachineMemOperand *MMO,
|
|
AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
|
|
SynchronizationScope SynchScope)
|
|
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
|
|
InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
|
|
assert((DynOps || NumOps <= array_lengthof(Ops)) &&
|
|
"Too many ops for internal storage!");
|
|
InitOperands(DynOps ? DynOps : Ops, AllOps, NumOps);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getVal() const { return getOperand(2); }
|
|
|
|
AtomicOrdering getSuccessOrdering() const {
|
|
return getOrdering();
|
|
}
|
|
|
|
// Not quite enough room in SubclassData for everything, so failure gets its
|
|
// own field.
|
|
AtomicOrdering getFailureOrdering() const {
|
|
return FailureOrdering;
|
|
}
|
|
|
|
bool isCompareAndSwap() const {
|
|
unsigned Op = getOpcode();
|
|
return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD ||
|
|
N->getOpcode() == ISD::ATOMIC_STORE;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for target intrinsics that touch
|
|
/// memory and need an associated MachineMemOperand. Its opcode may be
|
|
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
|
|
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
|
|
class MemIntrinsicSDNode : public MemSDNode {
|
|
public:
|
|
MemIntrinsicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
ArrayRef<SDValue> Ops, EVT MemoryVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(Opc, Order, dl, VTs, Ops, MemoryVT, MMO) {
|
|
SubclassData |= 1u << 13;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
// We lower some target intrinsics to their target opcode
|
|
// early a node with a target opcode can be of this class
|
|
return N->isMemIntrinsic() ||
|
|
N->getOpcode() == ISD::PREFETCH ||
|
|
N->isTargetMemoryOpcode();
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used to implement the code generator
|
|
/// support for the llvm IR shufflevector instruction. It combines elements
|
|
/// from two input vectors into a new input vector, with the selection and
|
|
/// ordering of elements determined by an array of integers, referred to as
|
|
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
|
|
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
|
|
/// An index of -1 is treated as undef, such that the code generator may put
|
|
/// any value in the corresponding element of the result.
|
|
class ShuffleVectorSDNode : public SDNode {
|
|
SDUse Ops[2];
|
|
|
|
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
|
|
// is freed when the SelectionDAG object is destroyed.
|
|
const int *Mask;
|
|
protected:
|
|
friend class SelectionDAG;
|
|
ShuffleVectorSDNode(EVT VT, unsigned Order, DebugLoc dl, SDValue N1,
|
|
SDValue N2, const int *M)
|
|
: SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {
|
|
InitOperands(Ops, N1, N2);
|
|
}
|
|
public:
|
|
|
|
ArrayRef<int> getMask() const {
|
|
EVT VT = getValueType(0);
|
|
return makeArrayRef(Mask, VT.getVectorNumElements());
|
|
}
|
|
int getMaskElt(unsigned Idx) const {
|
|
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
|
|
return Mask[Idx];
|
|
}
|
|
|
|
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
|
|
int getSplatIndex() const {
|
|
assert(isSplat() && "Cannot get splat index for non-splat!");
|
|
EVT VT = getValueType(0);
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
|
|
if (Mask[i] >= 0)
|
|
return Mask[i];
|
|
}
|
|
llvm_unreachable("Splat with all undef indices?");
|
|
}
|
|
static bool isSplatMask(const int *Mask, EVT VT);
|
|
|
|
/// Change values in a shuffle permute mask assuming
|
|
/// the two vector operands have swapped position.
