llvm-6502/include/llvm/CodeGen/SelectionDAG.h
2008-07-09 00:00:42 +00:00

685 lines
30 KiB
C++

//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include <list>
#include <vector>
#include <map>
#include <string>
namespace llvm {
class AliasAnalysis;
class TargetLowering;
class TargetMachine;
class MachineModuleInfo;
class MachineFunction;
class MachineConstantPoolValue;
class FunctionLoweringInfo;
/// SelectionDAG class - This is used to represent a portion of an LLVM function
/// in a low-level Data Dependence DAG representation suitable for instruction
/// selection. This DAG is constructed as the first step of instruction
/// selection in order to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
TargetLowering &TLI;
MachineFunction &MF;
FunctionLoweringInfo &FLI;
MachineModuleInfo *MMI;
/// Root - The root of the entire DAG. EntryNode - The starting token.
SDOperand Root, EntryNode;
/// AllNodes - A linked list of nodes in the current DAG.
alist<SDNode, LargestSDNode> &AllNodes;
/// CSEMap - This structure is used to memoize nodes, automatically performing
/// CSE with existing nodes with a duplicate is requested.
FoldingSet<SDNode> CSEMap;
public:
SelectionDAG(TargetLowering &tli, MachineFunction &mf,
FunctionLoweringInfo &fli, MachineModuleInfo *mmi,
alist<SDNode, LargestSDNode> &NodePool)
: TLI(tli), MF(mf), FLI(fli), MMI(mmi), AllNodes(NodePool) {
EntryNode = Root = getNode(ISD::EntryToken, MVT::Other);
}
~SelectionDAG();
MachineFunction &getMachineFunction() const { return MF; }
const TargetMachine &getTarget() const;
TargetLowering &getTargetLoweringInfo() const { return TLI; }
FunctionLoweringInfo &getFunctionLoweringInfo() const { return FLI; }
MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
/// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
///
void viewGraph();
#ifndef NDEBUG
std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif
/// clearGraphAttrs - Clear all previously defined node graph attributes.
/// Intended to be used from a debugging tool (eg. gdb).
void clearGraphAttrs();
/// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".)
///
void setGraphAttrs(const SDNode *N, const char *Attrs);
/// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".)
/// Used from getNodeAttributes.
const std::string getGraphAttrs(const SDNode *N) const;
/// setGraphColor - Convenience for setting node color attribute.
///
void setGraphColor(const SDNode *N, const char *Color);
typedef alist<SDNode, LargestSDNode>::const_iterator allnodes_const_iterator;
allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
typedef alist<SDNode, LargestSDNode>::iterator allnodes_iterator;
allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
allnodes_iterator allnodes_end() { return AllNodes.end(); }
alist<SDNode, LargestSDNode>::size_type allnodes_size() const {
return AllNodes.size();
}
/// getRoot - Return the root tag of the SelectionDAG.
///
const SDOperand &getRoot() const { return Root; }
/// getEntryNode - Return the token chain corresponding to the entry of the
/// function.
const SDOperand &getEntryNode() const { return EntryNode; }
/// setRoot - Set the current root tag of the SelectionDAG.
///
const SDOperand &setRoot(SDOperand N) { return Root = N; }
/// Combine - This iterates over the nodes in the SelectionDAG, folding
/// certain types of nodes together, or eliminating superfluous nodes. When
/// the AfterLegalize argument is set to 'true', Combine takes care not to
/// generate any nodes that will be illegal on the target.
void Combine(bool AfterLegalize, AliasAnalysis &AA);
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void LegalizeTypes();
/// Legalize - This transforms the SelectionDAG into a SelectionDAG that is
/// compatible with the target instruction selector, as indicated by the
/// TargetLowering object.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void Legalize();
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void RemoveDeadNodes();
/// DeleteNode - Remove the specified node from the system. This node must
/// have no referrers.
void DeleteNode(SDNode *N);
/// getVTList - Return an SDVTList that represents the list of values
/// specified.
