mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-15 20:06:46 +00:00
cd920d9ecf
SelectionDAG::SelectNodeTo in the instruction selector. This updates existing nodes in place instead of creating new ones. Go back to selecting ISD::DBG_LABEL nodes into TargetInstrInfo::DBG_LABEL nodes instead of leaving them unselected, now that SelectNodeTo allows us to update them in place. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@53057 91177308-0d34-0410-b5e6-96231b3b80d8
1195 lines
44 KiB
C++
1195 lines
44 KiB
C++
//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a simple two pass scheduler. The first pass attempts to push
|
|
// backward any lengthy instructions and critical paths. The second pass packs
|
|
// instructions into semi-optimal time slots.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumCommutes, "Number of instructions commuted");
|
|
|
|
namespace {
|
|
static cl::opt<bool>
|
|
SchedLiveInCopies("schedule-livein-copies",
|
|
cl::desc("Schedule copies of livein registers"),
|
|
cl::init(false));
|
|
}
|
|
|
|
ScheduleDAG::ScheduleDAG(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm)
|
|
: DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
|
|
TII = TM.getInstrInfo();
|
|
MF = &DAG.getMachineFunction();
|
|
TRI = TM.getRegisterInfo();
|
|
TLI = &DAG.getTargetLoweringInfo();
|
|
ConstPool = BB->getParent()->getConstantPool();
|
|
}
|
|
|
|
/// CheckForPhysRegDependency - Check if the dependency between def and use of
|
|
/// a specified operand is a physical register dependency. If so, returns the
|
|
/// register and the cost of copying the register.
|
|
static void CheckForPhysRegDependency(SDNode *Def, SDNode *Use, unsigned Op,
|
|
const TargetRegisterInfo *TRI,
|
|
const TargetInstrInfo *TII,
|
|
unsigned &PhysReg, int &Cost) {
|
|
if (Op != 2 || Use->getOpcode() != ISD::CopyToReg)
|
|
return;
|
|
|
|
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return;
|
|
|
|
unsigned ResNo = Use->getOperand(2).ResNo;
|
|
if (Def->isTargetOpcode()) {
|
|
const TargetInstrDesc &II = TII->get(Def->getTargetOpcode());
|
|
if (ResNo >= II.getNumDefs() &&
|
|
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
|
|
PhysReg = Reg;
|
|
const TargetRegisterClass *RC =
|
|
TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo));
|
|
Cost = RC->getCopyCost();
|
|
}
|
|
}
|
|
}
|
|
|
|
SUnit *ScheduleDAG::Clone(SUnit *Old) {
|
|
SUnit *SU = NewSUnit(Old->Node);
|
|
SU->OrigNode = Old->OrigNode;
|
|
SU->FlaggedNodes = Old->FlaggedNodes;
|
|
SU->Latency = Old->Latency;
|
|
SU->isTwoAddress = Old->isTwoAddress;
|
|
SU->isCommutable = Old->isCommutable;
|
|
SU->hasPhysRegDefs = Old->hasPhysRegDefs;
|
|
return SU;
|
|
}
|
|
|
|
|
|
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
|
|
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
|
|
/// together nodes with a single SUnit.
|
|
void ScheduleDAG::BuildSchedUnits() {
|
|
// Reserve entries in the vector for each of the SUnits we are creating. This
|
|
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
|
|
// invalidated.
|
|
SUnits.reserve(DAG.allnodes_size());
|
|
|
|
// During scheduling, the NodeId field of SDNode is used to map SDNodes
|
|
// to their associated SUnits by holding SUnits table indices. A value
|
|
// of -1 means the SDNode does not yet have an associated SUnit.
|
|
for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
|
|
E = DAG.allnodes_end(); NI != E; ++NI)
|
|
NI->setNodeId(-1);
|
|
|
|
for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
|
|
E = DAG.allnodes_end(); NI != E; ++NI) {
|
|
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
|
|
continue;
|
|
|
|
// If this node has already been processed, stop now.
|
|
if (NI->getNodeId() != -1) continue;
|
|
|
|
SUnit *NodeSUnit = NewSUnit(NI);
|
|
|
|
// See if anything is flagged to this node, if so, add them to flagged
|
|
// nodes. Nodes can have at most one flag input and one flag output. Flags
|
|
// are required the be the last operand and result of a node.
|
|
|
|
// Scan up, adding flagged preds to FlaggedNodes.
|
|
SDNode *N = NI;
|
|
if (N->getNumOperands() &&
|
|
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
|
|
do {
|
|
N = N->getOperand(N->getNumOperands()-1).Val;
|
|
NodeSUnit->FlaggedNodes.push_back(N);
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NodeSUnit->NodeNum);
|
|
} while (N->getNumOperands() &&
|
|
N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
|
|
std::reverse(NodeSUnit->FlaggedNodes.begin(),
|
|
NodeSUnit->FlaggedNodes.end());
|
|
}
|
|
|
|
// Scan down, adding this node and any flagged succs to FlaggedNodes if they
|
|
// have a user of the flag operand.
|
|
N = NI;
|
|
while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
|
|
SDOperand FlagVal(N, N->getNumValues()-1);
|
|
|
|
// There are either zero or one users of the Flag result.
|
|
bool HasFlagUse = false;
|
|
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
|
|
UI != E; ++UI)
|
|
if (FlagVal.isOperandOf(UI->getUser())) {
|
|
HasFlagUse = true;
|
|
NodeSUnit->FlaggedNodes.push_back(N);
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NodeSUnit->NodeNum);
|
|
N = UI->getUser();
|
|
break;
|
|
}
|
|
if (!HasFlagUse) break;
|
|
}
|
|
|
|
// Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
|
|
// Update the SUnit
|
|
NodeSUnit->Node = N;
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NodeSUnit->NodeNum);
|
|
|
|
ComputeLatency(NodeSUnit);
|
|
}
|
|
|
|
// Pass 2: add the preds, succs, etc.