|
|
static void commuteMask(SmallVectorImpl<int> &Mask) {
|
|
unsigned NumElems = Mask.size();
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int idx = Mask[i];
|
|
if (idx < 0)
|
|
continue;
|
|
else if (idx < (int)NumElems)
|
|
Mask[i] = idx + NumElems;
|
|
else
|
|
Mask[i] = idx - NumElems;
|
|
}
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
|
|
}
|
|
};
|
|
|
|
class ConstantSDNode : public SDNode {
|
|
const ConstantInt *Value;
|
|
friend class SelectionDAG;
|
|
ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
|
|
DebugLoc DL, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
|
|
0, DL, getSDVTList(VT)), Value(val) {
|
|
SubclassData |= (uint16_t)isOpaque;
|
|
}
|
|
public:
|
|
|
|
const ConstantInt *getConstantIntValue() const { return Value; }
|
|
const APInt &getAPIntValue() const { return Value->getValue(); }
|
|
uint64_t getZExtValue() const { return Value->getZExtValue(); }
|
|
int64_t getSExtValue() const { return Value->getSExtValue(); }
|
|
|
|
bool isOne() const { return Value->isOne(); }
|
|
bool isNullValue() const { return Value->isNullValue(); }
|
|
bool isAllOnesValue() const { return Value->isAllOnesValue(); }
|
|
|
|
bool isOpaque() const { return SubclassData & 1; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Constant ||
|
|
N->getOpcode() == ISD::TargetConstant;
|
|
}
|
|
};
|
|
|
|
class ConstantFPSDNode : public SDNode {
|
|
const ConstantFP *Value;
|
|
friend class SelectionDAG;
|
|
ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
|
|
0, DebugLoc(), getSDVTList(VT)), Value(val) {
|
|
}
|
|
public:
|
|
|
|
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
|
|
const ConstantFP *getConstantFPValue() const { return Value; }
|
|
|
|
/// Return true if the value is positive or negative zero.
|
|
bool isZero() const { return Value->isZero(); }
|
|
|
|
/// Return true if the value is a NaN.
|
|
bool isNaN() const { return Value->isNaN(); }
|
|
|
|
/// Return true if the value is an infinity
|
|
bool isInfinity() const { return Value->isInfinity(); }
|
|
|
|
/// Return true if the value is negative.
|
|
bool isNegative() const { return Value->isNegative(); }
|
|
|
|
/// We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
|
|
/// We leave the version with the double argument here because it's just so
|
|
/// convenient to write "2.0" and the like. Without this function we'd
|
|
/// have to duplicate its logic everywhere it's called.
|
|
bool isExactlyValue(double V) const {
|
|
bool ignored;
|
|
APFloat Tmp(V);
|
|
Tmp.convert(Value->getValueAPF().getSemantics(),
|
|
APFloat::rmNearestTiesToEven, &ignored);
|
|
return isExactlyValue(Tmp);
|
|
}
|
|
bool isExactlyValue(const APFloat& V) const;
|
|
|
|
static bool isValueValidForType(EVT VT, const APFloat& Val);
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantFP ||
|
|
N->getOpcode() == ISD::TargetConstantFP;
|
|
}
|
|
};
|
|
|
|
class GlobalAddressSDNode : public SDNode {
|
|
const GlobalValue *TheGlobal;
|
|
int64_t Offset;
|
|
unsigned char TargetFlags;
|
|
friend class SelectionDAG;
|
|
GlobalAddressSDNode(unsigned Opc, unsigned Order, DebugLoc DL,
|
|
const GlobalValue *GA, EVT VT, int64_t o,
|
|
unsigned char TargetFlags);
|
|
public:
|
|
|
|
const GlobalValue *getGlobal() const { return TheGlobal; }
|
|
int64_t getOffset() const { return Offset; }
|
|
unsigned char getTargetFlags() const { return TargetFlags; }
|
|
// Return the address space this GlobalAddress belongs to.
|
|
unsigned getAddressSpace() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::GlobalAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalAddress ||
|
|
N->getOpcode() == ISD::GlobalTLSAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalTLSAddress;
|
|
}
|
|
};
|
|
|
|
class FrameIndexSDNode : public SDNode {
|
|
int FI;
|
|
friend class SelectionDAG;
|
|
FrameIndexSDNode(int fi, EVT VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
|
|
0, DebugLoc(), getSDVTList(VT)), FI(fi) {
|
|
}
|
|
public:
|
|
|
|
int getIndex() const { return FI; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::FrameIndex ||
|
|
N->getOpcode() == ISD::TargetFrameIndex;
|
|
}
|
|
};
|
|
|
|
class JumpTableSDNode : public SDNode {
|
|
int JTI;
|
|
unsigned char TargetFlags;
|
|
friend class SelectionDAG;
|
|
JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
|
|
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
|
|
0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
|
|
}
|
|
public:
|
|
|
|
int getIndex() const { return JTI; }
|
|
unsigned char getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::JumpTable ||
|
|
N->getOpcode() == ISD::TargetJumpTable;
|
|
}
|
|
};
|
|
|
|
class ConstantPoolSDNode : public SDNode {
|
|
union {
|
|
const Constant *ConstVal;
|
|
MachineConstantPoolValue *MachineCPVal;
|
|
} Val;
|
|
int Offset; // It's a MachineConstantPoolValue if top bit is set.
