llvm-6502/test/CodeGen/X86/fp-fast.ll
Sanjay Patel 8bd59f505a [x86] generalize reassociation optimization in machine combiner to 2 instructions
Currently ( D10321, http://reviews.llvm.org/rL239486 ), we can use the machine combiner pass
to reassociate the following sequence to reduce the critical path:

A = ? op ?
B = A op X
C = B op Y
-->
A = ? op ?
B = X op Y
C = A op B

'op' is currently limited to x86 AVX scalar FP adds (with fast-math on), but in theory, it could
be any associative math/logic op (see TODO in code comment).

This patch generalizes the pattern match to ignore the instruction that defines 'A'. So instead of
a sequence of 3 adds, we now only need to find 2 dependent adds and decide if it's worth
reassociating them.

This generalization has a compile-time cost because we can now match more instruction sequences
and we rely more heavily on the machine combiner to discard sequences where reassociation doesn't
improve the critical path.

For example, in the new test case:

A = M div N
B = A add X
C = B add Y

We'll match 2 reassociation patterns, but this transform doesn't reduce the critical path:

A = M div N
B = A add Y
C = B add X

We need the combiner to reject that pattern but select this:

A = M div N
B = X add Y
C = B add A

Differential Revision: http://reviews.llvm.org/D10460



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240361 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-23 00:39:40 +00:00

117 lines
2.5 KiB
LLVM

; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=avx -enable-unsafe-fp-math < %s | FileCheck %s
define float @test1(float %a) {
; CHECK-LABEL: test1:
; CHECK: # BB#0:
; CHECK-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fadd float %a, %a
%r = fadd float %t1, %t1
ret float %r
}
define float @test2(float %a) {
; CHECK-LABEL: test2:
; CHECK: # BB#0:
; CHECK-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fmul float 4.0, %a
%t2 = fadd float %a, %a
%r = fadd float %t1, %t2
ret float %r
}
define float @test3(float %a) {
; CHECK-LABEL: test3:
; CHECK: # BB#0:
; CHECK-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fmul float %a, 4.0
%t2 = fadd float %a, %a
%r = fadd float %t1, %t2
ret float %r
}
define float @test4(float %a) {
; CHECK-LABEL: test4:
; CHECK: # BB#0:
; CHECK-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fadd float %a, %a
%t2 = fmul float 4.0, %a
%r = fadd float %t1, %t2
ret float %r
}
define float @test5(float %a) {
; CHECK-LABEL: test5:
; CHECK: # BB#0:
; CHECK-NEXT: vmulss {{.*}}(%rip), %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fadd float %a, %a
%t2 = fmul float %a, 4.0
%r = fadd float %t1, %t2
ret float %r
}
define float @test6(float %a) {
; CHECK-LABEL: test6:
; CHECK: # BB#0:
; CHECK-NEXT: vxorps %xmm0, %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fmul float 2.0, %a
%t2 = fadd float %a, %a
%r = fsub float %t1, %t2
ret float %r
}
define float @test7(float %a) {
; CHECK-LABEL: test7:
; CHECK: # BB#0:
; CHECK-NEXT: vxorps %xmm0, %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fmul float %a, 2.0
%t2 = fadd float %a, %a
%r = fsub float %t1, %t2
ret float %r
}
define float @test8(float %a) {
; CHECK-LABEL: test8:
; CHECK: # BB#0:
; CHECK-NEXT: retq
%t1 = fmul float %a, 0.0
%t2 = fadd float %a, %t1
ret float %t2
}
define float @test9(float %a) {
; CHECK-LABEL: test9:
; CHECK: # BB#0:
; CHECK-NEXT: retq
%t1 = fmul float 0.0, %a
%t2 = fadd float %t1, %a
ret float %t2
}
define float @test10(float %a) {
; CHECK-LABEL: test10:
; CHECK: # BB#0:
; CHECK-NEXT: vxorps %xmm0, %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fsub float -0.0, %a
%t2 = fadd float %a, %t1
ret float %t2
}
define float @test11(float %a) {
; CHECK-LABEL: test11:
; CHECK: # BB#0:
; CHECK-NEXT: vxorps %xmm0, %xmm0, %xmm0
; CHECK-NEXT: retq
%t1 = fsub float -0.0, %a
%t2 = fadd float %a, %t1
ret float %t2
}