|
|
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
|
|
SUnit *SU = &SUnits[su];
|
|
SDNode *MainNode = SU->Node;
|
|
|
|
if (MainNode->isTargetOpcode()) {
|
|
unsigned Opc = MainNode->getTargetOpcode();
|
|
const TargetInstrDesc &TID = TII->get(Opc);
|
|
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
|
|
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
|
|
SU->isTwoAddress = true;
|
|
break;
|
|
}
|
|
}
|
|
if (TID.isCommutable())
|
|
SU->isCommutable = true;
|
|
}
|
|
|
|
// Find all predecessors and successors of the group.
|
|
// Temporarily add N to make code simpler.
|
|
SU->FlaggedNodes.push_back(MainNode);
|
|
|
|
for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
|
|
SDNode *N = SU->FlaggedNodes[n];
|
|
if (N->isTargetOpcode() &&
|
|
TII->get(N->getTargetOpcode()).getImplicitDefs() &&
|
|
CountResults(N) > TII->get(N->getTargetOpcode()).getNumDefs())
|
|
SU->hasPhysRegDefs = true;
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDNode *OpN = N->getOperand(i).Val;
|
|
if (isPassiveNode(OpN)) continue; // Not scheduled.
|
|
SUnit *OpSU = &SUnits[OpN->getNodeId()];
|
|
assert(OpSU && "Node has no SUnit!");
|
|
if (OpSU == SU) continue; // In the same group.
|
|
|
|
MVT OpVT = N->getOperand(i).getValueType();
|
|
assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
|
|
bool isChain = OpVT == MVT::Other;
|
|
|
|
unsigned PhysReg = 0;
|
|
int Cost = 1;
|
|
// Determine if this is a physical register dependency.
|
|
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
|
|
SU->addPred(OpSU, isChain, false, PhysReg, Cost);
|
|
}
|
|
}
|
|
|
|
// Remove MainNode from FlaggedNodes again.
|
|
SU->FlaggedNodes.pop_back();
|
|
}
|
|
}
|
|
|
|
void ScheduleDAG::ComputeLatency(SUnit *SU) {
|
|
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
|
|
|
|
// Compute the latency for the node. We use the sum of the latencies for
|
|
// all nodes flagged together into this SUnit.
|
|
if (InstrItins.isEmpty()) {
|
|
// No latency information.
|
|
SU->Latency = 1;
|
|
return;
|
|
}
|
|
|
|
SU->Latency = 0;
|
|
if (SU->Node->isTargetOpcode()) {
|
|
unsigned SchedClass = TII->get(SU->Node->getTargetOpcode()).getSchedClass();
|
|
const InstrStage *S = InstrItins.begin(SchedClass);
|
|
const InstrStage *E = InstrItins.end(SchedClass);
|
|
for (; S != E; ++S)
|
|
SU->Latency += S->Cycles;
|
|
}
|
|
for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) {
|
|
SDNode *FNode = SU->FlaggedNodes[i];
|
|
if (FNode->isTargetOpcode()) {
|
|
unsigned SchedClass = TII->get(FNode->getTargetOpcode()).getSchedClass();
|
|
const InstrStage *S = InstrItins.begin(SchedClass);
|
|
const InstrStage *E = InstrItins.end(SchedClass);
|
|
for (; S != E; ++S)
|
|
SU->Latency += S->Cycles;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CalculateDepths - compute depths using algorithms for the longest
|
|
/// paths in the DAG
|
|
void ScheduleDAG::CalculateDepths() {
|
|
unsigned DAGSize = SUnits.size();
|
|
std::vector<unsigned> InDegree(DAGSize);
|
|
std::vector<SUnit*> WorkList;
|
|
WorkList.reserve(DAGSize);
|
|
|
|
// Initialize the data structures
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
int NodeNum = SU->NodeNum;
|
|
unsigned Degree = SU->Preds.size();
|
|
InDegree[NodeNum] = Degree;
|
|
SU->Depth = 0;
|
|
|
|
// Is it a node without dependencies?
|
|
if (Degree == 0) {
|
|
assert(SU->Preds.empty() && "SUnit should have no predecessors");
|
|
// Collect leaf nodes
|
|
WorkList.push_back(SU);
|
|
}
|
|
}
|
|
|
|
// Process nodes in the topological order
|
|
while (!WorkList.empty()) {
|
|
SUnit *SU = WorkList.back();
|
|
WorkList.pop_back();
|
|
unsigned &SUDepth = SU->Depth;
|
|
|
|
// Use dynamic programming:
|
|
// When current node is being processed, all of its dependencies
|
|
// are already processed.
|
|
// So, just iterate over all predecessors and take the longest path
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
unsigned PredDepth = I->Dep->Depth;
|
|
if (PredDepth+1 > SUDepth) {
|
|
SUDepth = PredDepth + 1;
|
|
}
|
|
}
|
|
|
|
// Update InDegrees of all nodes depending on current SUnit
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
SUnit *SU = I->Dep;
|
|
if (!--InDegree[SU->NodeNum])
|
|
// If all dependencies of the node are processed already,
|
|
// then the longest path for the node can be computed now
|
|
WorkList.push_back(SU);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CalculateHeights - compute heights using algorithms for the longest
|
|
/// paths in the DAG
|
|
void ScheduleDAG::CalculateHeights() {
|
|
unsigned DAGSize = SUnits.size();
|
|
std::vector<unsigned> InDegree(DAGSize);
|
|
std::vector<SUnit*> WorkList;
|
|
WorkList.reserve(DAGSize);
|
|
|
|
// Initialize the data structures
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
int NodeNum = SU->NodeNum;
|
|
unsigned Degree = SU->Succs.size();
|
|
InDegree[NodeNum] = Degree;
|
|
SU->Height = 0;
|
|
|
|
// Is it a node without dependencies?