|
|
unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
|
|
unsigned char TargetFlags;
|
|
friend class SelectionDAG;
|
|
ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
|
|
unsigned Align, unsigned char TF)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
|
|
DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
|
|
TargetFlags(TF) {
|
|
assert(Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
|
|
EVT VT, int o, unsigned Align, unsigned char TF)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
|
|
DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
|
|
TargetFlags(TF) {
|
|
assert(Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
|
|
}
|
|
public:
|
|
|
|
bool isMachineConstantPoolEntry() const {
|
|
return Offset < 0;
|
|
}
|
|
|
|
const Constant *getConstVal() const {
|
|
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.ConstVal;
|
|
}
|
|
|
|
MachineConstantPoolValue *getMachineCPVal() const {
|
|
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.MachineCPVal;
|
|
}
|
|
|
|
int getOffset() const {
|
|
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
|
|
}
|
|
|
|
// Return the alignment of this constant pool object, which is either 0 (for
|
|
// default alignment) or the desired value.
|
|
unsigned getAlignment() const { return Alignment; }
|
|
unsigned char getTargetFlags() const { return TargetFlags; }
|
|
|
|
Type *getType() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantPool ||
|
|
N->getOpcode() == ISD::TargetConstantPool;
|
|
}
|
|
};
|
|
|
|
/// Completely target-dependent object reference.
|
|
class TargetIndexSDNode : public SDNode {
|
|
unsigned char TargetFlags;
|
|
int Index;
|
|
int64_t Offset;
|
|
friend class SelectionDAG;
|
|
public:
|
|
|
|
TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
|
|
: SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
|
|
TargetFlags(TF), Index(Idx), Offset(Ofs) {}
|
|
public:
|
|
|
|
unsigned char getTargetFlags() const { return TargetFlags; }
|
|
int getIndex() const { return Index; }
|
|
int64_t getOffset() const { return Offset; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::TargetIndex;
|
|
}
|
|
};
|
|
|
|
class BasicBlockSDNode : public SDNode {
|
|
MachineBasicBlock *MBB;
|
|
friend class SelectionDAG;
|
|
/// Debug info is meaningful and potentially useful here, but we create
|
|
/// blocks out of order when they're jumped to, which makes it a bit
|
|
/// harder. Let's see if we need it first.
|
|
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
|
|
: SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
|
|
{}
|
|
public:
|
|
|
|
MachineBasicBlock *getBasicBlock() const { return MBB; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BasicBlock;
|
|
}
|
|
};
|
|
|
|
/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
|
|
class BuildVectorSDNode : public SDNode {
|
|
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
|
|
explicit BuildVectorSDNode() = delete;
|
|
public:
|
|
/// Check if this is a constant splat, and if so, find the
|
|
/// smallest element size that splats the vector. If MinSplatBits is
|
|
/// nonzero, the element size must be at least that large. Note that the
|
|
/// splat element may be the entire vector (i.e., a one element vector).
|
|
/// Returns the splat element value in SplatValue. Any undefined bits in
|
|
/// that value are zero, and the corresponding bits in the SplatUndef mask
|
|
/// are set. The SplatBitSize value is set to the splat element size in
|
|
/// bits. HasAnyUndefs is set to true if any bits in the vector are
|
|
/// undefined. isBigEndian describes the endianness of the target.
