llvm-6502/lib/CodeGen/LiveInterval.cpp
Jakob Stoklund Olesen bd6f44a3a2 Run proper recursive dead code elimination during coalescing.
Dead copies cause problems because they are trivial to coalesce, but
removing them gived the live range a dangling end point. This patch
enables full dead code elimination which trims live ranges to their uses
so end points don't dangle.

DCE may erase multiple instructions. Put the pointers in an ErasedInstrs
set so we never risk visiting erased instructions in the work list.

There isn't supposed to be any dead copies entering RegisterCoalescer,
but they do slip by as evidenced by test/CodeGen/X86/coalescer-dce.ll.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157101 91177308-0d34-0410-b5e6-96231b3b80d8
2012-05-19 05:25:50 +00:00

721 lines
23 KiB
C++

//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveRange and LiveInterval classes. Given some
// numbering of each the machine instructions an interval [i, j) is said to be a
// live interval for register v if there is no instruction with number j' > j
// such that v is live at j' and there is no instruction with number i' < i such
// that v is live at i'. In this implementation intervals can have holes,
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
// individual range is represented as an instance of LiveRange, and the whole
// interval is represented as an instance of LiveInterval.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
using namespace llvm;
LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
// This algorithm is basically std::upper_bound.
// Unfortunately, std::upper_bound cannot be used with mixed types until we
// adopt C++0x. Many libraries can do it, but not all.
if (empty() || Pos >= endIndex())
return end();
iterator I = begin();
size_t Len = ranges.size();
do {
size_t Mid = Len >> 1;
if (Pos < I[Mid].end)
Len = Mid;
else
I += Mid + 1, Len -= Mid + 1;
} while (Len);
return I;
}
/// killedInRange - Return true if the interval has kills in [Start,End).
bool LiveInterval::killedInRange(SlotIndex Start, SlotIndex End) const {
Ranges::const_iterator r =
std::lower_bound(ranges.begin(), ranges.end(), End);
// Now r points to the first interval with start >= End, or ranges.end().
if (r == ranges.begin())
return false;
--r;
// Now r points to the last interval with end <= End.
// r->end is the kill point.
return r->end >= Start && r->end < End;
}
// overlaps - Return true if the intersection of the two live intervals is
// not empty.
//
// An example for overlaps():
//
// 0: A = ...
// 4: B = ...
// 8: C = A + B ;; last use of A
//
// The live intervals should look like:
//
// A = [3, 11)
// B = [7, x)
// C = [11, y)
//
// A->overlaps(C) should return false since we want to be able to join
// A and C.
//
bool LiveInterval::overlapsFrom(const LiveInterval& other,
const_iterator StartPos) const {
assert(!empty() && "empty interval");
const_iterator i = begin();
const_iterator ie = end();
const_iterator j = StartPos;
const_iterator je = other.end();
assert((StartPos->start <= i->start || StartPos == other.begin()) &&
StartPos != other.end() && "Bogus start position hint!");
if (i->start < j->start) {
i = std::upper_bound(i, ie, j->start);
if (i != ranges.begin()) --i;
} else if (j->start < i->start) {
++StartPos;
if (StartPos != other.end() && StartPos->start <= i->start) {
assert(StartPos < other.end() && i < end());
j = std::upper_bound(j, je, i->start);
if (j != other.ranges.begin()) --j;
}
} else {
return true;
}
if (j == je) return false;
while (i != ie) {
if (i->start > j->start) {
std::swap(i, j);
std::swap(ie, je);
}
if (i->end > j->start)
return true;
++i;
}
return false;
}
/// overlaps - Return true if the live interval overlaps a range specified
/// by [Start, End).
bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
assert(Start < End && "Invalid range");
const_iterator I = std::lower_bound(begin(), end(), End);
return I != begin() && (--I)->end > Start;
}
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
/// it can be nuked later.
