mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 16:31:16 +00:00
d977d8651a
Rename getZeroExtend and getSignExtend to getZExt and getSExt to match the the casting mnemonics in the rest of LLVM. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32514 91177308-0d34-0410-b5e6-96231b3b80d8
876 lines
34 KiB
C++
876 lines
34 KiB
C++
//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the default implementation of the Alias Analysis interface
|
|
// that simply implements a few identities (two different globals cannot alias,
|
|
// etc), but otherwise does no analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
/// NoAA - This class implements the -no-aa pass, which always returns "I
|
|
/// don't know" for alias queries. NoAA is unlike other alias analysis
|
|
/// implementations, in that it does not chain to a previous analysis. As
|
|
/// such it doesn't follow many of the rules that other alias analyses must.
|
|
///
|
|
struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetData>();
|
|
}
|
|
|
|
virtual void initializePass() {
|
|
TD = &getAnalysis<TargetData>();
|
|
}
|
|
|
|
virtual AliasResult alias(const Value *V1, unsigned V1Size,
|
|
const Value *V2, unsigned V2Size) {
|
|
return MayAlias;
|
|
}
|
|
|
|
virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
|
|
std::vector<PointerAccessInfo> *Info) {
|
|
return UnknownModRefBehavior;
|
|
}
|
|
|
|
virtual void getArgumentAccesses(Function *F, CallSite CS,
|
|
std::vector<PointerAccessInfo> &Info) {
|
|
assert(0 && "This method may not be called on this function!");
|
|
}
|
|
|
|
virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
|
|
virtual bool pointsToConstantMemory(const Value *P) { return false; }
|
|
virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
|
|
return ModRef;
|
|
}
|
|
virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
|
|
return ModRef;
|
|
}
|
|
virtual bool hasNoModRefInfoForCalls() const { return true; }
|
|
|
|
virtual void deleteValue(Value *V) {}
|
|
virtual void copyValue(Value *From, Value *To) {}
|
|
};
|
|
|
|
// Register this pass...
|
|
RegisterPass<NoAA>
|
|
U("no-aa", "No Alias Analysis (always returns 'may' alias)");
|
|
|
|
// Declare that we implement the AliasAnalysis interface
|
|
RegisterAnalysisGroup<AliasAnalysis> V(U);
|
|
} // End of anonymous namespace
|
|
|
|
ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
|
|
|
|
namespace {
|
|
/// BasicAliasAnalysis - This is the default alias analysis implementation.
|
|
/// Because it doesn't chain to a previous alias analysis (like -no-aa), it
|
|
/// derives from the NoAA class.
|
|
struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
|
|
AliasResult alias(const Value *V1, unsigned V1Size,
|
|
const Value *V2, unsigned V2Size);
|
|
|
|
ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
|
|
ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
|
|
return NoAA::getModRefInfo(CS1,CS2);
|
|
}
|
|
|
|
/// hasNoModRefInfoForCalls - We can provide mod/ref information against
|
|
/// non-escaping allocations.
|
|
virtual bool hasNoModRefInfoForCalls() const { return false; }
|
|
|
|
/// pointsToConstantMemory - Chase pointers until we find a (constant
|
|
/// global) or not.
|
|
bool pointsToConstantMemory(const Value *P);
|
|
|
|
virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
|
|
std::vector<PointerAccessInfo> *Info);
|
|
|
|
private:
|
|
// CheckGEPInstructions - Check two GEP instructions with known
|
|
// must-aliasing base pointers. This checks to see if the index expressions
|
|
// preclude the pointers from aliasing...
|
|
AliasResult
|
|
CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
|
|
unsigned G1Size,
|
|
const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
|
|
unsigned G2Size);
|
|
};
|
|
|
|
// Register this pass...
|
|
RegisterPass<BasicAliasAnalysis>
|
|
X("basicaa", "Basic Alias Analysis (default AA impl)");
|
|
|
|
// Declare that we implement the AliasAnalysis interface
|
|
RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
|
|
} // End of anonymous namespace
|
|
|
|
ImmutablePass *llvm::createBasicAliasAnalysisPass() {
|
|
return new BasicAliasAnalysis();
|
|
}
|
|
|
|
// getUnderlyingObject - This traverses the use chain to figure out what object
|
|
// the specified value points to. If the value points to, or is derived from, a
|
|
// unique object or an argument, return it.
|
|
static const Value *getUnderlyingObject(const Value *V) {
|
|
if (!isa<PointerType>(V->getType())) return 0;
|
|
|
|
// If we are at some type of object, return it. GlobalValues and Allocations
|
|
// have unique addresses.
|
|
if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
|
|
return V;
|
|
|
|
// Traverse through different addressing mechanisms...