|
|
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
|
|
unsigned &SplatBitSize, bool &HasAnyUndefs,
|
|
unsigned MinSplatBits = 0,
|
|
bool isBigEndian = false) const;
|
|
|
|
/// \brief Returns the splatted value or a null value if this is not a splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// \brief Returns the splatted constant or null if this is not a constant
|
|
/// splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantSDNode *
|
|
getConstantSplatNode(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// \brief Returns the splatted constant FP or null if this is not a constant
|
|
/// FP splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantFPSDNode *
|
|
getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
|
|
|
|
bool isConstant() const;
|
|
|
|
static inline bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BUILD_VECTOR;
|
|
}
|
|
};
|
|
|
|
/// An SDNode that holds an arbitrary LLVM IR Value. This is
|
|
/// used when the SelectionDAG needs to make a simple reference to something
|
|
/// in the LLVM IR representation.
|
|
///
|
|
class SrcValueSDNode : public SDNode {
|
|
const Value *V;
|
|
friend class SelectionDAG;
|
|
/// Create a SrcValue for a general value.
|
|
explicit SrcValueSDNode(const Value *v)
|
|
: SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
|
|
|
|
public:
|
|
/// Return the contained Value.
|
|
const Value *getValue() const { return V; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::SRCVALUE;
|
|
}
|
|
};
|
|
|
|
class MDNodeSDNode : public SDNode {
|
|
const MDNode *MD;
|
|
friend class SelectionDAG;
|
|
explicit MDNodeSDNode(const MDNode *md)
|
|
: SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
|
|
{}
|
|
public:
|
|
|
|
const MDNode *getMD() const { return MD; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MDNODE_SDNODE;
|
|
}
|
|
};
|
|
|
|
class RegisterSDNode : public SDNode {
|
|
unsigned Reg;
|
|
friend class SelectionDAG;
|
|
RegisterSDNode(unsigned reg, EVT VT)
|
|
: SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
|
|
}
|
|
public:
|
|
|
|
unsigned getReg() const { return Reg; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Register;
|
|
}
|
|
};
|
|
|
|
class RegisterMaskSDNode : public SDNode {
|
|
// The memory for RegMask is not owned by the node.
|
|
const uint32_t *RegMask;
|
|
friend class SelectionDAG;
|
|
RegisterMaskSDNode(const uint32_t *mask)
|
|
: SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
|
|
RegMask(mask) {}
|
|
public:
|
|
|
|
const uint32_t *getRegMask() const { return RegMask; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::RegisterMask;
|
|
}
|
|
};
|
|
|
|
class BlockAddressSDNode : public SDNode {
|
|
const BlockAddress *BA;
|
|
int64_t Offset;
|
|
unsigned char TargetFlags;
|
|
friend class SelectionDAG;
|
|
BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
|
|
int64_t o, unsigned char Flags)
|
|
: SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
|
|
BA(ba), Offset(o), TargetFlags(Flags) {
|
|
}
|
|
public:
|
|
const BlockAddress *getBlockAddress() const { return BA; }
|
|
int64_t getOffset() const { return Offset; }
|
|
unsigned char getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BlockAddress ||
|
|
N->getOpcode() == ISD::TargetBlockAddress;
|
|
}
|
|
};
|
|
|
|
class EHLabelSDNode : public SDNode {
|
|
SDUse Chain;
|
|
MCSymbol *Label;
|
|
friend class SelectionDAG;
|
|
EHLabelSDNode(unsigned Order, DebugLoc dl, SDValue ch, MCSymbol *L)
|
|
: SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {
|
|
InitOperands(&Chain, ch);
|
|
}
|
|
public:
|
|
MCSymbol *getLabel() const { return Label; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::EH_LABEL;
|
|
}
|
|
};
|
|
|
|
class ExternalSymbolSDNode : public SDNode {
|
|
const char *Symbol;
|
|
unsigned char TargetFlags;
|
|
|
|
friend class SelectionDAG;
|
|
ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
|
|
0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
|
|
}
|
|
public:
|
|
|
|
const char *getSymbol() const { return Symbol; }
|
|
unsigned char getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ExternalSymbol ||
|
|
N->getOpcode() == ISD::TargetExternalSymbol;
|
|
}
|
|
};
|
|
|
|
class CondCodeSDNode : public SDNode {
|
|
ISD::CondCode Condition;
|
|
friend class SelectionDAG;
|
|
explicit CondCodeSDNode(ISD::CondCode Cond)
|
|
: SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
|
|
Condition(Cond) {
|
|
}
|
|
public:
|
|
|
|
ISD::CondCode get() const { return Condition; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONDCODE;
|
|
}
|
|
};
|
|
|
|
/// NOTE: avoid using this node as this may disappear in the
|
|
/// future and most targets don't support it.