void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
if (ValNo->id == getNumValNums()-1) {
do {
valnos.pop_back();
} while (!valnos.empty() && valnos.back()->isUnused());
} else {
ValNo->setIsUnused(true);
}
}
/// RenumberValues - Renumber all values in order of appearance and delete the
/// remaining unused values.
void LiveInterval::RenumberValues(LiveIntervals &lis) {
SmallPtrSet<VNInfo*, 8> Seen;
valnos.clear();
for (const_iterator I = begin(), E = end(); I != E; ++I) {
VNInfo *VNI = I->valno;
if (!Seen.insert(VNI))
continue;
assert(!VNI->isUnused() && "Unused valno used by live range");
VNI->id = (unsigned)valnos.size();
valnos.push_back(VNI);
}
}
/// extendIntervalEndTo - This method is used when we want to extend the range
/// specified by I to end at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with. The iterator is
/// not invalidated.
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = llvm::next(I);
for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
}
// If NewEnd was in the middle of an interval, make sure to get its endpoint.
I->end = std::max(NewEnd, prior(MergeTo)->end);
// Erase any dead ranges.
ranges.erase(llvm::next(I), MergeTo);
// If the newly formed range now touches the range after it and if they have
// the same value number, merge the two ranges into one range.
Ranges::iterator Next = llvm::next(I);
if (Next != ranges.end() && Next->start <= I->end && Next->valno == ValNo) {
I->end = Next->end;
ranges.erase(Next);
}
}
/// extendIntervalStartTo - This method is used when we want to extend the range
/// specified by I to start at the specified endpoint. To do this, we should
/// merge and eliminate all ranges that this will overlap with.
LiveInterval::Ranges::iterator
LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
assert(I != ranges.end() && "Not a valid interval!");
VNInfo *ValNo = I->valno;
// Search for the first interval that we can't merge with.
Ranges::iterator MergeTo = I;
do {
if (MergeTo == ranges.begin()) {
I->start = NewStart;
ranges.erase(MergeTo, I);
return I;
}
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
--MergeTo;
} while (NewStart <= MergeTo->start);
// If we start in the middle of another interval, just delete a range and
// extend that interval.
if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
MergeTo->end = I->end;
} else {
// Otherwise, extend the interval right after.
++MergeTo;
MergeTo->start = NewStart;
MergeTo->end = I->end;
}
ranges.erase(llvm::next(MergeTo), llvm::next(I));
return MergeTo;
}
LiveInterval::iterator
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
SlotIndex Start = LR.start, End = LR.end;
iterator it = std::upper_bound(From, ranges.end(), Start);
// If the inserted interval starts in the middle or right at the end of
// another interval, just extend that interval to contain the range of LR.
if (it != ranges.begin()) {
iterator B = prior(it);
if (LR.valno == B->valno) {
if (B->start <= Start && B->end >= Start) {
extendIntervalEndTo(B, End);
return B;
}
} else {
// Check to make sure that we are not overlapping two live ranges with
// different valno's.
assert(B->end <= Start &&
"Cannot overlap two LiveRanges with differing ValID's"
" (did you def the same reg twice in a MachineInstr?)");
}
}
// Otherwise, if this range ends in the middle of, or right next to, another
// interval, merge it into that interval.
if (it != ranges.end()) {
if (LR.valno == it->valno) {
if (it->start <= End) {
it = extendIntervalStartTo(it, Start);
// If LR is a complete superset of an interval, we may need to grow its
// endpoint as well.
if (End > it->end)
extendIntervalEndTo(it, End);
return it;
}
} else {
// Check to make sure that we are not overlapping two live ranges with
// different valno's.
assert(it->start >= End &&
"Cannot overlap two LiveRanges with differing ValID's");
}
}
// Otherwise, this is just a new range that doesn't interact with anything.
// Insert it.
return ranges.insert(it, LR);
}
/// extendInBlock - If this interval is live before Kill in the basic
/// block that starts at StartIdx, extend it to be live up to Kill and return
/// the value. If there is no live range before Kill, return NULL.
VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
if (empty())
return 0;
iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
if (I == begin())
return 0;
--I;
if (I->end <= StartIdx)
return 0;
if (I->end < Kill)
extendIntervalEndTo(I, Kill);
return I->valno;
}
/// removeRange - Remove the specified range from this interval. Note that
/// the range must be in a single LiveRange in its entirety.
void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
bool RemoveDeadValNo) {
// Find the LiveRange containing this span.
Ranges::iterator I = find(Start);
assert(I != ranges.end() && "Range is not in interval!");
assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
// If the span we are removing is at the start of the LiveRange, adjust it.
VNInfo *ValNo = I->valno;
if (I->start == Start) {
if (I->end == End) {
if (RemoveDeadValNo) {
// Check if val# is dead.
bool isDead = true;
for (const_iterator II = begin(), EE = end(); II != EE; ++II)
if (II != I && II->valno == ValNo) {
isDead = false;
break;
}
if (isDead) {
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
}
ranges.erase(I); // Removed the whole LiveRange.
} else
I->start = End;
return;
}
// Otherwise if the span we are removing is at the end of the LiveRange,
// adjust the other way.
if (I->end == End) {
I->end = Start;
return;
}
// Otherwise, we are splitting the LiveRange into two pieces.
SlotIndex OldEnd = I->end;
I->end = Start; // Trim the old interval.
// Insert the new one.
ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
}
/// removeValNo - Remove all the ranges defined by the specified value#.
/// Also remove the value# from value# list.
void LiveInterval::removeValNo(VNInfo *ValNo) {
if (empty()) return;
Ranges::iterator I = ranges.end();
Ranges::iterator E = ranges.begin();
do {
--I;
if (I->valno == ValNo)
ranges.erase(I);
} while (I != E);
// Now that ValNo is dead, remove it.
markValNoForDeletion(ValNo);
}
/// join - Join two live intervals (this, and other) together. This applies
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
/// the intervals are not joinable, this aborts.
void LiveInterval::join(LiveInterval &Other,
const int *LHSValNoAssignments,
const int *RHSValNoAssignments,
SmallVector<VNInfo*, 16> &NewVNInfo,
MachineRegisterInfo *MRI) {
// Determine if any of our live range values are mapped. This is uncommon, so
// we want to avoid the interval scan if not.
bool MustMapCurValNos = false;
unsigned NumVals = getNumValNums();
unsigned NumNewVals = NewVNInfo.size();
for (unsigned i = 0; i != NumVals; ++i) {
unsigned LHSValID = LHSValNoAssignments[i];
if (i != LHSValID ||
(NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
MustMapCurValNos = true;
break;
}
}
// If we have to apply a mapping to our base interval assignment, rewrite it
// now.
if (MustMapCurValNos) {
// Map the first live range.
iterator OutIt = begin();
OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
for (iterator I = next(OutIt), E = end(); I != E; ++I) {
VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
assert(nextValNo != 0 && "Huh?");
// If this live range has the same value # as its immediate predecessor,
// and if they are neighbors, remove one LiveRange. This happens when we
// have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
if (OutIt->valno == nextValNo && OutIt->end == I->start) {
OutIt->end = I->end;
} else {
// Didn't merge. Move OutIt to the next interval,
++OutIt;
OutIt->valno = nextValNo;
if (OutIt != I) {
OutIt->start = I->start;
OutIt->end = I->end;
}
}
}
// If we merge some live ranges, chop off the end.
++OutIt;
ranges.erase(OutIt, end());
}
// Remember assignements because val# ids are changing.
SmallVector<unsigned, 16> OtherAssignments;
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
OtherAssignments.push_back(RHSValNoAssignments[I->valno->id]);
// Update val# info. Renumber them and make sure they all belong to this
// LiveInterval now. Also remove dead val#'s.
unsigned NumValNos = 0;
for (unsigned i = 0; i < NumNewVals; ++i) {
VNInfo *VNI = NewVNInfo[i];
if (VNI) {
if (NumValNos >= NumVals)
valnos.push_back(VNI);
else
valnos[NumValNos] = VNI;
VNI->id = NumValNos++; // Renumber val#.