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
|
|
return getUnderlyingObject(I->getOperand(0));
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (CE->getOpcode() == Instruction::BitCast ||
|
|
CE->getOpcode() == Instruction::GetElementPtr)
|
|
return getUnderlyingObject(CE->getOperand(0));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const User *isGEP(const Value *V) {
|
|
if (isa<GetElementPtrInst>(V) ||
|
|
(isa<ConstantExpr>(V) &&
|
|
cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
|
|
return cast<User>(V);
|
|
return 0;
|
|
}
|
|
|
|
static const Value *GetGEPOperands(const Value *V, std::vector<Value*> &GEPOps){
|
|
assert(GEPOps.empty() && "Expect empty list to populate!");
|
|
GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
|
|
cast<User>(V)->op_end());
|
|
|
|
// Accumulate all of the chained indexes into the operand array
|
|
V = cast<User>(V)->getOperand(0);
|
|
|
|
while (const User *G = isGEP(V)) {
|
|
if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
|
|
!cast<Constant>(GEPOps[0])->isNullValue())
|
|
break; // Don't handle folding arbitrary pointer offsets yet...
|
|
GEPOps.erase(GEPOps.begin()); // Drop the zero index
|
|
GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
|
|
V = G->getOperand(0);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
/// pointsToConstantMemory - Chase pointers until we find a (constant
|
|
/// global) or not.
|
|
bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
|
|
if (const Value *V = getUnderlyingObject(P))
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return GV->isConstant();
|
|
return false;
|
|
}
|
|
|
|
// Determine if an AllocationInst instruction escapes from the function it is
|
|
// contained in. If it does not escape, there is no way for another function to
|
|
// mod/ref it. We do this by looking at its uses and determining if the uses
|
|
// can escape (recursively).
|
|
static bool AddressMightEscape(const Value *V) {
|
|
for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
|
|
UI != E; ++UI) {
|
|
const Instruction *I = cast<Instruction>(*UI);
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
break; //next use.
|
|
case Instruction::Store:
|
|
if (I->getOperand(0) == V)
|
|
return true; // Escapes if the pointer is stored.
|
|
break; // next use.
|
|
case Instruction::GetElementPtr:
|
|
if (AddressMightEscape(I))
|
|
return true;
|
|
case Instruction::BitCast:
|
|
if (!isa<PointerType>(I->getType()))
|
|
return true;
|
|
if (AddressMightEscape(I))
|
|
return true;
|
|
break; // next use
|
|
case Instruction::Ret:
|
|
// If returned, the address will escape to calling functions, but no
|
|
// callees could modify it.
|
|
break; // next use
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// getModRefInfo - Check to see if the specified callsite can clobber the
|
|
// specified memory object. Since we only look at local properties of this
|
|
// function, we really can't say much about this query. We do, however, use
|
|
// simple "address taken" analysis on local objects.
|
|
//
|
|
AliasAnalysis::ModRefResult
|
|
BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
|
|
if (!isa<Constant>(P))
|
|
if (const AllocationInst *AI =
|
|
dyn_cast_or_null<AllocationInst>(getUnderlyingObject(P))) {
|
|
// Okay, the pointer is to a stack allocated object. If we can prove that
|
|
// the pointer never "escapes", then we know the call cannot clobber it,
|
|
// because it simply can't get its address.
|
|
if (!AddressMightEscape(AI))
|
|
return NoModRef;
|
|
|
|
// If this is a tail call and P points to a stack location, we know that
|
|
// the tail call cannot access or modify the local stack.
|
|
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
|
|
if (CI->isTailCall() && isa<AllocaInst>(AI))
|
|
return NoModRef;
|
|
}
|
|
|
|
// The AliasAnalysis base class has some smarts, lets use them.
|
|
return AliasAnalysis::getModRefInfo(CS, P, Size);
|
|
}
|
|
|
|
// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
|
|
// as array references. Note that this function is heavily tail recursive.