|
|
if (Degree == 0) {
|
|
assert(SU->Succs.empty() && "Something wrong");
|
|
assert(WorkList.empty() && "Should be empty");
|
|
// Collect leaf nodes
|
|
WorkList.push_back(SU);
|
|
}
|
|
}
|
|
|
|
// Process nodes in the topological order
|
|
while (!WorkList.empty()) {
|
|
SUnit *SU = WorkList.back();
|
|
WorkList.pop_back();
|
|
unsigned &SUHeight = SU->Height;
|
|
|
|
// Use dynamic programming:
|
|
// When current node is being processed, all of its dependencies
|
|
// are already processed.
|
|
// So, just iterate over all successors and take the longest path
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
unsigned SuccHeight = I->Dep->Height;
|
|
if (SuccHeight+1 > SUHeight) {
|
|
SUHeight = SuccHeight + 1;
|
|
}
|
|
}
|
|
|
|
// Update InDegrees of all nodes depending on current SUnit
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit *SU = I->Dep;
|
|
if (!--InDegree[SU->NodeNum])
|
|
// If all dependencies of the node are processed already,
|
|
// then the longest path for the node can be computed now
|
|
WorkList.push_back(SU);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CountResults - The results of target nodes have register or immediate
|
|
/// operands first, then an optional chain, and optional flag operands (which do
|
|
/// not go into the resulting MachineInstr).
|
|
unsigned ScheduleDAG::CountResults(SDNode *Node) {
|
|
unsigned N = Node->getNumValues();
|
|
while (N && Node->getValueType(N - 1) == MVT::Flag)
|
|
--N;
|
|
if (N && Node->getValueType(N - 1) == MVT::Other)
|
|
--N; // Skip over chain result.
|
|
return N;
|
|
}
|
|
|
|
/// CountOperands - The inputs to target nodes have any actual inputs first,
|
|
/// followed by special operands that describe memory references, then an
|
|
/// optional chain operand, then flag operands. Compute the number of
|
|
/// actual operands that will go into the resulting MachineInstr.
|
|
unsigned ScheduleDAG::CountOperands(SDNode *Node) {
|
|
unsigned N = ComputeMemOperandsEnd(Node);
|
|
while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).Val))
|
|
--N; // Ignore MEMOPERAND nodes
|
|
return N;
|
|
}
|
|
|
|
/// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode
|
|
/// operand
|
|
unsigned ScheduleDAG::ComputeMemOperandsEnd(SDNode *Node) {
|
|
unsigned N = Node->getNumOperands();
|
|
while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
|
|
--N;
|
|
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
|
|
--N; // Ignore chain if it exists.
|
|
return N;
|
|
}
|
|
|
|
/// getInstrOperandRegClass - Return register class of the operand of an
|
|
/// instruction of the specified TargetInstrDesc.
|
|
static const TargetRegisterClass*
|
|
getInstrOperandRegClass(const TargetRegisterInfo *TRI,
|
|
const TargetInstrInfo *TII, const TargetInstrDesc &II,
|
|
unsigned Op) {
|
|
if (Op >= II.getNumOperands()) {
|
|
assert(II.isVariadic() && "Invalid operand # of instruction");
|
|
return NULL;
|
|
}
|
|
if (II.OpInfo[Op].isLookupPtrRegClass())
|
|
return TII->getPointerRegClass();
|
|
return TRI->getRegClass(II.OpInfo[Op].RegClass);
|
|
}
|
|
|
|
/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
|
|
/// implicit physical register output.
|
|
void ScheduleDAG::EmitCopyFromReg(SDNode *Node, unsigned ResNo,
|
|
bool IsClone, unsigned SrcReg,
|
|
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
|
unsigned VRBase = 0;
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
|
|
// Just use the input register directly!
|
|
if (IsClone)
|
|
VRBaseMap.erase(SDOperand(Node, ResNo));
|
|
bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo),SrcReg));
|
|
isNew = isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
return;
|
|
}
|
|
|
|
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
|
|
// the CopyToReg'd destination register instead of creating a new vreg.
|
|
bool MatchReg = true;
|
|
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
|
UI != E; ++UI) {
|
|
SDNode *Use = UI->getUser();
|
|
bool Match = true;
|
|
if (Use->getOpcode() == ISD::CopyToReg &&
|
|
Use->getOperand(2).Val == Node &&
|
|
Use->getOperand(2).ResNo == ResNo) {
|
|
unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
|
|
VRBase = DestReg;
|
|
Match = false;
|
|
} else if (DestReg != SrcReg)
|
|
Match = false;
|
|
} else {
|
|
for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
|
|
SDOperand Op = Use->getOperand(i);
|
|
if (Op.Val != Node || Op.ResNo != ResNo)
|
|
continue;
|
|
MVT VT = Node->getValueType(Op.ResNo);
|
|
if (VT != MVT::Other && VT != MVT::Flag)
|
|
Match = false;
|
|
}
|
|
}
|
|
MatchReg &= Match;
|
|
if (VRBase)
|
|
break;
|
|
}
|
|
|
|
const TargetRegisterClass *SrcRC = 0, *DstRC = 0;
|
|
SrcRC = TRI->getPhysicalRegisterRegClass(SrcReg, Node->getValueType(ResNo));
|
|
|
|
// Figure out the register class to create for the destreg.