SDVTList getVTList(MVT VT);
SDVTList getVTList(MVT VT1, MVT VT2);
SDVTList getVTList(MVT VT1, MVT VT2, MVT VT3);
SDVTList getVTList(const MVT *VTs, unsigned NumVTs);
/// getNodeValueTypes - These are obsolete, use getVTList instead.
const MVT *getNodeValueTypes(MVT VT) {
return getVTList(VT).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2) {
return getVTList(VT1, VT2).VTs;
}
const MVT *getNodeValueTypes(MVT VT1, MVT VT2, MVT VT3) {
return getVTList(VT1, VT2, VT3).VTs;
}
const MVT *getNodeValueTypes(const std::vector<MVT> &vtList) {
return getVTList(&vtList[0], (unsigned)vtList.size()).VTs;
}
//===--------------------------------------------------------------------===//
// Node creation methods.
//
SDOperand getConstant(uint64_t Val, MVT VT, bool isTarget = false);
SDOperand getConstant(const APInt &Val, MVT VT, bool isTarget = false);
SDOperand getIntPtrConstant(uint64_t Val, bool isTarget = false);
SDOperand getTargetConstant(uint64_t Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDOperand getTargetConstant(const APInt &Val, MVT VT) {
return getConstant(Val, VT, true);
}
SDOperand getConstantFP(double Val, MVT VT, bool isTarget = false);
SDOperand getConstantFP(const APFloat& Val, MVT VT, bool isTarget = false);
SDOperand getTargetConstantFP(double Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDOperand getTargetConstantFP(const APFloat& Val, MVT VT) {
return getConstantFP(Val, VT, true);
}
SDOperand getGlobalAddress(const GlobalValue *GV, MVT VT,
int offset = 0, bool isTargetGA = false);
SDOperand getTargetGlobalAddress(const GlobalValue *GV, MVT VT,
int offset = 0) {
return getGlobalAddress(GV, VT, offset, true);
}
SDOperand getFrameIndex(int FI, MVT VT, bool isTarget = false);
SDOperand getTargetFrameIndex(int FI, MVT VT) {
return getFrameIndex(FI, VT, true);
}
SDOperand getJumpTable(int JTI, MVT VT, bool isTarget = false);
SDOperand getTargetJumpTable(int JTI, MVT VT) {
return getJumpTable(JTI, VT, true);
}
SDOperand getConstantPool(Constant *C, MVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false);
SDOperand getTargetConstantPool(Constant *C, MVT VT,
unsigned Align = 0, int Offset = 0) {
return getConstantPool(C, VT, Align, Offset, true);
}
SDOperand getConstantPool(MachineConstantPoolValue *C, MVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false);
SDOperand getTargetConstantPool(MachineConstantPoolValue *C,
MVT VT, unsigned Align = 0,
int Offset = 0) {
return getConstantPool(C, VT, Align, Offset, true);
}
SDOperand getBasicBlock(MachineBasicBlock *MBB);
SDOperand getExternalSymbol(const char *Sym, MVT VT);
SDOperand getTargetExternalSymbol(const char *Sym, MVT VT);
SDOperand getArgFlags(ISD::ArgFlagsTy Flags);
SDOperand getValueType(MVT);
SDOperand getRegister(unsigned Reg, MVT VT);
SDOperand getDbgStopPoint(SDOperand Root, unsigned Line, unsigned Col,
const CompileUnitDesc *CU);
SDOperand getLabel(unsigned Opcode, SDOperand Root, unsigned LabelID);
SDOperand getCopyToReg(SDOperand Chain, unsigned Reg, SDOperand N) {
return getNode(ISD::CopyToReg, MVT::Other, Chain,
getRegister(Reg, N.getValueType()), N);
}
// This version of the getCopyToReg method takes an extra operand, which
// indicates that there is potentially an incoming flag value (if Flag is not
// null) and that there should be a flag result.