|
|
// Hopefully we have a smart C++ compiler. :)
|
|
//
|
|
AliasAnalysis::AliasResult
|
|
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
|
|
const Value *V2, unsigned V2Size) {
|
|
// Strip off any constant expression casts if they exist
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
|
|
if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
|
|
V1 = CE->getOperand(0);
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
|
|
if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
|
|
V2 = CE->getOperand(0);
|
|
|
|
// Are we checking for alias of the same value?
|
|
if (V1 == V2) return MustAlias;
|
|
|
|
if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
|
|
V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
|
|
return NoAlias; // Scalars cannot alias each other
|
|
|
|
// Strip off cast instructions...
|
|
if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
|
|
if (isa<PointerType>(I->getOperand(0)->getType()))
|
|
return alias(I->getOperand(0), V1Size, V2, V2Size);
|
|
if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
|
|
if (isa<PointerType>(I->getOperand(0)->getType()))
|
|
return alias(V1, V1Size, I->getOperand(0), V2Size);
|
|
|
|
// Figure out what objects these things are pointing to if we can...
|
|
const Value *O1 = getUnderlyingObject(V1);
|
|
const Value *O2 = getUnderlyingObject(V2);
|
|
|
|
// Pointing at a discernible object?
|
|
if (O1) {
|
|
if (O2) {
|
|
if (isa<Argument>(O1)) {
|
|
// Incoming argument cannot alias locally allocated object!
|
|
if (isa<AllocationInst>(O2)) return NoAlias;
|
|
// Otherwise, nothing is known...
|
|
} else if (isa<Argument>(O2)) {
|
|
// Incoming argument cannot alias locally allocated object!
|
|
if (isa<AllocationInst>(O1)) return NoAlias;
|
|
// Otherwise, nothing is known...
|
|
} else if (O1 != O2) {
|
|
// If they are two different objects, we know that we have no alias...
|
|
return NoAlias;
|
|
}
|
|
|
|
// If they are the same object, they we can look at the indexes. If they
|
|
// index off of the object is the same for both pointers, they must alias.
|
|
// If they are provably different, they must not alias. Otherwise, we
|
|
// can't tell anything.
|
|
}
|
|
|
|
|
|
if (!isa<Argument>(O1) && isa<ConstantPointerNull>(V2))
|
|
return NoAlias; // Unique values don't alias null
|
|
|
|
if (isa<GlobalVariable>(O1) ||
|
|
(isa<AllocationInst>(O1) &&
|
|
!cast<AllocationInst>(O1)->isArrayAllocation()))
|
|
if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
|
|
// If the size of the other access is larger than the total size of the
|
|
// global/alloca/malloc, it cannot be accessing the global (it's
|
|
// undefined to load or store bytes before or after an object).
|
|
const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
|
|
unsigned GlobalSize = getTargetData().getTypeSize(ElTy);
|
|
if (GlobalSize < V2Size && V2Size != ~0U)
|
|
return NoAlias;
|
|
}
|
|
}
|
|
|
|
if (O2) {
|
|
if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
|
|
return NoAlias; // Unique values don't alias null
|
|
|
|
if (isa<GlobalVariable>(O2) ||
|
|
(isa<AllocationInst>(O2) &&
|
|
!cast<AllocationInst>(O2)->isArrayAllocation()))
|
|
if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
|
|
// If the size of the other access is larger than the total size of the
|
|
// global/alloca/malloc, it cannot be accessing the object (it's
|
|
// undefined to load or store bytes before or after an object).
|
|
const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
|
|
unsigned GlobalSize = getTargetData().getTypeSize(ElTy);
|
|
if (GlobalSize < V1Size && V1Size != ~0U)
|
|
return NoAlias;
|
|
}
|
|
}
|
|
|
|
// If we have two gep instructions with must-alias'ing base pointers, figure
|
|
// out if the indexes to the GEP tell us anything about the derived pointer.
|
|
// Note that we also handle chains of getelementptr instructions as well as
|
|
// constant expression getelementptrs here.
|
|
//
|
|
if (isGEP(V1) && isGEP(V2)) {
|
|
// Drill down into the first non-gep value, to test for must-aliasing of
|
|
// the base pointers.
|
|
const Value *BasePtr1 = V1, *BasePtr2 = V2;
|
|
do {
|
|
BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
|
|
} while (isGEP(BasePtr1) &&
|
|
cast<User>(BasePtr1)->getOperand(1) ==
|
|
Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
|
|
do {
|
|
BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
|
|
} while (isGEP(BasePtr2) &&
|
|
cast<User>(BasePtr2)->getOperand(1) ==
|
|
Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
|
|
|
|
// Do the base pointers alias?