|
|
if (VRBase) {
|
|
DstRC = MRI.getRegClass(VRBase);
|
|
} else {
|
|
DstRC = TLI->getRegClassFor(Node->getValueType(ResNo));
|
|
}
|
|
|
|
// If all uses are reading from the src physical register and copying the
|
|
// register is either impossible or very expensive, then don't create a copy.
|
|
if (MatchReg && SrcRC->getCopyCost() < 0) {
|
|
VRBase = SrcReg;
|
|
} else {
|
|
// Create the reg, emit the copy.
|
|
VRBase = MRI.createVirtualRegister(DstRC);
|
|
TII->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, DstRC, SrcRC);
|
|
}
|
|
|
|
if (IsClone)
|
|
VRBaseMap.erase(SDOperand(Node, ResNo));
|
|
bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,ResNo), VRBase));
|
|
isNew = isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
|
|
/// getDstOfCopyToRegUse - If the only use of the specified result number of
|
|
/// node is a CopyToReg, return its destination register. Return 0 otherwise.
|
|
unsigned ScheduleDAG::getDstOfOnlyCopyToRegUse(SDNode *Node,
|
|
unsigned ResNo) const {
|
|
if (!Node->hasOneUse())
|
|
return 0;
|
|
|
|
SDNode *Use = Node->use_begin()->getUser();
|
|
if (Use->getOpcode() == ISD::CopyToReg &&
|
|
Use->getOperand(2).Val == Node &&
|
|
Use->getOperand(2).ResNo == ResNo) {
|
|
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return Reg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void ScheduleDAG::CreateVirtualRegisters(SDNode *Node, MachineInstr *MI,
|
|
const TargetInstrDesc &II,
|
|
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
|
assert(Node->getTargetOpcode() != TargetInstrInfo::IMPLICIT_DEF &&
|
|
"IMPLICIT_DEF should have been handled as a special case elsewhere!");
|
|
|
|
for (unsigned i = 0; i < II.getNumDefs(); ++i) {
|
|
// If the specific node value is only used by a CopyToReg and the dest reg
|
|
// is a vreg, use the CopyToReg'd destination register instead of creating
|
|
// a new vreg.
|
|
unsigned VRBase = 0;
|
|
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
|
UI != E; ++UI) {
|
|
SDNode *Use = UI->getUser();
|
|
if (Use->getOpcode() == ISD::CopyToReg &&
|
|
Use->getOperand(2).Val == Node &&
|
|
Use->getOperand(2).ResNo == i) {
|
|
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
VRBase = Reg;
|
|
MI->addOperand(MachineOperand::CreateReg(Reg, true));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the result registers for this node and add the result regs to
|
|
// the machine instruction.
|
|
if (VRBase == 0) {
|
|
const TargetRegisterClass *RC = getInstrOperandRegClass(TRI, TII, II, i);
|
|
assert(RC && "Isn't a register operand!");
|
|
VRBase = MRI.createVirtualRegister(RC);
|
|
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
|
|
}
|
|
|
|
bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,i), VRBase));
|
|
isNew = isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
}
|
|
|
|
/// getVR - Return the virtual register corresponding to the specified result
|
|
/// of the specified node.
|
|
unsigned ScheduleDAG::getVR(SDOperand Op,
|
|
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
|
if (Op.isTargetOpcode() &&
|
|
Op.getTargetOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
|
|
// Add an IMPLICIT_DEF instruction before every use.
|
|
unsigned VReg = getDstOfOnlyCopyToRegUse(Op.Val, Op.ResNo);
|
|
// IMPLICIT_DEF can produce any type of result so its TargetInstrDesc
|
|
// does not include operand register class info.
|
|
if (!VReg) {
|
|
const TargetRegisterClass *RC = TLI->getRegClassFor(Op.getValueType());
|
|
VReg = MRI.createVirtualRegister(RC);
|
|
}
|
|
BuildMI(BB, TII->get(TargetInstrInfo::IMPLICIT_DEF), VReg);
|
|
return VReg;
|
|
}
|
|
|
|
DenseMap<SDOperand, unsigned>::iterator I = VRBaseMap.find(Op);
|
|
assert(I != VRBaseMap.end() && "Node emitted out of order - late");
|
|
return I->second;
|
|
}
|
|
|
|
|
|
/// AddOperand - Add the specified operand to the specified machine instr. II
|
|
/// specifies the instruction information for the node, and IIOpNum is the
|
|
/// operand number (in the II) that we are adding. IIOpNum and II are used for
|
|
/// assertions only.
|
|
void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op,
|
|
unsigned IIOpNum,
|
|
const TargetInstrDesc *II,
|
|
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
|
if (Op.isTargetOpcode()) {
|
|
// Note that this case is redundant with the final else block, but we
|
|
// include it because it is the most common and it makes the logic
|
|
// simpler here.
|
|
assert(Op.getValueType() != MVT::Other &&
|
|
Op.getValueType() != MVT::Flag &&
|
|
"Chain and flag operands should occur at end of operand list!");
|
|
// Get/emit the operand.
|
|
unsigned VReg = getVR(Op, VRBaseMap);
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
bool isOptDef = IIOpNum < TID.getNumOperands() &&
|
|
TID.OpInfo[IIOpNum].isOptionalDef();
|
|
MI->addOperand(MachineOperand::CreateReg(VReg, isOptDef));
|
|
|
|
// Verify that it is right.
|
|
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
|
|
#ifndef NDEBUG
|
|
if (II) {
|
|
// There may be no register class for this operand if it is a variadic
|
|
// argument (RC will be NULL in this case). In this case, we just assume
|
|
// the regclass is ok.