SDOperand getCopyToReg(SDOperand Chain, unsigned Reg, SDOperand N,
SDOperand Flag) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDOperand Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Flag };
return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3);
}
// Similar to last getCopyToReg() except parameter Reg is a SDOperand
SDOperand getCopyToReg(SDOperand Chain, SDOperand Reg, SDOperand N,
SDOperand Flag) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDOperand Ops[] = { Chain, Reg, N, Flag };
return getNode(ISD::CopyToReg, VTs, 2, Ops, Flag.Val ? 4 : 3);
}
SDOperand getCopyFromReg(SDOperand Chain, unsigned Reg, MVT VT) {
const MVT *VTs = getNodeValueTypes(VT, MVT::Other);
SDOperand Ops[] = { Chain, getRegister(Reg, VT) };
return getNode(ISD::CopyFromReg, VTs, 2, Ops, 2);
}
// This version of the getCopyFromReg method takes an extra operand, which
// indicates that there is potentially an incoming flag value (if Flag is not
// null) and that there should be a flag result.
SDOperand getCopyFromReg(SDOperand Chain, unsigned Reg, MVT VT,
SDOperand Flag) {
const MVT *VTs = getNodeValueTypes(VT, MVT::Other, MVT::Flag);
SDOperand Ops[] = { Chain, getRegister(Reg, VT), Flag };
return getNode(ISD::CopyFromReg, VTs, 3, Ops, Flag.Val ? 3 : 2);
}
SDOperand getCondCode(ISD::CondCode Cond);
/// getZeroExtendInReg - Return the expression required to zero extend the Op
/// value assuming it was the smaller SrcTy value.
SDOperand getZeroExtendInReg(SDOperand Op, MVT SrcTy);
/// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have
/// a flag result (to ensure it's not CSE'd).
SDOperand getCALLSEQ_START(SDOperand Chain, SDOperand Op) {
const MVT *VTs = getNodeValueTypes(MVT::Other, MVT::Flag);
SDOperand Ops[] = { Chain, Op };
return getNode(ISD::CALLSEQ_START, VTs, 2, Ops, 2);
}
/// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a
/// flag result (to ensure it's not CSE'd).
SDOperand getCALLSEQ_END(SDOperand Chain, SDOperand Op1, SDOperand Op2,
SDOperand InFlag) {
SDVTList NodeTys = getVTList(MVT::Other, MVT::Flag);
SmallVector<SDOperand, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Op1);
Ops.push_back(Op2);
Ops.push_back(InFlag);
return getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0],
(unsigned)Ops.size() - (InFlag.Val == 0 ? 1 : 0));
}
/// getNode - Gets or creates the specified node.
///
SDOperand getNode(unsigned Opcode, MVT VT);
SDOperand getNode(unsigned Opcode, MVT VT, SDOperand N);
SDOperand getNode(unsigned Opcode, MVT VT, SDOperand N1, SDOperand N2);
SDOperand getNode(unsigned Opcode, MVT VT,
SDOperand N1, SDOperand N2, SDOperand N3);
SDOperand getNode(unsigned Opcode, MVT VT,
SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4);
SDOperand getNode(unsigned Opcode, MVT VT,
SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4,
SDOperand N5);
SDOperand getNode(unsigned Opcode, MVT VT,
const SDOperand *Ops, unsigned NumOps);
SDOperand getNode(unsigned Opcode, MVT VT,
const SDUse *Ops, unsigned NumOps);
SDOperand getNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
const SDOperand *Ops, unsigned NumOps);
SDOperand getNode(unsigned Opcode, const MVT *VTs, unsigned NumVTs,
const SDOperand *Ops, unsigned NumOps);
SDOperand getNode(unsigned Opcode, SDVTList VTs);
SDOperand getNode(unsigned Opcode, SDVTList VTs, SDOperand N);
SDOperand getNode(unsigned Opcode, SDVTList VTs, SDOperand N1, SDOperand N2);
SDOperand getNode(unsigned Opcode, SDVTList VTs,
SDOperand N1, SDOperand N2, SDOperand N3);
SDOperand getNode(unsigned Opcode, SDVTList VTs,
SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4);
SDOperand getNode(unsigned Opcode, SDVTList VTs,
SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4,
SDOperand N5);
SDOperand getNode(unsigned Opcode, SDVTList VTs,
const SDOperand *Ops, unsigned NumOps);
SDOperand getMemcpy(SDOperand Chain, SDOperand Dst, SDOperand Src,
SDOperand Size, unsigned Align,
bool AlwaysInline,
const Value *DstSV, uint64_t DstSVOff,
const Value *SrcSV, uint64_t SrcSVOff);
SDOperand getMemmove(SDOperand Chain, SDOperand Dst, SDOperand Src,
SDOperand Size, unsigned Align,
const Value *DstSV, uint64_t DstOSVff,
const Value *SrcSV, uint64_t SrcSVOff);
SDOperand getMemset(SDOperand Chain, SDOperand Dst, SDOperand Src,
SDOperand Size, unsigned Align,
const Value *DstSV, uint64_t DstSVOff);
/// getSetCC - Helper function to make it easier to build SetCC's if you just
/// have an ISD::CondCode instead of an SDOperand.