|
|
AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
|
|
if (BaseAlias == NoAlias) return NoAlias;
|
|
if (BaseAlias == MustAlias) {
|
|
// If the base pointers alias each other exactly, check to see if we can
|
|
// figure out anything about the resultant pointers, to try to prove
|
|
// non-aliasing.
|
|
|
|
// Collect all of the chained GEP operands together into one simple place
|
|
std::vector<Value*> GEP1Ops, GEP2Ops;
|
|
BasePtr1 = GetGEPOperands(V1, GEP1Ops);
|
|
BasePtr2 = GetGEPOperands(V2, GEP2Ops);
|
|
|
|
// If GetGEPOperands were able to fold to the same must-aliased pointer,
|
|
// do the comparison.
|
|
if (BasePtr1 == BasePtr2) {
|
|
AliasResult GAlias =
|
|
CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
|
|
BasePtr2->getType(), GEP2Ops, V2Size);
|
|
if (GAlias != MayAlias)
|
|
return GAlias;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check to see if these two pointers are related by a getelementptr
|
|
// instruction. If one pointer is a GEP with a non-zero index of the other
|
|
// pointer, we know they cannot alias.
|
|
//
|
|
if (isGEP(V2)) {
|
|
std::swap(V1, V2);
|
|
std::swap(V1Size, V2Size);
|
|
}
|
|
|
|
if (V1Size != ~0U && V2Size != ~0U)
|
|
if (isGEP(V1)) {
|
|
std::vector<Value*> GEPOperands;
|
|
const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
|
|
|
|
AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
|
|
if (R == MustAlias) {
|
|
// If there is at least one non-zero constant index, we know they cannot
|
|
// alias.
|
|
bool ConstantFound = false;
|
|
bool AllZerosFound = true;
|
|
for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
|
|
if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
|
|
if (!C->isNullValue()) {
|
|
ConstantFound = true;
|
|
AllZerosFound = false;
|
|
break;
|
|
}
|
|
} else {
|
|
AllZerosFound = false;
|
|
}
|
|
|
|
// If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
|
|
// the ptr, the end result is a must alias also.
|
|
if (AllZerosFound)
|
|
return MustAlias;
|
|
|
|
if (ConstantFound) {
|
|
if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
|
|
return NoAlias;
|
|
|
|
// Otherwise we have to check to see that the distance is more than
|
|
// the size of the argument... build an index vector that is equal to
|
|
// the arguments provided, except substitute 0's for any variable
|
|
// indexes we find...
|
|
if (cast<PointerType>(
|
|
BasePtr->getType())->getElementType()->isSized()) {
|
|
for (unsigned i = 0; i != GEPOperands.size(); ++i)
|
|
if (!isa<ConstantInt>(GEPOperands[i]))
|
|
GEPOperands[i] =
|
|
Constant::getNullValue(GEPOperands[i]->getType());
|
|
int64_t Offset =
|
|
getTargetData().getIndexedOffset(BasePtr->getType(), GEPOperands);
|
|
|
|
if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
|
|
return NoAlias;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return MayAlias;
|
|
}
|
|
|
|
// This function is used to determin if the indices of two GEP instructions are
|
|
// equal. V1 and V2 are the indices.
|
|
static bool IndexOperandsEqual(Value *V1, Value *V2) {
|
|
if (V1->getType() == V2->getType())
|
|
return V1 == V2;
|
|
if (Constant *C1 = dyn_cast<Constant>(V1))
|
|
if (Constant *C2 = dyn_cast<Constant>(V2)) {
|
|
// Sign extend the constants to long types, if necessary
|
|
if (C1->getType()->getPrimitiveSizeInBits() < 64)
|
|
C1 = ConstantExpr::getSExt(C1, Type::LongTy);
|
|
else if (C1->getType() == Type::ULongTy)
|
|
C1 = ConstantExpr::getBitCast(C1, Type::LongTy);
|
|
if (C2->getType()->getPrimitiveSizeInBits() < 64)
|
|
C2 = ConstantExpr::getSExt(C2, Type::LongTy);
|
|
else if (C2->getType() == Type::ULongTy)
|
|
C2 = ConstantExpr::getBitCast(C2, Type::LongTy);
|
|
return C1 == C2;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
|
|
/// base pointers. This checks to see if the index expressions preclude the
|
|
/// pointers from aliasing...
