mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-28 19:31:58 +00:00
4469c53cfc
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62976 91177308-0d34-0410-b5e6-96231b3b80d8
1886 lines
72 KiB
C++
1886 lines
72 KiB
C++
//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that ARM uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMAddressingModes.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMISelLowering.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMRegisterInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
|
|
: TargetLowering(TM), ARMPCLabelIndex(0) {
|
|
Subtarget = &TM.getSubtarget<ARMSubtarget>();
|
|
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// Uses VFP for Thumb libfuncs if available.
|
|
if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
|
|
// Single-precision floating-point arithmetic.
|
|
setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
|
|
setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
|
|
setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
|
|
setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
|
|
|
|
// Double-precision floating-point arithmetic.
|
|
setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
|
|
setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
|
|
setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
|
|
setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
|
|
|
|
// Single-precision comparisons.
|
|
setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
|
|
setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
|
|
setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
|
|
setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
|
|
setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
|
|
setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
|
|
setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
|
|
setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
|
|
|
|
setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
|
|
|
|
// Double-precision comparisons.
|
|
setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
|
|
setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
|
|
setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
|
|
setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
|
|
setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
|
|
setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
|
|
setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
|
|
setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
|
|
|
|
setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
|
|
|
|
// Floating-point to integer conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
|
|
|
|
// Conversions between floating types.
|
|
setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
|
|
setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
|
|
|
|
// Integer to floating-point conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
// FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g.
|
|
// __floatunsidf vs. __floatunssidfvfp.
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
|
|
}
|
|
}
|
|
|
|
addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
|
|
addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
|
|
addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
}
|
|
computeRegisterProperties();
|
|
|
|
// ARM does not have f32 extending load.
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
|
|
// ARM does not have i1 sign extending load.
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// ARM supports all 4 flavors of integer indexed load / store.
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, MVT::i1, Legal);
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i1, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
}
|
|
|
|
// i64 operation support.
|
|
if (Subtarget->isThumb()) {
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::i32, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
} else {
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Expand);
|
|
if (!Subtarget->hasV6Ops())
|
|
setOperationAction(ISD::MULHS, MVT::i32, Expand);
|
|
}
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRL, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i64, Custom);
|
|
|
|
// ARM does not have ROTL.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
if (!Subtarget->hasV5TOps() || Subtarget->isThumb())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
// Only ARMv6 has BSWAP.
|
|
if (!Subtarget->hasV6Ops())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
// These are expanded into libcalls.
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
|
|
// Support label based line numbers.
|
|
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
|
|
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::RET, MVT::Other, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VASTART , MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG , MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND , MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
|
|
setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
|
|
|
|
if (!Subtarget->hasV6Ops()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
}
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb())
|
|
// Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::SETCC , MVT::i32, Expand);
|
|
setOperationAction(ISD::SETCC , MVT::f32, Expand);
|
|
setOperationAction(ISD::SETCC , MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT , MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT , MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT , MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::BRCOND , MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC , MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC , MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC , MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_JT , MVT::Other, Custom);
|
|
|
|
// We don't support sin/cos/fmod/copysign/pow
|
|
setOperationAction(ISD::FSIN , MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS , MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM , MVT::f32, Expand);
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
}
|
|
setOperationAction(ISD::FPOW , MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW , MVT::f32, Expand);
|
|
|
|
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
// ARMISD::FMRRD - No need to call setTargetDAGCombine
|
|
|
|
setStackPointerRegisterToSaveRestore(ARM::SP);
|
|
setSchedulingPreference(SchedulingForRegPressure);
|
|
setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
|
|
setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
|
|
|
|
maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
|
|
}
|
|
|
|
|
|
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return 0;
|
|
case ARMISD::Wrapper: return "ARMISD::Wrapper";
|
|
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
|
|
case ARMISD::CALL: return "ARMISD::CALL";
|
|
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
|
|
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
|
|
case ARMISD::tCALL: return "ARMISD::tCALL";
|
|
case ARMISD::BRCOND: return "ARMISD::BRCOND";
|
|
case ARMISD::BR_JT: return "ARMISD::BR_JT";
|
|
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
|
|
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
|
|
case ARMISD::CMP: return "ARMISD::CMP";
|
|
case ARMISD::CMPNZ: return "ARMISD::CMPNZ";
|
|
case ARMISD::CMPFP: return "ARMISD::CMPFP";
|
|
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
|
|
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
|
|
case ARMISD::CMOV: return "ARMISD::CMOV";
|
|
case ARMISD::CNEG: return "ARMISD::CNEG";
|
|
|
|
case ARMISD::FTOSI: return "ARMISD::FTOSI";
|
|
case ARMISD::FTOUI: return "ARMISD::FTOUI";
|
|
case ARMISD::SITOF: return "ARMISD::SITOF";
|
|
case ARMISD::UITOF: return "ARMISD::UITOF";
|
|
|
|
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
|
|
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
|
|
case ARMISD::RRX: return "ARMISD::RRX";
|
|
|
|
case ARMISD::FMRRD: return "ARMISD::FMRRD";
|
|
case ARMISD::FMDRR: return "ARMISD::FMDRR";
|
|
|
|
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
|
|
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown condition code!");
|
|
case ISD::SETNE: return ARMCC::NE;
|
|
case ISD::SETEQ: return ARMCC::EQ;
|
|
case ISD::SETGT: return ARMCC::GT;
|
|
case ISD::SETGE: return ARMCC::GE;
|
|
case ISD::SETLT: return ARMCC::LT;
|
|
case ISD::SETLE: return ARMCC::LE;
|
|
case ISD::SETUGT: return ARMCC::HI;
|
|
case ISD::SETUGE: return ARMCC::HS;
|
|
case ISD::SETULT: return ARMCC::LO;
|
|
case ISD::SETULE: return ARMCC::LS;
|
|
}
|
|
}
|
|
|
|
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
|
|
/// returns true if the operands should be inverted to form the proper
|
|
/// comparison.