///
SDOperand getSetCC(MVT VT, SDOperand LHS, SDOperand RHS,
ISD::CondCode Cond) {
return getNode(ISD::SETCC, VT, LHS, RHS, getCondCode(Cond));
}
/// getVSetCC - Helper function to make it easier to build VSetCC's nodes
/// if you just have an ISD::CondCode instead of an SDOperand.
///
SDOperand getVSetCC(MVT VT, SDOperand LHS, SDOperand RHS,
ISD::CondCode Cond) {
return getNode(ISD::VSETCC, VT, LHS, RHS, getCondCode(Cond));
}
/// getSelectCC - Helper function to make it easier to build SelectCC's if you
/// just have an ISD::CondCode instead of an SDOperand.
///
SDOperand getSelectCC(SDOperand LHS, SDOperand RHS,
SDOperand True, SDOperand False, ISD::CondCode Cond) {
return getNode(ISD::SELECT_CC, True.getValueType(), LHS, RHS, True, False,
getCondCode(Cond));
}
/// getVAArg - VAArg produces a result and token chain, and takes a pointer
/// and a source value as input.
SDOperand getVAArg(MVT VT, SDOperand Chain, SDOperand Ptr,
SDOperand SV);
/// getAtomic - Gets a node for an atomic op, produces result and chain, takes
/// 3 operands
SDOperand getAtomic(unsigned Opcode, SDOperand Chain, SDOperand Ptr,
SDOperand Cmp, SDOperand Swp, const Value* PtrVal,
unsigned Alignment=0);
/// getAtomic - Gets a node for an atomic op, produces result and chain, takes
/// 2 operands
SDOperand getAtomic(unsigned Opcode, SDOperand Chain, SDOperand Ptr,
SDOperand Val, const Value* PtrVal,
unsigned Alignment = 0);
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
/// Allowed to return something different (and simpler) if Simplify is true.
SDOperand getMergeValues(const SDOperand *Ops, unsigned NumOps,
bool Simplify = true);
/// getMergeValues - Create a MERGE_VALUES node from the given types and ops.
/// Allowed to return something different (and simpler) if Simplify is true.
/// May be faster than the above version if VTs is known and NumOps is large.
SDOperand getMergeValues(SDVTList VTs, const SDOperand *Ops, unsigned NumOps,
bool Simplify = true) {
if (Simplify && NumOps == 1)
return Ops[0];
return getNode(ISD::MERGE_VALUES, VTs, Ops, NumOps);
}
/// getLoad - Loads are not normal binary operators: their result type is not
/// determined by their operands, and they produce a value AND a token chain.