|
|
AliasAnalysis::AliasResult
|
|
BasicAliasAnalysis::CheckGEPInstructions(
|
|
const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops, unsigned G1S,
|
|
const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops, unsigned G2S) {
|
|
// We currently can't handle the case when the base pointers have different
|
|
// primitive types. Since this is uncommon anyway, we are happy being
|
|
// extremely conservative.
|
|
if (BasePtr1Ty != BasePtr2Ty)
|
|
return MayAlias;
|
|
|
|
const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
|
|
|
|
// Find the (possibly empty) initial sequence of equal values... which are not
|
|
// necessarily constants.
|
|
unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
|
|
unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
|
|
unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
|
|
unsigned UnequalOper = 0;
|
|
while (UnequalOper != MinOperands &&
|
|
IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
|
|
// Advance through the type as we go...
|
|
++UnequalOper;
|
|
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
|
|
BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
|
|
else {
|
|
// If all operands equal each other, then the derived pointers must
|
|
// alias each other...
|
|
BasePtr1Ty = 0;
|
|
assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
|
|
"Ran out of type nesting, but not out of operands?");
|
|
return MustAlias;
|
|
}
|
|
}
|
|
|
|
// If we have seen all constant operands, and run out of indexes on one of the
|
|
// getelementptrs, check to see if the tail of the leftover one is all zeros.
|
|
// If so, return mustalias.
|
|
if (UnequalOper == MinOperands) {
|
|
if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
|
|
|
|
bool AllAreZeros = true;
|
|
for (unsigned i = UnequalOper; i != MaxOperands; ++i)
|
|
if (!isa<Constant>(GEP1Ops[i]) ||
|
|
!cast<Constant>(GEP1Ops[i])->isNullValue()) {
|
|
AllAreZeros = false;
|
|
break;
|
|
}
|
|
if (AllAreZeros) return MustAlias;
|
|
}
|
|
|
|
|
|
// So now we know that the indexes derived from the base pointers,
|
|
// which are known to alias, are different. We can still determine a
|
|
// no-alias result if there are differing constant pairs in the index
|
|
// chain. For example:
|
|
// A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
|
|
//
|
|
// We have to be careful here about array accesses. In particular, consider:
|
|
// A[1][0] vs A[0][i]
|
|
// In this case, we don't *know* that the array will be accessed in bounds:
|
|
// the index could even be negative. Because of this, we have to
|
|
// conservatively *give up* and return may alias. We disregard differing
|
|
// array subscripts that are followed by a variable index without going
|
|
// through a struct.
|
|
//
|
|
unsigned SizeMax = std::max(G1S, G2S);
|
|
if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
|
|
|
|
// Scan for the first operand that is constant and unequal in the
|
|
// two getelementptrs...
|
|
unsigned FirstConstantOper = UnequalOper;
|
|
for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
|
|
const Value *G1Oper = GEP1Ops[FirstConstantOper];
|
|
const Value *G2Oper = GEP2Ops[FirstConstantOper];
|
|
|
|
if (G1Oper != G2Oper) // Found non-equal constant indexes...
|
|
if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
|
|
if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
|
|
if (G1OC->getType() != G2OC->getType()) {
|
|
// Sign extend both operands to long.
|
|
if (G1OC->getType()->getPrimitiveSizeInBits() < 64)
|
|
G1OC = ConstantExpr::getSExt(G1OC, Type::LongTy);
|
|
else if (G1OC->getType() == Type::ULongTy)
|
|
G1OC = ConstantExpr::getBitCast(G1OC, Type::LongTy);
|
|
if (G2OC->getType()->getPrimitiveSizeInBits() < 64)
|
|
G2OC = ConstantExpr::getSExt(G2OC, Type::LongTy);
|
|
else if (G2OC->getType() == Type::ULongTy)
|
|
G2OC = ConstantExpr::getBitCast(G2OC, Type::LongTy);
|
|
GEP1Ops[FirstConstantOper] = G1OC;
|
|
GEP2Ops[FirstConstantOper] = G2OC;
|
|
}
|
|
|
|
if (G1OC != G2OC) {
|
|
// Handle the "be careful" case above: if this is an array/packed
|
|
// subscript, scan for a subsequent variable array index.