|
|
class CvtRndSatSDNode : public SDNode {
|
|
ISD::CvtCode CvtCode;
|
|
friend class SelectionDAG;
|
|
explicit CvtRndSatSDNode(EVT VT, unsigned Order, DebugLoc dl,
|
|
ArrayRef<SDValue> Ops, ISD::CvtCode Code)
|
|
: SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT), Ops),
|
|
CvtCode(Code) {
|
|
assert(Ops.size() == 5 && "wrong number of operations");
|
|
}
|
|
public:
|
|
ISD::CvtCode getCvtCode() const { return CvtCode; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONVERT_RNDSAT;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent EVT's, which are used
|
|
/// to parameterize some operations.
|
|
class VTSDNode : public SDNode {
|
|
EVT ValueType;
|
|
friend class SelectionDAG;
|
|
explicit VTSDNode(EVT VT)
|
|
: SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
|
|
ValueType(VT) {
|
|
}
|
|
public:
|
|
|
|
EVT getVT() const { return ValueType; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VALUETYPE;
|
|
}
|
|
};
|
|
|
|
/// Base class for LoadSDNode and StoreSDNode
|
|
class LSBaseSDNode : public MemSDNode {
|
|
//! Operand array for load and store
|
|
/*!
|
|
\note Moving this array to the base class captures more
|
|
common functionality shared between LoadSDNode and
|
|
StoreSDNode
|
|
*/
|
|
SDUse Ops[4];
|
|
public:
|
|
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
|
|
SDValue *Operands, unsigned numOperands,
|
|
SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
SubclassData |= AM << 2;
|
|
assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
|
|
InitOperands(Ops, Operands, numOperands);
|
|
assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
|
|
"Only indexed loads and stores have a non-undef offset operand");
|
|
}
|
|
|
|
const SDValue &getOffset() const {
|
|
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
|
|
}
|
|
|
|
/// Return the addressing mode for this load or store:
|
|
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
|
|
ISD::MemIndexedMode getAddressingMode() const {
|
|
return ISD::MemIndexedMode((SubclassData >> 2) & 7);
|
|
}
|
|
|
|
/// Return true if this is a pre/post inc/dec load/store.
|
|
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
|
|
|
|
/// Return true if this is NOT a pre/post inc/dec load/store.
|
|
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent ISD::LOAD nodes.
|
|
class LoadSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
LoadSDNode(SDValue *ChainPtrOff, unsigned Order, DebugLoc dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: LSBaseSDNode(ISD::LOAD, Order, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) {
|
|
SubclassData |= (unsigned short)ETy;
|
|
assert(getExtensionType() == ETy && "LoadExtType encoding error!");
|
|
assert(readMem() && "Load MachineMemOperand is not a load!");
|
|
assert(!writeMem() && "Load MachineMemOperand is a store!");
|
|
}
|
|
public:
|
|
|
|
/// Return whether this is a plain node,
|
|
/// or one of the varieties of value-extending loads.