}
}
if (NumNewVals < NumVals)
valnos.resize(NumNewVals); // shrinkify
// Okay, now insert the RHS live ranges into the LHS.
iterator InsertPos = begin();
unsigned RangeNo = 0;
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I, ++RangeNo) {
// Map the valno in the other live range to the current live range.
I->valno = NewVNInfo[OtherAssignments[RangeNo]];
assert(I->valno && "Adding a dead range?");
InsertPos = addRangeFrom(*I, InsertPos);
}
}
/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
/// interval as the specified value number. The LiveRanges in RHS are
/// allowed to overlap with LiveRanges in the current interval, but only if
/// the overlapping LiveRanges have the specified value number.
void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
VNInfo *LHSValNo) {
// TODO: Make this more efficient.
iterator InsertPos = begin();
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
// Map the valno in the other live range to the current live range.
LiveRange Tmp = *I;
Tmp.valno = LHSValNo;
InsertPos = addRangeFrom(Tmp, InsertPos);
}
}
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
/// in RHS into this live interval as the specified value number.
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
/// current interval, it will replace the value numbers of the overlaped
/// live ranges with the specified value number.
void LiveInterval::MergeValueInAsValue(
const LiveInterval &RHS,
const VNInfo *RHSValNo, VNInfo *LHSValNo) {
// TODO: Make this more efficient.
iterator InsertPos = begin();
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
if (I->valno != RHSValNo)
continue;
// Map the valno in the other live range to the current live range.
LiveRange Tmp = *I;
Tmp.valno = LHSValNo;
InsertPos = addRangeFrom(Tmp, InsertPos);
}
}
/// MergeValueNumberInto - This method is called when two value nubmers
/// are found to be equivalent. This eliminates V1, replacing all
/// LiveRanges with the V1 value number with the V2 value number. This can
/// cause merging of V1/V2 values numbers and compaction of the value space.
VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
assert(V1 != V2 && "Identical value#'s are always equivalent!");
// This code actually merges the (numerically) larger value number into the
// smaller value number, which is likely to allow us to compactify the value
// space. The only thing we have to be careful of is to preserve the
// instruction that defines the result value.
// Make sure V2 is smaller than V1.
if (V1->id < V2->id) {
V1->copyFrom(*V2);
std::swap(V1, V2);
}
// Merge V1 live ranges into V2.
for (iterator I = begin(); I != end(); ) {
iterator LR = I++;
if (LR->valno != V1) continue; // Not a V1 LiveRange.
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
// range, extend it.
if (LR != begin()) {
iterator Prev = LR-1;
if (Prev->valno == V2 && Prev->end == LR->start) {
Prev->end = LR->end;
// Erase this live-range.
ranges.erase(LR);
I = Prev+1;
LR = Prev;
}
}
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
// Ensure that it is a V2 live-range.
LR->valno = V2;
// If we can merge it into later V2 live ranges, do so now. We ignore any
// following V1 live ranges, as they will be merged in subsequent iterations
// of the loop.
if (I != end()) {
if (I->start == LR->end && I->valno == V2) {
LR->end = I->end;
ranges.erase(I);
I = LR+1;
}
}
}
// Merge the relevant flags.
V2->mergeFlags(V1);
// Now that V1 is dead, remove it.
markValNoForDeletion(V1);
return V2;
}
void LiveInterval::Copy(const LiveInterval &RHS,
MachineRegisterInfo *MRI,
VNInfo::Allocator &VNInfoAllocator) {
ranges.clear();
valnos.clear();
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(RHS.reg);
MRI->setRegAllocationHint(reg, Hint.first, Hint.second);
weight = RHS.weight;
for (unsigned i = 0, e = RHS.getNumValNums(); i != e; ++i) {
const VNInfo *VNI = RHS.getValNumInfo(i);
createValueCopy(VNI, VNInfoAllocator);
}
for (unsigned i = 0, e = RHS.ranges.size(); i != e; ++i) {
const LiveRange &LR = RHS.ranges[i];
addRange(LiveRange(LR.start, LR.end, getValNumInfo(LR.valno->id)));
}
}
unsigned LiveInterval::getSize() const {
unsigned Sum = 0;
for (const_iterator I = begin(), E = end(); I != E; ++I)
Sum += I->start.distance(I->end);
return Sum;
}
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
}
void LiveRange::dump() const {
dbgs() << *this << "\n";
}
void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
OS << PrintReg(reg, TRI);
if (weight != 0)
OS << ',' << weight;
if (empty())
OS << " EMPTY";
else {
OS << " = ";
for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
E = ranges.end(); I != E; ++I) {
OS << *I;
assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
}
}
// Print value number info.