|
|
if (isa<SequentialType>(BasePtr1Ty)) {
|
|
const Type *NextTy =
|
|
cast<SequentialType>(BasePtr1Ty)->getElementType();
|
|
bool isBadCase = false;
|
|
|
|
for (unsigned Idx = FirstConstantOper+1;
|
|
Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
|
|
const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
|
|
if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
|
|
isBadCase = true;
|
|
break;
|
|
}
|
|
NextTy = cast<SequentialType>(NextTy)->getElementType();
|
|
}
|
|
|
|
if (isBadCase) G1OC = 0;
|
|
}
|
|
|
|
// Make sure they are comparable (ie, not constant expressions), and
|
|
// make sure the GEP with the smaller leading constant is GEP1.
|
|
if (G1OC) {
|
|
Constant *Compare = ConstantExpr::getSetGT(G1OC, G2OC);
|
|
if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
|
|
if (CV->getValue()) // If they are comparable and G2 > G1
|
|
std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
|
|
}
|
|
|
|
// No shared constant operands, and we ran out of common operands. At this
|
|
// point, the GEP instructions have run through all of their operands, and we
|
|
// haven't found evidence that there are any deltas between the GEP's.
|
|
// However, one GEP may have more operands than the other. If this is the
|
|
// case, there may still be hope. Check this now.
|
|
if (FirstConstantOper == MinOperands) {
|
|
// Make GEP1Ops be the longer one if there is a longer one.
|
|
if (GEP1Ops.size() < GEP2Ops.size())
|
|
std::swap(GEP1Ops, GEP2Ops);
|
|
|
|
// Is there anything to check?
|
|
if (GEP1Ops.size() > MinOperands) {
|
|
for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
|
|
if (isa<ConstantInt>(GEP1Ops[i]) &&
|
|
!cast<Constant>(GEP1Ops[i])->isNullValue()) {
|
|
// Yup, there's a constant in the tail. Set all variables to
|
|
// constants in the GEP instruction to make it suiteable for
|
|
// TargetData::getIndexedOffset.
|
|
for (i = 0; i != MaxOperands; ++i)
|
|
if (!isa<ConstantInt>(GEP1Ops[i]))
|
|
GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
|
|
// Okay, now get the offset. This is the relative offset for the full
|
|
// instruction.
|
|
const TargetData &TD = getTargetData();
|
|
int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
|
|
|
|
// Now crop off any constants from the end...
|
|
GEP1Ops.resize(MinOperands);
|
|
int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
|
|
|
|
// If the tail provided a bit enough offset, return noalias!
|
|
if ((uint64_t)(Offset2-Offset1) >= SizeMax)
|
|
return NoAlias;
|
|
}
|
|
}
|
|
|
|
// Couldn't find anything useful.
|
|
return MayAlias;
|
|
}
|
|
|
|
// If there are non-equal constants arguments, then we can figure
|
|
// out a minimum known delta between the two index expressions... at
|
|
// this point we know that the first constant index of GEP1 is less
|
|
// than the first constant index of GEP2.
|
|
|
|
// Advance BasePtr[12]Ty over this first differing constant operand.
|
|
BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
|
|
getTypeAtIndex(GEP2Ops[FirstConstantOper]);
|
|
BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
|
|
getTypeAtIndex(GEP1Ops[FirstConstantOper]);
|
|
|
|
// We are going to be using TargetData::getIndexedOffset to determine the
|
|
// offset that each of the GEP's is reaching. To do this, we have to convert
|
|
// all variable references to constant references. To do this, we convert the
|
|
// initial sequence of array subscripts into constant zeros to start with.
|
|
const Type *ZeroIdxTy = GEPPointerTy;
|
|
for (unsigned i = 0; i != FirstConstantOper; ++i) {
|
|
if (!isa<StructType>(ZeroIdxTy))
|
|
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::UIntTy);
|
|
|
|
if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
|
|
ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
|
|
}
|
|
|
|
// We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
|
|
|
|
// Loop over the rest of the operands...
|
|
for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
|
|
const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
|
|
const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
|
|
// If they are equal, use a zero index...
|
|
if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
|
|
if (!isa<ConstantInt>(Op1))
|
|
GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
|
|
// Otherwise, just keep the constants we have.
|
|
} else {
|
|
if (Op1) {
|
|
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
// If this is an array index, make sure the array element is in range.