|
|
static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
|
|
ARMCC::CondCodes &CondCode2) {
|
|
bool Invert = false;
|
|
CondCode2 = ARMCC::AL;
|
|
switch (CC) {
|
|
default: assert(0 && "Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: CondCode = ARMCC::GT; break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: CondCode = ARMCC::GE; break;
|
|
case ISD::SETOLT: CondCode = ARMCC::MI; break;
|
|
case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
|
|
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
|
|
case ISD::SETO: CondCode = ARMCC::VC; break;
|
|
case ISD::SETUO: CondCode = ARMCC::VS; break;
|
|
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
|
|
case ISD::SETUGT: CondCode = ARMCC::HI; break;
|
|
case ISD::SETUGE: CondCode = ARMCC::PL; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT: CondCode = ARMCC::LT; break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE: CondCode = ARMCC::LE; break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE: CondCode = ARMCC::NE; break;
|
|
}
|
|
return Invert;
|
|
}
|
|
|
|
static void
|
|
HowToPassArgument(MVT ObjectVT, unsigned NumGPRs,
|
|
unsigned StackOffset, unsigned &NeededGPRs,
|
|
unsigned &NeededStackSize, unsigned &GPRPad,
|
|
unsigned &StackPad, ISD::ArgFlagsTy Flags) {
|
|
NeededStackSize = 0;
|
|
NeededGPRs = 0;
|
|
StackPad = 0;
|
|
GPRPad = 0;
|
|
unsigned align = Flags.getOrigAlign();
|
|
GPRPad = NumGPRs % ((align + 3)/4);
|
|
StackPad = StackOffset % align;
|
|
unsigned firstGPR = NumGPRs + GPRPad;
|
|
switch (ObjectVT.getSimpleVT()) {
|
|
default: assert(0 && "Unhandled argument type!");
|
|
case MVT::i32:
|
|
case MVT::f32:
|
|
if (firstGPR < 4)
|
|
NeededGPRs = 1;
|
|
else
|
|
NeededStackSize = 4;
|
|
break;
|
|
case MVT::i64:
|
|
case MVT::f64:
|
|
if (firstGPR < 3)
|
|
NeededGPRs = 2;
|
|
else if (firstGPR == 3) {
|
|
NeededGPRs = 1;
|
|
NeededStackSize = 4;
|
|
} else
|
|
NeededStackSize = 8;
|
|
}
|
|
}
|
|
|
|
/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
|
|
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
|
|
/// nodes.
|
|
SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
|
|
CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
|
|
MVT RetVT = TheCall->getRetValType(0);
|
|
SDValue Chain = TheCall->getChain();
|
|
assert((TheCall->getCallingConv() == CallingConv::C ||
|
|
TheCall->getCallingConv() == CallingConv::Fast) &&
|
|
"unknown calling convention");
|
|
SDValue Callee = TheCall->getCallee();
|
|
unsigned NumOps = TheCall->getNumArgs();
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
unsigned NumGPRs = 0; // GPRs used for parameter passing.
|
|
|
|
// Count how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = 0;
|
|
|
|
// Add up all the space actually used.
|
|
for (unsigned i = 0; i < NumOps; ++i) {
|
|
unsigned ObjSize;
|
|
unsigned ObjGPRs;
|
|
unsigned StackPad;
|
|
unsigned GPRPad;
|
|
MVT ObjectVT = TheCall->getArg(i).getValueType();
|
|
ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
|
|
HowToPassArgument(ObjectVT, NumGPRs, NumBytes, ObjGPRs, ObjSize,
|
|
GPRPad, StackPad, Flags);
|
|
NumBytes += ObjSize + StackPad;
|
|
NumGPRs += ObjGPRs + GPRPad;
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
|
|
SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
|
|
|
|
static const unsigned GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
NumGPRs = 0;
|
|
std::vector<std::pair<unsigned, SDValue> > RegsToPass;
|
|
std::vector<SDValue> MemOpChains;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
SDValue Arg = TheCall->getArg(i);
|
|
ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
|
|
MVT ArgVT = Arg.getValueType();
|
|
|
|
unsigned ObjSize;
|
|
unsigned ObjGPRs;
|
|
unsigned GPRPad;
|
|
unsigned StackPad;
|
|
HowToPassArgument(ArgVT, NumGPRs, ArgOffset, ObjGPRs,
|
|
ObjSize, GPRPad, StackPad, Flags);
|
|
NumGPRs += GPRPad;
|
|
ArgOffset += StackPad;
|
|
if (ObjGPRs > 0) {
|
|
switch (ArgVT.getSimpleVT()) {
|
|
default: assert(0 && "Unexpected ValueType for argument!");
|
|
case MVT::i32:
|
|
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Arg));
|
|
break;
|
|
case MVT::f32:
|
|
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs],
|
|
DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg)));
|
|
break;
|
|
case MVT::i64: {
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
|
|
DAG.getConstant(0, getPointerTy()));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg,
|
|
DAG.getConstant(1, getPointerTy()));
|
|
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Lo));
|
|
if (ObjGPRs == 2)
|
|
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Hi));
|
|
else {
|
|
SDValue PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
MemOpChains.push_back(DAG.getStore(Chain, Hi, PtrOff, NULL, 0));
|
|
}
|
|
break;
|
|
}
|
|
case MVT::f64: {
|
|
SDValue Cvt = DAG.getNode(ARMISD::FMRRD,
|
|
DAG.getVTList(MVT::i32, MVT::i32),
|
|
&Arg, 1);
|
|
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Cvt));
|
|
if (ObjGPRs == 2)
|
|
RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1],
|
|
Cvt.getValue(1)));
|
|
else {
|
|
SDValue PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
MemOpChains.push_back(DAG.getStore(Chain, Cvt.getValue(1), PtrOff,
|
|
NULL, 0));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
assert(ObjSize != 0);
|
|
SDValue PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
|
|
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
|
|
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
|
|
}
|
|
|
|
NumGPRs += ObjGPRs;
|
|
ArgOffset += ObjSize;
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
|
|
InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
bool isDirect = false;
|
|
bool isARMFunc = false;
|
|
bool isLocalARMFunc = false;
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
GlobalValue *GV = G->getGlobal();
|
|
isDirect = true;
|
|
bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
|
|
GV->hasLinkOnceLinkage());
|
|
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
|
|
getTargetMachine().getRelocationModel() != Reloc::Static;
|
|
isARMFunc = !Subtarget->isThumb() || isStub;
|
|
// ARM call to a local ARM function is predicable.