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return ISD::LoadExtType(SubclassData & 3);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getOffset() const { return getOperand(2); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent ISD::STORE nodes.
|
|
class StoreSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
StoreSDNode(SDValue *ChainValuePtrOff, unsigned Order, DebugLoc dl,
|
|
SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: LSBaseSDNode(ISD::STORE, Order, dl, ChainValuePtrOff, 4,
|
|
VTs, AM, MemVT, MMO) {
|
|
SubclassData |= (unsigned short)isTrunc;
|
|
assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
|
|
assert(!readMem() && "Store MachineMemOperand is a load!");
|
|
assert(writeMem() && "Store MachineMemOperand is not a store!");
|
|
}
|
|
public:
|
|
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return SubclassData & 1; }
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getOffset() const { return getOperand(3); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// This base class is used to represent MLOAD and MSTORE nodes
|
|
class MaskedLoadStoreSDNode : public MemSDNode {
|
|
// Operands
|
|
SDUse Ops[4];
|
|
public:
|
|
friend class SelectionDAG;
|
|
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
|
|
SDValue *Operands, unsigned numOperands,
|
|
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
InitOperands(Ops, Operands, numOperands);
|
|
}
|
|
|
|
// In the both nodes address is Op1, mask is Op2:
|
|
// MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
|
|
// MaskedStoreSDNode (Chain, ptr, mask, data)
|
|
// Mask is a vector of i1 elements
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getMask() const { return getOperand(2); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MLOAD ||
|
|
N->getOpcode() == ISD::MSTORE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MLOAD node
|
|
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
MaskedLoadSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
|
|
unsigned numOperands, SDVTList VTs, ISD::LoadExtType ETy,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
|
|
VTs, MemVT, MMO) {
|
|
SubclassData |= (unsigned short)ETy;
|
|
}
|
|
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return ISD::LoadExtType(SubclassData & 3);
|
|
}
|
|
const SDValue &getSrc0() const { return getOperand(3); }
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MLOAD;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MSTORE node
|
|
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
|
|
|
|
public:
|
|
friend class SelectionDAG;
|
|
MaskedStoreSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
|
|
unsigned numOperands, SDVTList VTs, bool isTrunc, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
|
|
VTs, MemVT, MMO) {
|
|
SubclassData |= (unsigned short)isTrunc;
|
|
}
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return SubclassData & 1; }
|
|
|
|
const SDValue &getValue() const { return getOperand(3); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MSTORE;
|
|
}
|
|
};
|
|
|
|
/// This is a base class used to represent
|
|
/// MGATHER and MSCATTER nodes
|
|
///
|
|
class MaskedGatherScatterSDNode : public MemSDNode {
|
|
// Operands
|
|
SDUse Ops[5];
|
|
public:
|
|
friend class SelectionDAG;
|
|
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
|
|
ArrayRef<SDValue> Operands, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
assert(Operands.size() == 5 && "Incompatible number of operands");
|
|
InitOperands(Ops, Operands.data(), Operands.size());
|
|
}
|
|
|
|
// In the both nodes address is Op1, mask is Op2:
|
|
// MaskedGatherSDNode (Chain, src0, mask, base, index), src0 is a passthru value
|
|
// MaskedScatterSDNode (Chain, value, mask, base, index)
|
|
// Mask is a vector of i1 elements
|
|
const SDValue &getBasePtr() const { return getOperand(3); }
|
|
const SDValue &getIndex() const { return getOperand(4); }
|
|
const SDValue &getMask() const { return getOperand(2); }
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MGATHER ||
|
|
N->getOpcode() == ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MGATHER node
|
|
///
|
|
class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
MaskedGatherSDNode(unsigned Order, DebugLoc dl, ArrayRef<SDValue> Operands,
|
|
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, Operands, VTs, MemVT,
|
|
MMO) {
|
|
assert(getValue().getValueType() == getValueType(0) &&
|
|
"Incompatible type of the PathThru value in MaskedGatherSDNode");
|
|
assert(getMask().getValueType().getVectorNumElements() ==
|
|
getValueType(0).getVectorNumElements() &&
|
|
"Vector width mismatch between mask and data");
|
|
assert(getMask().getValueType().getScalarType() == MVT::i1 &&
|
|
"Vector width mismatch between mask and data");
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MGATHER;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MSCATTER node
|
|
///
|
|
class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
|
|
|
|
public:
|
|
friend class SelectionDAG;
|
|
MaskedScatterSDNode(unsigned Order, DebugLoc dl,ArrayRef<SDValue> Operands,
|
|
SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, Operands, VTs, MemVT,
|
|
MMO) {
|
|
assert(getMask().getValueType().getVectorNumElements() ==
|
|
getValue().getValueType().getVectorNumElements() &&
|
|
"Vector width mismatch between mask and data");
|
|
assert(getMask().getValueType().getScalarType() == MVT::i1 &&
|
|
"Vector width mismatch between mask and data");
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// An SDNode that represents everything that will be needed
|
|
/// to construct a MachineInstr. These nodes are created during the
|
|
/// instruction selection proper phase.