|
|
const TargetRegisterClass *RC =
|
|
getInstrOperandRegClass(TRI, TII, *II, IIOpNum);
|
|
assert((RC || II->isVariadic()) && "Expected reg class info!");
|
|
const TargetRegisterClass *VRC = MRI.getRegClass(VReg);
|
|
if (RC && VRC != RC) {
|
|
cerr << "Register class of operand and regclass of use don't agree!\n";
|
|
cerr << "Operand = " << IIOpNum << "\n";
|
|
cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n";
|
|
cerr << "MI = "; MI->print(cerr);
|
|
cerr << "VReg = " << VReg << "\n";
|
|
cerr << "VReg RegClass size = " << VRC->getSize()
|
|
<< ", align = " << VRC->getAlignment() << "\n";
|
|
cerr << "Expected RegClass size = " << RC->getSize()
|
|
<< ", align = " << RC->getAlignment() << "\n";
|
|
cerr << "Fatal error, aborting.\n";
|
|
abort();
|
|
}
|
|
}
|
|
#endif
|
|
} else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateImm(C->getValue()));
|
|
} else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
ConstantFP *CFP = ConstantFP::get(F->getValueAPF());
|
|
MI->addOperand(MachineOperand::CreateFPImm(CFP));
|
|
} else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateReg(R->getReg(), false));
|
|
} else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateGA(TGA->getGlobal(),TGA->getOffset()));
|
|
} else if (BasicBlockSDNode *BB = dyn_cast<BasicBlockSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateMBB(BB->getBasicBlock()));
|
|
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateFI(FI->getIndex()));
|
|
} else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateJTI(JT->getIndex()));
|
|
} else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
|
|
int Offset = CP->getOffset();
|
|
unsigned Align = CP->getAlignment();
|
|
const Type *Type = CP->getType();
|
|
// MachineConstantPool wants an explicit alignment.
|
|
if (Align == 0) {
|
|
Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type);
|
|
if (Align == 0) {
|
|
// Alignment of vector types. FIXME!
|
|
Align = TM.getTargetData()->getABITypeSize(Type);
|
|
Align = Log2_64(Align);
|
|
}
|
|
}
|
|
|
|
unsigned Idx;
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
|
|
else
|
|
Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
|
|
MI->addOperand(MachineOperand::CreateCPI(Idx, Offset));
|
|
} else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
|
|
MI->addOperand(MachineOperand::CreateES(ES->getSymbol()));
|
|
} else {
|
|
assert(Op.getValueType() != MVT::Other &&
|
|
Op.getValueType() != MVT::Flag &&
|
|
"Chain and flag operands should occur at end of operand list!");
|
|
unsigned VReg = getVR(Op, VRBaseMap);
|
|
MI->addOperand(MachineOperand::CreateReg(VReg, false));
|
|
|
|
// Verify that it is right. Note that the reg class of the physreg and the
|
|
// vreg don't necessarily need to match, but the target copy insertion has
|
|
// to be able to handle it. This handles things like copies from ST(0) to
|
|
// an FP vreg on x86.
|
|
assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
|
|
if (II && !II->isVariadic()) {
|
|
assert(getInstrOperandRegClass(TRI, TII, *II, IIOpNum) &&
|
|
"Don't have operand info for this instruction!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScheduleDAG::AddMemOperand(MachineInstr *MI, const MachineMemOperand &MO) {
|
|
MI->addMemOperand(MO);
|
|
}
|
|
|
|
/// getSubRegisterRegClass - Returns the register class of specified register
|
|
/// class' "SubIdx"'th sub-register class.
|
|
static const TargetRegisterClass*
|
|
getSubRegisterRegClass(const TargetRegisterClass *TRC, unsigned SubIdx) {
|
|
// Pick the register class of the subregister
|
|
TargetRegisterInfo::regclass_iterator I =
|
|
TRC->subregclasses_begin() + SubIdx-1;
|
|
assert(I < TRC->subregclasses_end() &&
|
|
"Invalid subregister index for register class");
|
|
return *I;
|
|
}
|
|
|
|
/// getSuperRegisterRegClass - Returns the register class of a superreg A whose
|
|
/// "SubIdx"'th sub-register class is the specified register class and whose
|
|
/// type matches the specified type.
|
|
static const TargetRegisterClass*
|
|
getSuperRegisterRegClass(const TargetRegisterClass *TRC,
|
|
unsigned SubIdx, MVT VT) {
|
|
// Pick the register class of the superegister for this type
|
|
for (TargetRegisterInfo::regclass_iterator I = TRC->superregclasses_begin(),
|
|
E = TRC->superregclasses_end(); I != E; ++I)
|
|
if ((*I)->hasType(VT) && getSubRegisterRegClass(*I, SubIdx) == TRC)
|
|
return *I;
|
|
assert(false && "Couldn't find the register class");
|
|
return 0;
|
|
}
|
|
|
|
/// EmitSubregNode - Generate machine code for subreg nodes.
|
|
///
|
|
void ScheduleDAG::EmitSubregNode(SDNode *Node,
|
|
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
|
unsigned VRBase = 0;
|
|
unsigned Opc = Node->getTargetOpcode();
|
|
|
|
// If the node is only used by a CopyToReg and the dest reg is a vreg, use
|
|
// the CopyToReg'd destination register instead of creating a new vreg.
|
|
for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
|
|
UI != E; ++UI) {
|
|
SDNode *Use = UI->getUser();
|
|
if (Use->getOpcode() == ISD::CopyToReg &&
|
|
Use->getOperand(2).Val == Node) {
|
|
unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
|
|
VRBase = DestReg;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Opc == TargetInstrInfo::EXTRACT_SUBREG) {
|
|
unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getValue();
|
|
|
|
// Create the extract_subreg machine instruction.
|
|
MachineInstr *MI = BuildMI(TII->get(TargetInstrInfo::EXTRACT_SUBREG));
|
|
|
|
// Figure out the register class to create for the destreg.