|
|
isLocalARMFunc = !Subtarget->isThumb() && !isExt;
|
|
// tBX takes a register source operand.
|
|
if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
|
|
ARMCP::CPStub, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel);
|
|
} else
|
|
Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
isDirect = true;
|
|
bool isStub = Subtarget->isTargetDarwin() &&
|
|
getTargetMachine().getRelocationModel() != Reloc::Static;
|
|
isARMFunc = !Subtarget->isThumb() || isStub;
|
|
// tBX takes a register source operand.
|
|
const char *Sym = S->getSymbol();
|
|
if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
|
|
ARMCP::CPStub, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel);
|
|
} else
|
|
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
|
|
}
|
|
|
|
// FIXME: handle tail calls differently.
|
|
unsigned CallOpc;
|
|
if (Subtarget->isThumb()) {
|
|
if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else
|
|
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
|
|
} else {
|
|
CallOpc = (isDirect || Subtarget->hasV5TOps())
|
|
? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
|
|
: ARMISD::CALL_NOLINK;
|
|
}
|
|
if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) {
|
|
// implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
|
|
Chain = DAG.getCopyToReg(Chain, ARM::LR,
|
|
DAG.getNode(ISD::UNDEF, MVT::i32), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(CallOpc, DAG.getVTList(MVT::Other, MVT::Flag),
|
|
&Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
if (RetVT != MVT::Other)
|
|
InFlag = Chain.getValue(1);
|
|
|
|
std::vector<SDValue> ResultVals;
|
|
|
|
// If the call has results, copy the values out of the ret val registers.
|
|
switch (RetVT.getSimpleVT()) {
|
|
default: assert(0 && "Unexpected ret value!");
|
|
case MVT::Other:
|
|
break;
|
|
case MVT::i32:
|
|
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
if (TheCall->getNumRetVals() > 1 &&
|
|
TheCall->getRetValType(1) == MVT::i32) {
|
|
// Returns a i64 value.
|
|
Chain = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32,
|
|
Chain.getValue(2)).getValue(1);
|
|
ResultVals.push_back(Chain.getValue(0));
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1);
|
|
ResultVals.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f32,
|
|
Chain.getValue(0)));
|
|
break;
|
|
case MVT::f64: {
|
|
SDValue Lo = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag);
|
|
SDValue Hi = DAG.getCopyFromReg(Lo, ARM::R1, MVT::i32, Lo.getValue(2));
|
|
ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ResultVals.empty())
|
|
return Chain;
|
|
|
|
ResultVals.push_back(Chain);
|
|
SDValue Res = DAG.getMergeValues(&ResultVals[0], ResultVals.size());
|
|
return Res.getValue(Op.getResNo());
|
|
}
|
|
|
|
static SDValue LowerRET(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue Copy;
|
|
SDValue Chain = Op.getOperand(0);
|
|
switch(Op.getNumOperands()) {
|
|
default:
|
|
assert(0 && "Do not know how to return this many arguments!");
|
|
abort();
|
|
case 1: {
|
|
SDValue LR = DAG.getRegister(ARM::LR, MVT::i32);
|
|
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain);
|
|
}
|
|
case 3:
|
|
Op = Op.getOperand(1);
|
|
if (Op.getValueType() == MVT::f32) {
|
|
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
|
|
} else if (Op.getValueType() == MVT::f64) {
|
|
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
|
|
// available.