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
|
|
if (Op1C->getZExtValue() >= AT->getNumElements())
|
|
return MayAlias; // Be conservative with out-of-range accesses
|
|
} else if (const PackedType *PT = dyn_cast<PackedType>(BasePtr1Ty)) {
|
|
if (Op1C->getZExtValue() >= PT->getNumElements())
|
|
return MayAlias; // Be conservative with out-of-range accesses
|
|
}
|
|
|
|
} else {
|
|
// GEP1 is known to produce a value less than GEP2. To be
|
|
// conservatively correct, we must assume the largest possible
|
|
// constant is used in this position. This cannot be the initial
|
|
// index to the GEP instructions (because we know we have at least one
|
|
// element before this one with the different constant arguments), so
|
|
// we know that the current index must be into either a struct or
|
|
// array. Because we know it's not constant, this cannot be a
|
|
// structure index. Because of this, we can calculate the maximum
|
|
// value possible.
|
|
//
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
|
|
GEP1Ops[i] = ConstantInt::get(Type::LongTy, AT->getNumElements()-1);
|
|
else if (const PackedType *PT = dyn_cast<PackedType>(BasePtr1Ty))
|
|
GEP1Ops[i] = ConstantInt::get(Type::LongTy, PT->getNumElements()-1);
|
|
|
|
}
|
|
}
|
|
|
|
if (Op2) {
|
|
if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
|
|
// If this is an array index, make sure the array element is in range.
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
|
|
if (Op2C->getZExtValue() >= AT->getNumElements())
|
|
return MayAlias; // Be conservative with out-of-range accesses
|
|
} else if (const PackedType *PT = dyn_cast<PackedType>(BasePtr1Ty)) {
|
|
if (Op2C->getZExtValue() >= PT->getNumElements())
|
|
return MayAlias; // Be conservative with out-of-range accesses
|
|
}
|
|
} else { // Conservatively assume the minimum value for this index
|
|
GEP2Ops[i] = Constant::getNullValue(Op2->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (BasePtr1Ty && Op1) {
|
|
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
|
|
BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
|
|
else
|
|
BasePtr1Ty = 0;
|
|
}
|
|
|
|
if (BasePtr2Ty && Op2) {
|
|
if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
|
|
BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
|
|
else
|
|
BasePtr2Ty = 0;
|
|
}
|
|
}
|
|
|
|
if (GEPPointerTy->getElementType()->isSized()) {
|
|
int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
|
|
int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
|
|
assert(Offset1<Offset2 && "There is at least one different constant here!");
|
|
|
|
if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
|
|
//cerr << "Determined that these two GEP's don't alias ["
|
|
// << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
|
|
return NoAlias;
|
|
}
|
|
}
|
|
return MayAlias;
|
|
}
|
|
|
|
namespace {
|
|
struct StringCompare {
|
|
bool operator()(const char *LHS, const char *RHS) {
|
|
return strcmp(LHS, RHS) < 0;
|
|
}
|
|
};
|
|
}
|
|
|
|
// Note that this list cannot contain libm functions (such as acos and sqrt)
|
|
// that set errno on a domain or other error.