|
|
unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
|
|
const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
|
|
const TargetRegisterClass *SRC = getSubRegisterRegClass(TRC, SubIdx);
|
|
|
|
if (VRBase) {
|
|
// Grab the destination register
|
|
#ifndef NDEBUG
|
|
const TargetRegisterClass *DRC = MRI.getRegClass(VRBase);
|
|
assert(SRC && DRC && SRC == DRC &&
|
|
"Source subregister and destination must have the same class");
|
|
#endif
|
|
} else {
|
|
// Create the reg
|
|
assert(SRC && "Couldn't find source register class");
|
|
VRBase = MRI.createVirtualRegister(SRC);
|
|
}
|
|
|
|
// Add def, source, and subreg index
|
|
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
|
|
AddOperand(MI, Node->getOperand(0), 0, 0, VRBaseMap);
|
|
MI->addOperand(MachineOperand::CreateImm(SubIdx));
|
|
BB->push_back(MI);
|
|
} else if (Opc == TargetInstrInfo::INSERT_SUBREG ||
|
|
Opc == TargetInstrInfo::SUBREG_TO_REG) {
|
|
SDOperand N0 = Node->getOperand(0);
|
|
SDOperand N1 = Node->getOperand(1);
|
|
SDOperand N2 = Node->getOperand(2);
|
|
unsigned SubReg = getVR(N1, VRBaseMap);
|
|
unsigned SubIdx = cast<ConstantSDNode>(N2)->getValue();
|
|
|
|
|
|
// Figure out the register class to create for the destreg.
|
|
const TargetRegisterClass *TRC = 0;
|
|
if (VRBase) {
|
|
TRC = MRI.getRegClass(VRBase);
|
|
} else {
|
|
TRC = getSuperRegisterRegClass(MRI.getRegClass(SubReg), SubIdx,
|
|
Node->getValueType(0));
|
|
assert(TRC && "Couldn't determine register class for insert_subreg");
|
|
VRBase = MRI.createVirtualRegister(TRC); // Create the reg
|
|
}
|
|
|
|
// Create the insert_subreg or subreg_to_reg machine instruction.
|
|
MachineInstr *MI = BuildMI(TII->get(Opc));
|
|
MI->addOperand(MachineOperand::CreateReg(VRBase, true));
|
|
|
|
// If creating a subreg_to_reg, then the first input operand
|
|
// is an implicit value immediate, otherwise it's a register
|
|
if (Opc == TargetInstrInfo::SUBREG_TO_REG) {
|
|
const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
|
|
MI->addOperand(MachineOperand::CreateImm(SD->getValue()));
|
|
} else
|
|
AddOperand(MI, N0, 0, 0, VRBaseMap);
|
|
// Add the subregster being inserted
|
|
AddOperand(MI, N1, 0, 0, VRBaseMap);
|
|
MI->addOperand(MachineOperand::CreateImm(SubIdx));
|
|
BB->push_back(MI);
|
|
} else
|
|
assert(0 && "Node is not insert_subreg, extract_subreg, or subreg_to_reg");
|
|
|
|
bool isNew = VRBaseMap.insert(std::make_pair(SDOperand(Node,0), VRBase));
|
|
isNew = isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
}
|
|
|
|
/// EmitNode - Generate machine code for an node and needed dependencies.
|
|
///
|
|
void ScheduleDAG::EmitNode(SDNode *Node, bool IsClone,
|
|
DenseMap<SDOperand, unsigned> &VRBaseMap) {
|
|
// If machine instruction
|
|
if (Node->isTargetOpcode()) {
|
|
unsigned Opc = Node->getTargetOpcode();
|
|
|
|
// Handle subreg insert/extract specially
|
|
if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
|
|
Opc == TargetInstrInfo::INSERT_SUBREG ||
|
|
Opc == TargetInstrInfo::SUBREG_TO_REG) {
|
|
EmitSubregNode(Node, VRBaseMap);
|
|
return;
|
|
}
|
|
|
|
if (Opc == TargetInstrInfo::IMPLICIT_DEF)
|
|
// We want a unique VR for each IMPLICIT_DEF use.
|
|
return;
|
|
|
|
const TargetInstrDesc &II = TII->get(Opc);
|
|
unsigned NumResults = CountResults(Node);
|
|
unsigned NodeOperands = CountOperands(Node);
|
|
unsigned MemOperandsEnd = ComputeMemOperandsEnd(Node);
|
|
bool HasPhysRegOuts = (NumResults > II.getNumDefs()) &&
|
|
II.getImplicitDefs() != 0;
|
|
#ifndef NDEBUG
|
|
unsigned NumMIOperands = NodeOperands + NumResults;
|
|
assert((II.getNumOperands() == NumMIOperands ||
|
|
HasPhysRegOuts || II.isVariadic()) &&
|
|
"#operands for dag node doesn't match .td file!");
|
|
#endif
|
|
|
|
// Create the new machine instruction.
|
|
MachineInstr *MI = BuildMI(II);
|
|
|
|
// Add result register values for things that are defined by this
|
|
// instruction.
|
|
if (NumResults)
|
|
CreateVirtualRegisters(Node, MI, II, VRBaseMap);
|
|
|
|
// Emit all of the actual operands of this instruction, adding them to the
|
|
// instruction as appropriate.
|
|
for (unsigned i = 0; i != NodeOperands; ++i)
|
|
AddOperand(MI, Node->getOperand(i), i+II.getNumDefs(), &II, VRBaseMap);
|
|
|
|
// Emit all of the memory operands of this instruction
|
|
for (unsigned i = NodeOperands; i != MemOperandsEnd; ++i)
|
|
AddMemOperand(MI, cast<MemOperandSDNode>(Node->getOperand(i))->MO);
|
|
|
|
// Commute node if it has been determined to be profitable.