|
|
Op = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32), &Op,1);
|
|
SDValue Sign = DAG.getConstant(0, MVT::i32);
|
|
return DAG.getNode(ISD::RET, MVT::Other, Chain, Op, Sign,
|
|
Op.getValue(1), Sign);
|
|
}
|
|
Copy = DAG.getCopyToReg(Chain, ARM::R0, Op, SDValue());
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty())
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R0);
|
|
break;
|
|
case 5:
|
|
Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDValue());
|
|
Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1));
|
|
// If we haven't noted the R0+R1 are live out, do so now.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R0);
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R1);
|
|
}
|
|
break;
|
|
case 9: // i128 -> 4 regs
|
|
Copy = DAG.getCopyToReg(Chain, ARM::R3, Op.getOperand(7), SDValue());
|
|
Copy = DAG.getCopyToReg(Copy , ARM::R2, Op.getOperand(5), Copy.getValue(1));
|
|
Copy = DAG.getCopyToReg(Copy , ARM::R1, Op.getOperand(3), Copy.getValue(1));
|
|
Copy = DAG.getCopyToReg(Copy , ARM::R0, Op.getOperand(1), Copy.getValue(1));
|
|
// If we haven't noted the R0+R1 are live out, do so now.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R0);
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R1);
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R2);
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(ARM::R3);
|
|
}
|
|
break;
|
|
|
|
}
|
|
|
|
//We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag
|
|
return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
|
|
}
|
|
|
|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
|
|
// their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOVi.
|
|
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
|
|
MVT PtrVT = Op.getValueType();
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
SDValue Res;
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
|
|
CP->getAlignment());
|
|
else
|
|
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
|
|
CP->getAlignment());
|
|
return DAG.getNode(ARMISD::Wrapper, MVT::i32, Res);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) {
|
|
MVT PtrVT = getPointerTy();
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
|
|
PCAdj, "tlsgd", true);
|
|
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 2);
|
|
Argument = DAG.getNode(ARMISD::Wrapper, MVT::i32, Argument);
|
|
Argument = DAG.getLoad(PtrVT, DAG.getEntryNode(), Argument, NULL, 0);
|
|
SDValue Chain = Argument.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
|
|
Argument = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Argument, PICLabel);
|
|
|
|
// call __tls_get_addr.
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = (const Type *) Type::Int32Ty;
|
|
Args.push_back(Entry);
|
|
std::pair<SDValue, SDValue> CallResult =
|
|
LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
|
|
CallingConv::C, false,
|
|
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG);
|
|
return CallResult.first;
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "initial exec" or
|
|
// "local exec" model.
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) {
|
|
GlobalValue *GV = GA->getGlobal();
|
|
SDValue Offset;
|
|
SDValue Chain = DAG.getEntryNode();
|
|
MVT PtrVT = getPointerTy();
|
|
// Get the Thread Pointer
|
|
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, PtrVT);
|
|
|
|
if (GV->isDeclaration()){
|
|
// initial exec model
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
|
|
PCAdj, "gottpoff", true);
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 2);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0);
|
|
Chain = Offset.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
|
|
Offset = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Offset, PICLabel);
|
|
|
|
Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0);
|
|
} else {
|
|
// local exec model
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 2);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0);
|
|
}
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
|
|
// TODO: implement the "local dynamic" model
|
|
assert(Subtarget->isTargetELF() &&
|
|
"TLS not implemented for non-ELF targets");
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
// If the relocation model is PIC, use the "General Dynamic" TLS Model,
|
|
// otherwise use the "Local Exec" TLS Model
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
|
|
return LowerToTLSGeneralDynamicModel(GA, DAG);
|
|
else
|
|
return LowerToTLSExecModels(GA, DAG);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
MVT PtrVT = getPointerTy();
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
if (RelocM == Reloc::PIC_) {
|
|
bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
|
|
SDValue Chain = Result.getValue(1);
|
|
SDValue GOT = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PtrVT);
|
|
Result = DAG.getNode(ISD::ADD, PtrVT, Result, GOT);
|
|
if (!UseGOTOFF)
|
|
Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0);
|
|
return Result;
|
|
} else {
|
|
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
|
|
return DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
|
|
}
|
|
}
|
|
|
|
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
|
|
/// even in non-static mode.
|
|
static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
|
|
// If symbol visibility is hidden, the extra load is not needed if
|
|
// the symbol is definitely defined in the current translation unit.
|
|
bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
|
|
if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
|
|
return false;
|
|
return RelocM != Reloc::Static && (isDecl || GV->mayBeOverridden());
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
MVT PtrVT = getPointerTy();
|
|
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
|
|
SDValue CPAddr;
|
|
if (RelocM == Reloc::Static)
|
|
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2);
|
|
else {
|
|
unsigned PCAdj = (RelocM != Reloc::PIC_)
|
|
? 0 : (Subtarget->isThumb() ? 4 : 8);
|
|
ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
|
|
: ARMCP::CPValue;
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
|
|
Kind, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
|
|
}
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
|
|
|
|
SDValue Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
|
|
SDValue Chain = Result.getValue(1);
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
|
|
Result = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel);
|
|
}
|
|
if (IsIndirect)
|
|
Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
|
|
SelectionDAG &DAG){
|
|
assert(Subtarget->isTargetELF() &&
|
|
"GLOBAL OFFSET TABLE not implemented for non-ELF targets");
|
|
MVT PtrVT = getPointerTy();
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
|
|
ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
|
|
return DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
case Intrinsic::arm_thread_pointer:
|
|
return DAG.getNode(ARMISD::THREAD_POINTER, PtrVT);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