|
|
static const char *DoesntAccessMemoryFns[] = {
|
|
"abs", "labs", "llabs", "imaxabs", "fabs", "fabsf", "fabsl",
|
|
"trunc", "truncf", "truncl", "ldexp",
|
|
|
|
"atan", "atanf", "atanl", "atan2", "atan2f", "atan2l",
|
|
"cbrt",
|
|
"cos", "cosf", "cosl",
|
|
"exp", "expf", "expl",
|
|
"hypot",
|
|
"sin", "sinf", "sinl",
|
|
"tan", "tanf", "tanl", "tanh", "tanhf", "tanhl",
|
|
|
|
"floor", "floorf", "floorl", "ceil", "ceilf", "ceill",
|
|
|
|
// ctype.h
|
|
"isalnum", "isalpha", "iscntrl", "isdigit", "isgraph", "islower", "isprint"
|
|
"ispunct", "isspace", "isupper", "isxdigit", "tolower", "toupper",
|
|
|
|
// wctype.h"
|
|
"iswalnum", "iswalpha", "iswcntrl", "iswdigit", "iswgraph", "iswlower",
|
|
"iswprint", "iswpunct", "iswspace", "iswupper", "iswxdigit",
|
|
|
|
"iswctype", "towctrans", "towlower", "towupper",
|
|
|
|
"btowc", "wctob",
|
|
|
|
"isinf", "isnan", "finite",
|
|
|
|
// C99 math functions
|
|
"copysign", "copysignf", "copysignd",
|
|
"nexttoward", "nexttowardf", "nexttowardd",
|
|
"nextafter", "nextafterf", "nextafterd",
|
|
|
|
// ISO C99:
|
|
"__signbit", "__signbitf", "__signbitl",
|
|
};
|
|
|
|
|
|
static const char *OnlyReadsMemoryFns[] = {
|
|
"atoi", "atol", "atof", "atoll", "atoq", "a64l",
|
|
"bcmp", "memcmp", "memchr", "memrchr", "wmemcmp", "wmemchr",
|
|
|
|
// Strings
|
|
"strcmp", "strcasecmp", "strcoll", "strncmp", "strncasecmp",
|
|
"strchr", "strcspn", "strlen", "strpbrk", "strrchr", "strspn", "strstr",
|
|
"index", "rindex",
|
|
|
|
// Wide char strings
|
|
"wcschr", "wcscmp", "wcscoll", "wcscspn", "wcslen", "wcsncmp", "wcspbrk",
|
|
"wcsrchr", "wcsspn", "wcsstr",
|
|
|
|
// glibc
|
|
"alphasort", "alphasort64", "versionsort", "versionsort64",
|
|
|
|
// C99
|
|
"nan", "nanf", "nand",
|
|
|
|
// File I/O
|
|
"feof", "ferror", "fileno",
|
|
"feof_unlocked", "ferror_unlocked", "fileno_unlocked"
|
|
};
|
|
|
|
static ManagedStatic<std::vector<const char*> > NoMemoryTable;
|
|
static ManagedStatic<std::vector<const char*> > OnlyReadsMemoryTable;
|
|
|
|
|
|
AliasAnalysis::ModRefBehavior
|
|
BasicAliasAnalysis::getModRefBehavior(Function *F, CallSite CS,
|
|
std::vector<PointerAccessInfo> *Info) {
|
|
if (!F->isExternal()) return UnknownModRefBehavior;
|
|
|
|
static bool Initialized = false;
|
|
if (!Initialized) {
|
|
NoMemoryTable->insert(NoMemoryTable->end(),
|
|
DoesntAccessMemoryFns,
|
|
DoesntAccessMemoryFns+
|
|
sizeof(DoesntAccessMemoryFns)/sizeof(DoesntAccessMemoryFns[0]));
|
|
|
|
OnlyReadsMemoryTable->insert(OnlyReadsMemoryTable->end(),
|
|
OnlyReadsMemoryFns,
|
|
OnlyReadsMemoryFns+
|
|
sizeof(OnlyReadsMemoryFns)/sizeof(OnlyReadsMemoryFns[0]));
|
|
#define GET_MODREF_BEHAVIOR
|
|
#include "llvm/Intrinsics.gen"
|
|
#undef GET_MODREF_BEHAVIOR
|
|
|
|
// Sort the table the first time through.
|
|
std::sort(NoMemoryTable->begin(), NoMemoryTable->end(), StringCompare());
|
|
std::sort(OnlyReadsMemoryTable->begin(), OnlyReadsMemoryTable->end(),
|
|
StringCompare());
|
|
Initialized = true;
|
|
}
|
|
|
|
std::vector<const char*>::iterator Ptr =
|
|
std::lower_bound(NoMemoryTable->begin(), NoMemoryTable->end(),
|
|
F->getName().c_str(), StringCompare());
|
|
if (Ptr != NoMemoryTable->end() && *Ptr == F->getName())
|
|
return DoesNotAccessMemory;
|
|
|
|
Ptr = std::lower_bound(OnlyReadsMemoryTable->begin(),
|
|
OnlyReadsMemoryTable->end(),
|
|
F->getName().c_str(), StringCompare());
|
|
if (Ptr != OnlyReadsMemoryTable->end() && *Ptr == F->getName())
|
|
return OnlyReadsMemory;
|
|
|
|
return UnknownModRefBehavior;
|
|
}
|
|
|
|
// Make sure that anything that uses AliasAnalysis pulls in this file...
|
|
DEFINING_FILE_FOR(BasicAliasAnalysis)
|