|
|
if (CommuteSet.count(Node)) {
|
|
MachineInstr *NewMI = TII->commuteInstruction(MI);
|
|
if (NewMI == 0)
|
|
DOUT << "Sched: COMMUTING FAILED!\n";
|
|
else {
|
|
DOUT << "Sched: COMMUTED TO: " << *NewMI;
|
|
if (MI != NewMI) {
|
|
delete MI;
|
|
MI = NewMI;
|
|
}
|
|
++NumCommutes;
|
|
}
|
|
}
|
|
|
|
if (II.usesCustomDAGSchedInsertionHook())
|
|
// Insert this instruction into the basic block using a target
|
|
// specific inserter which may returns a new basic block.
|
|
BB = TLI->EmitInstrWithCustomInserter(MI, BB);
|
|
else
|
|
BB->push_back(MI);
|
|
|
|
// Additional results must be an physical register def.
|
|
if (HasPhysRegOuts) {
|
|
for (unsigned i = II.getNumDefs(); i < NumResults; ++i) {
|
|
unsigned Reg = II.getImplicitDefs()[i - II.getNumDefs()];
|
|
if (Node->hasAnyUseOfValue(i))
|
|
EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (Node->getOpcode()) {
|
|
default:
|
|
#ifndef NDEBUG
|
|
Node->dump(&DAG);
|
|
#endif
|
|
assert(0 && "This target-independent node should have been selected!");
|
|
break;
|
|
case ISD::EntryToken:
|
|
assert(0 && "EntryToken should have been excluded from the schedule!");
|
|
break;
|
|
case ISD::TokenFactor: // fall thru
|
|
break;
|
|
case ISD::CopyToReg: {
|
|
unsigned SrcReg;
|
|
SDOperand SrcVal = Node->getOperand(2);
|
|
if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
|
|
SrcReg = R->getReg();
|
|
else
|
|
SrcReg = getVR(SrcVal, VRBaseMap);
|
|
|
|
unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
|
|
break;
|
|
|
|
const TargetRegisterClass *SrcTRC = 0, *DstTRC = 0;
|
|
// Get the register classes of the src/dst.
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg))
|
|
SrcTRC = MRI.getRegClass(SrcReg);
|
|
else
|
|
SrcTRC = TRI->getPhysicalRegisterRegClass(SrcReg,SrcVal.getValueType());
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
DstTRC = MRI.getRegClass(DestReg);
|
|
else
|
|
DstTRC = TRI->getPhysicalRegisterRegClass(DestReg,
|
|
Node->getOperand(1).getValueType());
|
|
TII->copyRegToReg(*BB, BB->end(), DestReg, SrcReg, DstTRC, SrcTRC);
|
|
break;
|
|
}
|
|
case ISD::CopyFromReg: {
|
|
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
|
|
EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap);
|
|
break;
|
|
}
|
|
case ISD::INLINEASM: {
|
|
unsigned NumOps = Node->getNumOperands();
|
|
if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
|
|
--NumOps; // Ignore the flag operand.
|
|
|
|
// Create the inline asm machine instruction.
|
|
MachineInstr *MI = BuildMI(TII->get(TargetInstrInfo::INLINEASM));
|
|
|
|
// Add the asm string as an external symbol operand.
|
|
const char *AsmStr =
|
|
cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
|
|
MI->addOperand(MachineOperand::CreateES(AsmStr));
|
|
|
|
// Add all of the operand registers to the instruction.
|
|
for (unsigned i = 2; i != NumOps;) {
|
|
unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
|
|
unsigned NumVals = Flags >> 3;
|
|
|
|
MI->addOperand(MachineOperand::CreateImm(Flags));
|
|
++i; // Skip the ID value.
|
|
|
|
switch (Flags & 7) {
|
|
default: assert(0 && "Bad flags!");
|
|
case 2: // Def of register.
|
|
for (; NumVals; --NumVals, ++i) {
|
|
unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
|
|
MI->addOperand(MachineOperand::CreateReg(Reg, true));
|
|
}
|
|
break;
|
|
case 1: // Use of register.
|
|
case 3: // Immediate.
|
|
case 4: // Addressing mode.
|
|
// The addressing mode has been selected, just add all of the
|
|
// operands to the machine instruction.
|
|
for (; NumVals; --NumVals, ++i)
|
|
AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
|
|
break;
|
|
}
|
|
}
|
|
BB->push_back(MI);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScheduleDAG::EmitNoop() {
|
|
TII->insertNoop(*BB, BB->end());
|
|
}
|
|
|
|
void ScheduleDAG::EmitCrossRCCopy(SUnit *SU,
|
|
DenseMap<SUnit*, unsigned> &VRBaseMap) {
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl) continue; // ignore chain preds
|
|
if (!I->Dep->Node) {
|
|
// Copy to physical register.
|
|
DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->Dep);
|
|
assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
|
|
// Find the destination physical register.
|
|
unsigned Reg = 0;
|
|
for (SUnit::const_succ_iterator II = SU->Succs.begin(),
|
|
EE = SU->Succs.end(); II != EE; ++II) {
|
|
if (I->Reg) {
|
|
Reg = I->Reg;
|
|
break;
|
|
}
|
|
}
|
|
assert(I->Reg && "Unknown physical register!");
|
|
TII->copyRegToReg(*BB, BB->end(), Reg, VRI->second,
|
|
SU->CopyDstRC, SU->CopySrcRC);
|
|
} else {
|
|
// Copy from physical register.
|
|
assert(I->Reg && "Unknown physical register!");
|
|
unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
|
|
bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase));
|
|
isNew = isNew; // Silence compiler warning.