|
|
unsigned VarArgsFrameIndex) {
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
|
|
}
|
|
|
|
static SDValue LowerFORMAL_ARGUMENT(SDValue Op, SelectionDAG &DAG,
|
|
unsigned ArgNo, unsigned &NumGPRs,
|
|
unsigned &ArgOffset) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MVT ObjectVT = Op.getValue(ArgNo).getValueType();
|
|
SDValue Root = Op.getOperand(0);
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
|
|
static const unsigned GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
unsigned ObjSize;
|
|
unsigned ObjGPRs;
|
|
unsigned GPRPad;
|
|
unsigned StackPad;
|
|
ISD::ArgFlagsTy Flags =
|
|
cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo + 3))->getArgFlags();
|
|
HowToPassArgument(ObjectVT, NumGPRs, ArgOffset, ObjGPRs,
|
|
ObjSize, GPRPad, StackPad, Flags);
|
|
NumGPRs += GPRPad;
|
|
ArgOffset += StackPad;
|
|
|
|
SDValue ArgValue;
|
|
if (ObjGPRs == 1) {
|
|
unsigned VReg = RegInfo.createVirtualRegister(&ARM::GPRRegClass);
|
|
RegInfo.addLiveIn(GPRArgRegs[NumGPRs], VReg);
|
|
ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
|
|
if (ObjectVT == MVT::f32)
|
|
ArgValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, ArgValue);
|
|
} else if (ObjGPRs == 2) {
|
|
unsigned VReg = RegInfo.createVirtualRegister(&ARM::GPRRegClass);
|
|
RegInfo.addLiveIn(GPRArgRegs[NumGPRs], VReg);
|
|
ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32);
|
|
|
|
VReg = RegInfo.createVirtualRegister(&ARM::GPRRegClass);
|
|
RegInfo.addLiveIn(GPRArgRegs[NumGPRs+1], VReg);
|
|
SDValue ArgValue2 = DAG.getCopyFromReg(Root, VReg, MVT::i32);
|
|
|
|
assert(ObjectVT != MVT::i64 && "i64 should already be lowered");
|
|
ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
|
|
}
|
|
NumGPRs += ObjGPRs;
|
|
|
|
if (ObjSize) {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
|
|
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
|
|
if (ObjGPRs == 0)
|
|
ArgValue = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
|
|
else {
|
|
SDValue ArgValue2 = DAG.getLoad(MVT::i32, Root, FIN, NULL, 0);
|
|
assert(ObjectVT != MVT::i64 && "i64 should already be lowered");
|
|
ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2);
|
|
}
|
|
|
|
ArgOffset += ObjSize; // Move on to the next argument.
|
|
}
|
|
|
|
return ArgValue;
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
|
|
std::vector<SDValue> ArgValues;
|
|
SDValue Root = Op.getOperand(0);
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
unsigned NumGPRs = 0; // GPRs used for parameter passing.
|
|
|
|
unsigned NumArgs = Op.getNode()->getNumValues()-1;
|
|
for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
|
|
ArgValues.push_back(LowerFORMAL_ARGUMENT(Op, DAG, ArgNo,
|
|
NumGPRs, ArgOffset));
|
|
|
|
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
|
|
if (isVarArg) {
|
|
static const unsigned GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
|
|
unsigned VARegSize = (4 - NumGPRs) * 4;
|
|
unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
|
|
if (VARegSaveSize) {
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing
|
|
// the result of va_next.
|
|
AFI->setVarArgsRegSaveSize(VARegSaveSize);
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
|
|
VARegSaveSize - VARegSize);
|
|
SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
|
|
|
|
SmallVector<SDValue, 4> MemOps;
|
|
for (; NumGPRs < 4; ++NumGPRs) {
|
|
unsigned VReg = RegInfo.createVirtualRegister(&ARM::GPRRegClass);
|
|
RegInfo.addLiveIn(GPRArgRegs[NumGPRs], VReg);
|
|
SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
|
|
SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
|
|
DAG.getConstant(4, getPointerTy()));
|
|
}
|
|
if (!MemOps.empty())
|
|
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
|
|
&MemOps[0], MemOps.size());
|
|
} else
|
|
// This will point to the next argument passed via stack.
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
|
|
}
|
|
|
|
ArgValues.push_back(Root);
|
|
|
|
// Return the new list of results.
|
|
return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
|
|
&ArgValues[0], ArgValues.size());
|
|
}
|
|
|
|
/// isFloatingPointZero - Return true if this is +0.0.
|
|
static bool isFloatingPointZero(SDValue Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->getValueAPF().isPosZero();
|
|
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
|
|
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
|
return CFP->getValueAPF().isPosZero();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isLegalCmpImmediate(unsigned C, bool isThumb) {
|
|
return ( isThumb && (C & ~255U) == 0) ||
|
|
(!isThumb && ARM_AM::getSOImmVal(C) != -1);
|
|
}
|
|
|
|
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
|
|
/// the given operands.
|
|
static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &ARMCC, SelectionDAG &DAG, bool isThumb) {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
unsigned C = RHSC->getZExtValue();
|
|
if (!isLegalCmpImmediate(C, isThumb)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if (isLegalCmpImmediate(C-1, isThumb)) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
RHS = DAG.getConstant(C-1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
RHS = DAG.getConstant(C-1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if (isLegalCmpImmediate(C+1, isThumb)) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
RHS = DAG.getConstant(C+1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
RHS = DAG.getConstant(C+1, MVT::i32);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMISD::NodeType CompareType;
|
|
switch (CondCode) {
|
|
default:
|
|
CompareType = ARMISD::CMP;
|
|
break;
|
|
case ARMCC::EQ:
|
|
case ARMCC::NE:
|
|
case ARMCC::MI:
|
|
case ARMCC::PL:
|
|
// Uses only N and Z Flags
|
|
CompareType = ARMISD::CMPNZ;
|
|
break;
|
|
}
|
|
ARMCC = DAG.getConstant(CondCode, MVT::i32);
|
|
return DAG.getNode(CompareType, MVT::Flag, LHS, RHS);
|
|
}
|
|
|
|
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
|
|
static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG) {
|
|
SDValue Cmp;
|
|
if (!isFloatingPointZero(RHS))
|
|
Cmp = DAG.getNode(ARMISD::CMPFP, MVT::Flag, LHS, RHS);
|
|
else
|
|
Cmp = DAG.getNode(ARMISD::CMPFPw0, MVT::Flag, LHS);
|
|
return DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp);
|
|
}
|
|
|
|
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
MVT VT = Op.getValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue TrueVal = Op.getOperand(2);
|
|
SDValue FalseVal = Op.getOperand(3);
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMCC;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
|
|
return DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, CCR, Cmp);
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
if (FPCCToARMCC(CC, CondCode, CondCode2))
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG);
|
|
SDValue Result = DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal,
|
|
ARMCC, CCR, Cmp);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
|
|
// FIXME: Needs another CMP because flag can have but one use.