if (getNumValNums()) {
OS << " ";
unsigned vnum = 0;
for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
++i, ++vnum) {
const VNInfo *vni = *i;
if (vnum) OS << " ";
OS << vnum << "@";
if (vni->isUnused()) {
OS << "x";
} else {
OS << vni->def;
if (vni->isPHIDef())
OS << "-phidef";
if (vni->hasPHIKill())
OS << "-phikill";
}
}
}
}
void LiveInterval::dump() const {
dbgs() << *this << "\n";
}
void LiveRange::print(raw_ostream &os) const {
os << *this;
}
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
// Create initial equivalence classes.
EqClass.clear();
EqClass.grow(LI->getNumValNums());
const VNInfo *used = 0, *unused = 0;
// Determine connections.
for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
// Group all unused values into one class.
if (VNI->isUnused()) {
if (unused)
EqClass.join(unused->id, VNI->id);
unused = VNI;
continue;
}
used = VNI;
if (VNI->isPHIDef()) {
const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
assert(MBB && "Phi-def has no defining MBB");
// Connect to values live out of predecessors.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI)
if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
EqClass.join(VNI->id, PVNI->id);
} else {
// Normal value defined by an instruction. Check for two-addr redef.
// FIXME: This could be coincidental. Should we really check for a tied
// operand constraint?
// Note that VNI->def may be a use slot for an early clobber def.
if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
EqClass.join(VNI->id, UVNI->id);
}
}
// Lump all the unused values in with the last used value.
if (used && unused)
EqClass.join(used->id, unused->id);
EqClass.compress();
return EqClass.getNumClasses();
}
void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
MachineRegisterInfo &MRI) {
assert(LIV[0] && "LIV[0] must be set");
LiveInterval &LI = *LIV[0];
// Rewrite instructions.
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MO.isUse() && MO.isUndef())
continue;
// DBG_VALUE instructions should have been eliminated earlier.
SlotIndex Idx = LIS.getInstructionIndex(MI);
Idx = Idx.getRegSlot(MO.isUse());
const VNInfo *VNI = LI.getVNInfoAt(Idx);
// FIXME: We should be able to assert(VNI) here, but the coalescer leaves
// dangling defs around.
if (!VNI)
continue;
MO.setReg(LIV[getEqClass(VNI)]->reg);
}
// Move runs to new intervals.
LiveInterval::iterator J = LI.begin(), E = LI.end();
while (J != E && EqClass[J->valno->id] == 0)
++J;
for (LiveInterval::iterator I = J; I != E; ++I) {
if (unsigned eq = EqClass[I->valno->id]) {
assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
"New intervals should be empty");
LIV[eq]->ranges.push_back(*I);
} else
*J++ = *I;
}
LI.ranges.erase(J, E);
// Transfer VNInfos to their new owners and renumber them.
unsigned j = 0, e = LI.getNumValNums();
while (j != e && EqClass[j] == 0)
++j;
for (unsigned i = j; i != e; ++i) {
VNInfo *VNI = LI.getValNumInfo(i);
if (unsigned eq = EqClass[i]) {
VNI->id = LIV[eq]->getNumValNums();
LIV[eq]->valnos.push_back(VNI);
} else {
VNI->id = j;
LI.valnos[j++] = VNI;
}
}
LI.valnos.resize(j);
}