|
|
class MachineSDNode : public SDNode {
|
|
public:
|
|
typedef MachineMemOperand **mmo_iterator;
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc DL, SDVTList VTs)
|
|
: SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}
|
|
|
|
/// Operands for this instruction, if they fit here. If
|
|
/// they don't, this field is unused.
|
|
SDUse LocalOperands[4];
|
|
|
|
/// Memory reference descriptions for this instruction.
|
|
mmo_iterator MemRefs;
|
|
mmo_iterator MemRefsEnd;
|
|
|
|
public:
|
|
mmo_iterator memoperands_begin() const { return MemRefs; }
|
|
mmo_iterator memoperands_end() const { return MemRefsEnd; }
|
|
bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
|
|
|
|
/// Assign this MachineSDNodes's memory reference descriptor
|
|
/// list. This does not transfer ownership.
|
|
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
|
|
for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
|
|
assert(*MMI && "Null mem ref detected!");
|
|
MemRefs = NewMemRefs;
|
|
MemRefsEnd = NewMemRefsEnd;
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->isMachineOpcode();
|
|
}
|
|
};
|
|
|
|
class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
|
|
SDNode, ptrdiff_t> {
|
|
const SDNode *Node;
|
|
unsigned Operand;
|
|
|
|
SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
public:
|
|
bool operator==(const SDNodeIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
|
|
|
|
pointer operator*() const {
|
|
return Node->getOperand(Operand).getNode();
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SDNodeIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SDNodeIterator operator++(int) { // Postincrement
|
|
SDNodeIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
size_t operator-(SDNodeIterator Other) const {
|
|
assert(Node == Other.Node &&
|
|
"Cannot compare iterators of two different nodes!");
|
|
return Operand - Other.Operand;
|
|
}
|
|
|
|
static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
|
|
static SDNodeIterator end (const SDNode *N) {
|
|
return SDNodeIterator(N, N->getNumOperands());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SDNode *getNode() const { return Node; }
|
|
};
|
|
|
|
template <> struct GraphTraits<SDNode*> {
|
|
typedef SDNode NodeType;
|
|
typedef SDNodeIterator ChildIteratorType;
|
|
static inline NodeType *getEntryNode(SDNode *N) { return N; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return SDNodeIterator::begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return SDNodeIterator::end(N);
|
|
}
|
|
};
|
|
|
|
/// The largest SDNode class.
|
|
typedef MaskedGatherScatterSDNode LargestSDNode;
|
|
|
|
/// The SDNode class with the greatest alignment requirement.
|
|
typedef GlobalAddressSDNode MostAlignedSDNode;
|
|
|
|
namespace ISD {
|
|
/// Returns true if the specified node is a non-extending and unindexed load.
|
|
inline bool isNormalLoad(const SDNode *N) {
|
|
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
|
|
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
Ld->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-extending load.
|
|
inline bool isNON_EXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a EXTLOAD.
|
|
inline bool isEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a SEXTLOAD.
|
|
inline bool isSEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a ZEXTLOAD.
|
|
inline bool isZEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is an unindexed load.
|
|
inline bool isUNINDEXEDLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-truncating
|
|
/// and unindexed store.
|
|
inline bool isNormalStore(const SDNode *N) {
|
|
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
|
|
return St && !St->isTruncatingStore() &&
|
|
St->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-truncating store.
|
|
inline bool isNON_TRUNCStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// Returns true if the specified node is a truncating store.
|
|
inline bool isTRUNCStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
|
|
}
|
|
|
|
/// Returns true if the specified node is an unindexed store.
|
|
inline bool isUNINDEXEDStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) &&
|
|
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
}
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|