|
|
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG);
|
|
Result = DAG.getNode(ARMISD::CMOV, VT, Result, TrueVal, ARMCC2, CCR, Cmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMCC;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb());
|
|
return DAG.getNode(ARMISD::BRCOND, MVT::Other, Chain, Dest, ARMCC, CCR,Cmp);
|
|
}
|
|
|
|
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
if (FPCCToARMCC(CC, CondCode, CondCode2))
|
|
// Swap the LHS/RHS of the comparison if needed.
|
|
std::swap(LHS, RHS);
|
|
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG);
|
|
SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
|
|
SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
|
|
SDValue Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 5);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
ARMCC = DAG.getConstant(CondCode2, MVT::i32);
|
|
SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
|
|
Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 5);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Table = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
|
|
MVT PTy = getPointerTy();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
|
|
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
|
|
SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
|
|
Table = DAG.getNode(ARMISD::WrapperJT, MVT::i32, JTI, UId);
|
|
Index = DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(4, PTy));
|
|
SDValue Addr = DAG.getNode(ISD::ADD, PTy, Index, Table);
|
|
bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
Addr = DAG.getLoad(isPIC ? (MVT)MVT::i32 : PTy,
|
|
Chain, Addr, NULL, 0);
|
|
Chain = Addr.getValue(1);
|
|
if (isPIC)
|
|
Addr = DAG.getNode(ISD::ADD, PTy, Addr, Table);
|
|
return DAG.getNode(ARMISD::BR_JT, MVT::Other, Chain, Addr, JTI, UId);
|
|
}
|
|
|
|
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
|
|
unsigned Opc =
|
|
Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
|
|
Op = DAG.getNode(Opc, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
|
|
}
|
|
|
|
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
MVT VT = Op.getValueType();
|
|
unsigned Opc =
|
|
Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
|
|
|
|
Op = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(Opc, VT, Op);
|
|
}
|
|
|
|
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
|
|
// Implement fcopysign with a fabs and a conditional fneg.
|
|
SDValue Tmp0 = Op.getOperand(0);
|
|
SDValue Tmp1 = Op.getOperand(1);
|
|
MVT VT = Op.getValueType();
|
|
MVT SrcVT = Tmp1.getValueType();
|
|
SDValue AbsVal = DAG.getNode(ISD::FABS, VT, Tmp0);
|
|
SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG);
|
|
SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::CNEG, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
|
|
SDValue Chain,
|
|
SDValue Dst, SDValue Src,
|
|
SDValue Size, unsigned Align,
|
|
bool AlwaysInline,
|
|
const Value *DstSV, uint64_t DstSVOff,
|
|
const Value *SrcSV, uint64_t SrcSVOff){
|
|
// Do repeated 4-byte loads and stores. To be improved.
|
|
// This requires 4-byte alignment.
|
|
if ((Align & 3) != 0)
|
|
return SDValue();
|
|
// This requires the copy size to be a constant, preferrably
|
|
// within a subtarget-specific limit.
|
|
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
|
|
if (!ConstantSize)
|
|
return SDValue();
|
|
uint64_t SizeVal = ConstantSize->getZExtValue();
|
|
if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
|
|
return SDValue();
|
|
|
|
unsigned BytesLeft = SizeVal & 3;
|
|
unsigned NumMemOps = SizeVal >> 2;
|
|
unsigned EmittedNumMemOps = 0;
|
|
MVT VT = MVT::i32;
|
|
unsigned VTSize = 4;
|
|
unsigned i = 0;
|
|
const unsigned MAX_LOADS_IN_LDM = 6;
|
|
SDValue TFOps[MAX_LOADS_IN_LDM];
|
|
SDValue Loads[MAX_LOADS_IN_LDM];
|
|
uint64_t SrcOff = 0, DstOff = 0;
|
|
|
|
// Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
|
|
// same number of stores. The loads and stores will get combined into
|
|
// ldm/stm later on.
|
|
while (EmittedNumMemOps < NumMemOps) {
|
|
for (i = 0;
|
|
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
|
|
Loads[i] = DAG.getLoad(VT, Chain,
|
|
DAG.getNode(ISD::ADD, MVT::i32, Src,
|
|
DAG.getConstant(SrcOff, MVT::i32)),
|
|
SrcSV, SrcSVOff + SrcOff);
|
|
TFOps[i] = Loads[i].getValue(1);
|
|
SrcOff += VTSize;
|
|
}
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &TFOps[0], i);
|
|
|
|
for (i = 0;
|
|
i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
|
|
TFOps[i] = DAG.getStore(Chain, Loads[i],
|
|
DAG.getNode(ISD::ADD, MVT::i32, Dst,
|
|
DAG.getConstant(DstOff, MVT::i32)),
|
|
DstSV, DstSVOff + DstOff);
|
|
DstOff += VTSize;
|
|
}
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &TFOps[0], i);
|
|
|
|
EmittedNumMemOps += i;
|
|
}
|
|
|
|
if (BytesLeft == 0)
|
|
return Chain;
|
|
|
|
// Issue loads / stores for the trailing (1 - 3) bytes.