///
SDOperand getLoad(MVT VT, SDOperand Chain, SDOperand Ptr,
const Value *SV, int SVOffset, bool isVolatile=false,
unsigned Alignment=0);
SDOperand getExtLoad(ISD::LoadExtType ExtType, MVT VT,
SDOperand Chain, SDOperand Ptr, const Value *SV,
int SVOffset, MVT EVT, bool isVolatile=false,
unsigned Alignment=0);
SDOperand getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
SDOperand Offset, ISD::MemIndexedMode AM);
SDOperand getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
MVT VT, SDOperand Chain,
SDOperand Ptr, SDOperand Offset,
const Value *SV, int SVOffset, MVT EVT,
bool isVolatile=false, unsigned Alignment=0);
/// getStore - Helper function to build ISD::STORE nodes.
///
SDOperand getStore(SDOperand Chain, SDOperand Val, SDOperand Ptr,
const Value *SV, int SVOffset, bool isVolatile=false,
unsigned Alignment=0);
SDOperand getTruncStore(SDOperand Chain, SDOperand Val, SDOperand Ptr,
const Value *SV, int SVOffset, MVT TVT,
bool isVolatile=false, unsigned Alignment=0);
SDOperand getIndexedStore(SDOperand OrigStoe, SDOperand Base,
SDOperand Offset, ISD::MemIndexedMode AM);
// getSrcValue - Construct a node to track a Value* through the backend.
SDOperand getSrcValue(const Value *v);
// getMemOperand - Construct a node to track a memory reference
// through the backend.
SDOperand getMemOperand(const MachineMemOperand &MO);
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op);
SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2);
SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3);
SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4);
SDOperand UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
SDOperand Op3, SDOperand Op4, SDOperand Op5);
SDOperand UpdateNodeOperands(SDOperand N,
const SDOperand *Ops, unsigned NumOps);
/// SelectNodeTo - These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. The 0th value
/// of the resultant node is returned.
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT, SDOperand Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
SDOperand Op1, SDOperand Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT,
const SDOperand *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1, MVT VT2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, const SDOperand *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, MVT VT3, const SDOperand *Ops, unsigned NumOps);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDOperand Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDOperand Op1, SDOperand Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, MVT VT1,
MVT VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs,
const SDOperand *Ops, unsigned NumOps);
/// getTargetNode - These are used for target selectors to create a new node
/// with specified return type(s), target opcode, and operands.
///
/// Note that getTargetNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
SDNode *getTargetNode(unsigned Opcode, MVT VT);
SDNode *getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1);
SDNode *getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1, SDOperand Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT,
SDOperand Op1, SDOperand Op2, SDOperand Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT,
const SDOperand *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, SDOperand Op1);
SDNode *getTargetNode(unsigned Opcode, MVT VT1,
MVT VT2, SDOperand Op1, SDOperand Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1,
MVT VT2, SDOperand Op1, SDOperand Op2, SDOperand Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
const SDOperand *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
SDOperand Op1, SDOperand Op2);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
SDOperand Op1, SDOperand Op2, SDOperand Op3);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
const SDOperand *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3, MVT VT4,
const SDOperand *Ops, unsigned NumOps);
SDNode *getTargetNode(unsigned Opcode, const std::vector<MVT> &ResultTys,
const SDOperand *Ops, unsigned NumOps);
/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs,
const SDOperand *Ops, unsigned NumOps);
/// DAGUpdateListener - Clients of various APIs that cause global effects on
/// the DAG can optionally implement this interface. This allows the clients
/// to handle the various sorts of updates that happen.
class DAGUpdateListener {
public:
virtual ~DAGUpdateListener();
/// NodeDeleted - The node N that was deleted and, if E is not null, an
/// equivalent node E that replaced it.
virtual void NodeDeleted(SDNode *N, SDNode *E) = 0;
/// NodeUpdated - The node N that was updated.
virtual void NodeUpdated(SDNode *N) = 0;
};
/// RemoveDeadNode - Remove the specified node from the system. If any of its
/// operands then becomes dead, remove them as well. Inform UpdateListener
/// for each node deleted.
void RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener = 0);
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG. Use the first
/// version if 'From' is known to have a single result, use the second
/// if you have two nodes with identical results, use the third otherwise.