|
|
unsigned BytesLeftSave = BytesLeft;
|
|
i = 0;
|
|
while (BytesLeft) {
|
|
if (BytesLeft >= 2) {
|
|
VT = MVT::i16;
|
|
VTSize = 2;
|
|
} else {
|
|
VT = MVT::i8;
|
|
VTSize = 1;
|
|
}
|
|
|
|
Loads[i] = DAG.getLoad(VT, Chain,
|
|
DAG.getNode(ISD::ADD, MVT::i32, Src,
|
|
DAG.getConstant(SrcOff, MVT::i32)),
|
|
SrcSV, SrcSVOff + SrcOff);
|
|
TFOps[i] = Loads[i].getValue(1);
|
|
++i;
|
|
SrcOff += VTSize;
|
|
BytesLeft -= VTSize;
|
|
}
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &TFOps[0], i);
|
|
|
|
i = 0;
|
|
BytesLeft = BytesLeftSave;
|
|
while (BytesLeft) {
|
|
if (BytesLeft >= 2) {
|
|
VT = MVT::i16;
|
|
VTSize = 2;
|
|
} else {
|
|
VT = MVT::i8;
|
|
VTSize = 1;
|
|
}
|
|
|
|
TFOps[i] = DAG.getStore(Chain, Loads[i],
|
|
DAG.getNode(ISD::ADD, MVT::i32, Dst,
|
|
DAG.getConstant(DstOff, MVT::i32)),
|
|
DstSV, DstSVOff + DstOff);
|
|
++i;
|
|
DstOff += VTSize;
|
|
BytesLeft -= VTSize;
|
|
}
|
|
return DAG.getNode(ISD::TokenFactor, MVT::Other, &TFOps[0], i);
|
|
}
|
|
|
|
static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Op = N->getOperand(0);
|
|
if (N->getValueType(0) == MVT::f64) {
|
|
// Turn i64->f64 into FMDRR.
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi);
|
|
}
|
|
|
|
// Turn f64->i64 into FMRRD.
|
|
SDValue Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32),
|
|
&Op, 1);
|
|
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Cvt, Cvt.getValue(1));
|
|
}
|
|
|
|
static SDValue ExpandSRx(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) {
|
|
assert(N->getValueType(0) == MVT::i64 &&
|
|
(N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
|
|
"Unknown shift to lower!");
|
|
|
|
// We only lower SRA, SRL of 1 here, all others use generic lowering.
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)) ||
|
|
cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
|
|
return SDValue();
|
|
|
|
// If we are in thumb mode, we don't have RRX.
|
|
if (ST->isThumb()) return SDValue();
|
|
|
|
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
|
|
// captures the result into a carry flag.
|
|
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
|
|
Hi = DAG.getNode(Opc, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
|
|
|
|
// The low part is an ARMISD::RRX operand, which shifts the carry in.
|
|
Lo = DAG.getNode(ARMISD::RRX, MVT::i32, Lo, Hi.getValue(1));
|
|
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
|
|
}
|
|
|
|
|
|
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
|
|
switch (Op.getOpcode()) {
|
|
default: assert(0 && "Don't know how to custom lower this!"); abort();
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
|
|
LowerGlobalAddressELF(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::CALL: return LowerCALL(Op, DAG);
|
|
case ISD::RET: return LowerRET(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
|
|
case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
|
|
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
|
|
case ISD::RETURNADDR: break;
|
|
case ISD::FRAMEADDR: break;
|
|
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
|
|
case ISD::SRL:
|
|
case ISD::SRA: return ExpandSRx(Op.getNode(), DAG,Subtarget);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
assert(0 && "Don't know how to custom expand this!");
|
|
return;
|
|
case ISD::BIT_CONVERT:
|
|
Results.push_back(ExpandBIT_CONVERT(N, DAG));
|
|
return;
|
|
case ISD::SRL:
|
|
case ISD::SRA: {
|
|
SDValue Res = ExpandSRx(N, DAG, Subtarget);
|
|
if (Res.getNode())
|
|
Results.push_back(Res);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Scheduler Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
switch (MI->getOpcode()) {
|
|
default: assert(false && "Unexpected instr type to insert");
|
|
case ARM::tMOVCCr: {
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
BuildMI(BB, TII->get(ARM::tBcc)).addMBB(sinkMBB)
|
|
.addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
// Update machine-CFG edges by first adding all successors of the current
|
|
// block to the new block which will contain the Phi node for the select.
|
|
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
|
|
e = BB->succ_end(); i != e; ++i)
|
|
sinkMBB->addSuccessor(*i);
|
|
// Next, remove all successors of the current block, and add the true
|
|
// and fallthrough blocks as its successors.
|
|
while(!BB->succ_empty())
|
|
BB->removeSuccessor(BB->succ_begin());
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(BB, TII->get(ARM::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
|
|
static SDValue PerformFMRRDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// fmrrd(fmdrr x, y) -> x,y
|
|
SDValue InDouble = N->getOperand(0);
|
|
if (InDouble.getOpcode() == ARMISD::FMDRR)
|
|
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode for load / store of the
|
|
/// given type.
|
|
static bool isLegalAddressImmediate(int64_t V, MVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (V == 0)
|
|
return true;
|
|
|
|
if (Subtarget->isThumb()) {
|
|
if (V < 0)
|
|
return false;
|
|
|
|
unsigned Scale = 1;
|
|
switch (VT.getSimpleVT()) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
// Scale == 1;
|
|
break;
|
|
case MVT::i16:
|
|
// Scale == 2;
|
|
Scale = 2;
|
|
break;
|
|
case MVT::i32:
|
|
// Scale == 4;
|
|
Scale = 4;
|
|
break;
|
|
}
|
|
|
|
if ((V & (Scale - 1)) != 0)
|
|
return false;
|
|
V /= Scale;
|
|
return V == (V & ((1LL << 5) - 1));
|
|
}
|
|
|
|
if (V < 0)
|
|
V = - V;
|
|
switch (VT.getSimpleVT()) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
// +- imm12
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::i16:
|
|
// +- imm8
|
|
return V == (V & ((1LL << 8) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2())
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
const Type *Ty) const {
|
|
if (!isLegalAddressImmediate(AM.BaseOffs, getValueType(Ty, true), Subtarget))
|
|
return false;
|
|
|
|
// Can never fold addr of global into load/store.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // no scale reg, must be "r+i" or "r", or "i".
|
|
break;
|
|
case 1:
|
|
if (Subtarget->isThumb())
|
|
return false;
|
|
// FALL THROUGH.
|
|
default:
|
|
// ARM doesn't support any R+R*scale+imm addr modes.
|
|
if (AM.BaseOffs)
|
|
return false;
|
|
|
|
int Scale = AM.Scale;
|
|
switch (getValueType(Ty).getSimpleVT()) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
// This assumes i64 is legalized to a pair of i32. If not (i.e.
|
|
// ldrd / strd are used, then its address mode is same as i16.
|
|
// r + r
|
|
if (Scale < 0) Scale = -Scale;
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
return isPowerOf2_32(Scale & ~1);
|
|
case MVT::i16:
|
|
// r + r
|
|
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
|
|
return true;
|
|
return false;
|
|
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (AM.Scale & 1) return false;
|
|
return isPowerOf2_32(AM.Scale);
|
|
}
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool getIndexedAddressParts(SDNode *Ptr, MVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
|
|
// AddressingMode 3
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -256) {
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
|
|
// AddressingMode 2
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x1000) {
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
Base = Ptr->getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Ptr->getOpcode() == ISD::ADD) {
|
|
isInc = true;
|
|
ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
Base = Ptr->getOperand(1);
|
|
Offset = Ptr->getOperand(0);
|
|
} else {
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
|
|
return false;
|
|
}
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool
|
|
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb())
|
|
return false;
|
|
|
|
MVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
Ptr = LD->getBasePtr();
|
|
VT = LD->getMemoryVT();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
Ptr = ST->getBasePtr();
|
|
VT = ST->getMemoryVT();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = getIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
if (isLegal) {
|
|
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getPostIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if this node can be
|
|
/// combined with a load / store to form a post-indexed load / store.
|
|
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb())
|
|
return false;
|
|
|
|
MVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
if (isLegal) {
|
|
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ARMISD::CMOV: {
|
|
// Bits are known zero/one if known on the LHS and RHS.
|
|
DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
if (KnownZero == 0 && KnownOne == 0) return;
|
|
|
|
APInt KnownZeroRHS, KnownOneRHS;
|
|
DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
|
|
KnownZeroRHS, KnownOneRHS, Depth+1);
|
|
KnownZero &= KnownZeroRHS;
|
|
KnownOne &= KnownOneRHS;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
ARMTargetLowering::ConstraintType
|
|
ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'l': return C_RegisterClass;
|
|
case 'w': return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC RS6000 Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'l':
|
|
// FIXME: in thumb mode, 'l' is only low-regs.
|
|
// FALL THROUGH.
|
|
case 'r':
|
|
return std::make_pair(0U, ARM::GPRRegisterClass);
|
|
case 'w':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, ARM::SPRRegisterClass);
|
|
if (VT == MVT::f64)
|
|
return std::make_pair(0U, ARM::DPRRegisterClass);
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
std::vector<unsigned> ARMTargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() != 1)
|
|
return std::vector<unsigned>();
|
|
|
|
switch (Constraint[0]) { // GCC ARM Constraint Letters
|
|
default: break;
|
|
case 'l':
|
|
case 'r':
|
|
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
|
|
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
|
|
ARM::R8, ARM::R9, ARM::R10, ARM::R11,
|
|
ARM::R12, ARM::LR, 0);
|
|
case 'w':
|
|
if (VT == MVT::f32)
|
|
return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
|
|
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
|
|
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
|
|
ARM::S12,ARM::S13,ARM::S14,ARM::S15,
|
|
ARM::S16,ARM::S17,ARM::S18,ARM::S19,
|
|
ARM::S20,ARM::S21,ARM::S22,ARM::S23,
|
|
ARM::S24,ARM::S25,ARM::S26,ARM::S27,
|
|
ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
|
|
if (VT == MVT::f64)
|
|
return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
|
|
ARM::D4, ARM::D5, ARM::D6, ARM::D7,
|
|
ARM::D8, ARM::D9, ARM::D10,ARM::D11,
|
|
ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
|
|
break;
|
|
}
|
|
|
|
return std::vector<unsigned>();
|
|
}
|