///
/// These methods all take an optional UpdateListener, which (if not null) is
/// informed about nodes that are deleted and modified due to recursive
/// changes in the dag.
///
void ReplaceAllUsesWith(SDOperand From, SDOperand Op,
DAGUpdateListener *UpdateListener = 0);
void ReplaceAllUsesWith(SDNode *From, SDNode *To,
DAGUpdateListener *UpdateListener = 0);
void ReplaceAllUsesWith(SDNode *From, const SDOperand *To,
DAGUpdateListener *UpdateListener = 0);
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.Val alone.
void ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
DAGUpdateListener *UpdateListener = 0);
/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
/// their allnodes order. It returns the maximum id.
unsigned AssignNodeIds();
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned AssignTopologicalOrder(std::vector<SDNode*> &TopOrder);
/// isCommutativeBinOp - Returns true if the opcode is a commutative binary
/// operation.
static bool isCommutativeBinOp(unsigned Opcode) {
// FIXME: This should get its info from the td file, so that we can include
// target info.
switch (Opcode) {
case ISD::ADD:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADDC:
case ISD::ADDE: return true;
default: return false;
}
}
void dump() const;
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type. If minAlign is specified, the slot size will have
/// at least that alignment.
SDOperand CreateStackTemporary(MVT VT, unsigned minAlign = 1);
/// FoldSetCC - Constant fold a setcc to true or false.
SDOperand FoldSetCC(MVT VT, SDOperand N1,
SDOperand N2, ISD::CondCode Cond);
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SignBitIsZero(SDOperand Op, unsigned Depth = 0) const;
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDOperand Op, const APInt &Mask, unsigned Depth = 0)
const;
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// processing. Targets can implement the computeMaskedBitsForTargetNode
/// method in the TargetLowering class to allow target nodes to be understood.
void ComputeMaskedBits(SDOperand Op, const APInt &Mask, APInt &KnownZero,
APInt &KnownOne, unsigned Depth = 0) const;
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3. Targets can
/// implement the ComputeNumSignBitsForTarget method in the TargetLowering
/// class to allow target nodes to be understood.
unsigned ComputeNumSignBits(SDOperand Op, unsigned Depth = 0) const;
/// isVerifiedDebugInfoDesc - Returns true if the specified SDOperand has
/// been verified as a debug information descriptor.
bool isVerifiedDebugInfoDesc(SDOperand Op) const;
/// getShuffleScalarElt - Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
SDOperand getShuffleScalarElt(const SDNode *N, unsigned Idx);
private:
inline alist_traits<SDNode, LargestSDNode>::AllocatorType &getAllocator();
void RemoveNodeFromCSEMaps(SDNode *N);
SDNode *AddNonLeafNodeToCSEMaps(SDNode *N);
SDNode *FindModifiedNodeSlot(SDNode *N, SDOperand Op, void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, SDOperand Op1, SDOperand Op2,
void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, const SDOperand *Ops, unsigned NumOps,
void *&InsertPos);
void DeleteNodeNotInCSEMaps(SDNode *N);
unsigned getMVTAlignment(MVT MemoryVT) const;
// List of non-single value types.
std::list<std::vector<MVT> > VTList;
// Maps to auto-CSE operations.
std::vector<CondCodeSDNode*> CondCodeNodes;
std::vector<SDNode*> ValueTypeNodes;
std::map<MVT, SDNode*, MVT::compareRawBits> ExtendedValueTypeNodes;
StringMap<SDNode*> ExternalSymbols;
StringMap<SDNode*> TargetExternalSymbols;
};
template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
typedef SelectionDAG::allnodes_iterator nodes_iterator;
static nodes_iterator nodes_begin(SelectionDAG *G) {
return G->allnodes_begin();
}
static nodes_iterator nodes_end(SelectionDAG *G) {
return G->allnodes_end();
}
};
} // end namespace llvm
#endif