|
|
assert(isNew && "Node emitted out of order - early");
|
|
TII->copyRegToReg(*BB, BB->end(), VRBase, I->Reg,
|
|
SU->CopyDstRC, SU->CopySrcRC);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
|
|
/// physical register has only a single copy use, then coalesced the copy
|
|
/// if possible.
|
|
void ScheduleDAG::EmitLiveInCopy(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator &InsertPos,
|
|
unsigned VirtReg, unsigned PhysReg,
|
|
const TargetRegisterClass *RC,
|
|
DenseMap<MachineInstr*, unsigned> &CopyRegMap){
|
|
unsigned NumUses = 0;
|
|
MachineInstr *UseMI = NULL;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
|
|
UE = MRI.use_end(); UI != UE; ++UI) {
|
|
UseMI = &*UI;
|
|
if (++NumUses > 1)
|
|
break;
|
|
}
|
|
|
|
// If the number of uses is not one, or the use is not a move instruction,
|
|
// don't coalesce. Also, only coalesce away a virtual register to virtual
|
|
// register copy.
|
|
bool Coalesced = false;
|
|
unsigned SrcReg, DstReg;
|
|
if (NumUses == 1 &&
|
|
TII->isMoveInstr(*UseMI, SrcReg, DstReg) &&
|
|
TargetRegisterInfo::isVirtualRegister(DstReg)) {
|
|
VirtReg = DstReg;
|
|
Coalesced = true;
|
|
}
|
|
|
|
// Now find an ideal location to insert the copy.
|
|
MachineBasicBlock::iterator Pos = InsertPos;
|
|
while (Pos != MBB->begin()) {
|
|
MachineInstr *PrevMI = prior(Pos);
|
|
DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
|
|
// copyRegToReg might emit multiple instructions to do a copy.
|
|
unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
|
|
if (CopyDstReg && !TRI->regsOverlap(CopyDstReg, PhysReg))
|
|
// This is what the BB looks like right now:
|
|
// r1024 = mov r0
|
|
// ...
|
|
// r1 = mov r1024
|
|
//
|
|
// We want to insert "r1025 = mov r1". Inserting this copy below the
|
|
// move to r1024 makes it impossible for that move to be coalesced.
|
|
//
|
|
// r1025 = mov r1
|
|
// r1024 = mov r0
|
|
// ...
|
|
// r1 = mov 1024
|
|
// r2 = mov 1025
|
|
break; // Woot! Found a good location.
|
|
--Pos;
|
|
}
|
|
|
|
TII->copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
|
|
CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
|
|
if (Coalesced) {
|
|
if (&*InsertPos == UseMI) ++InsertPos;
|
|
MBB->erase(UseMI);
|
|
}
|
|
}
|
|
|
|
/// EmitLiveInCopies - If this is the first basic block in the function,
|
|
/// and if it has live ins that need to be copied into vregs, emit the
|
|
/// copies into the top of the block.
|
|
void ScheduleDAG::EmitLiveInCopies(MachineBasicBlock *MBB) {
|
|
DenseMap<MachineInstr*, unsigned> CopyRegMap;
|
|
MachineBasicBlock::iterator InsertPos = MBB->begin();
|
|
for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
|
|
E = MRI.livein_end(); LI != E; ++LI)
|
|
if (LI->second) {
|
|
const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
|
|
EmitLiveInCopy(MBB, InsertPos, LI->second, LI->first, RC, CopyRegMap);
|
|
}
|
|
}
|
|
|
|
/// EmitSchedule - Emit the machine code in scheduled order.
|
|
void ScheduleDAG::EmitSchedule() {
|
|
bool isEntryBB = &MF->front() == BB;
|
|
|
|
if (isEntryBB && !SchedLiveInCopies) {
|
|
// If this is the first basic block in the function, and if it has live ins
|
|
// that need to be copied into vregs, emit the copies into the top of the
|
|
// block before emitting the code for the block.
|
|
for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
|
|
E = MRI.livein_end(); LI != E; ++LI)
|
|
if (LI->second) {
|
|
const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
|
|
TII->copyRegToReg(*MF->begin(), MF->begin()->end(), LI->second,
|
|
LI->first, RC, RC);
|
|
}
|
|
}
|
|
|
|
// Finally, emit the code for all of the scheduled instructions.
|
|
DenseMap<SDOperand, unsigned> VRBaseMap;
|
|
DenseMap<SUnit*, unsigned> CopyVRBaseMap;
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
SUnit *SU = Sequence[i];
|
|
if (!SU) {
|
|
// Null SUnit* is a noop.
|
|
EmitNoop();
|
|
continue;
|
|
}
|
|
for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; ++j)
|
|
EmitNode(SU->FlaggedNodes[j], SU->OrigNode != SU, VRBaseMap);
|
|
if (!SU->Node)
|
|
EmitCrossRCCopy(SU, CopyVRBaseMap);
|
|
else
|
|
EmitNode(SU->Node, SU->OrigNode != SU, VRBaseMap);
|
|
}
|
|
|
|
if (isEntryBB && SchedLiveInCopies)
|
|
EmitLiveInCopies(MF->begin());
|
|
}
|
|
|
|
/// dump - dump the schedule.
|
|
void ScheduleDAG::dumpSchedule() const {
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i])
|
|
SU->dump(&DAG);
|
|
else
|
|
cerr << "**** NOOP ****\n";
|
|
}
|
|
}
|
|
|
|
|
|
/// Run - perform scheduling.
|
|
///
|
|
MachineBasicBlock *ScheduleDAG::Run() {
|
|
Schedule();
|
|
return BB;
|
|
}
|
|
|
|
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
|
|
/// a group of nodes flagged together.
|
|
void SUnit::dump(const SelectionDAG *G) const {
|
|
cerr << "SU(" << NodeNum << "): ";
|
|
if (Node)
|
|
Node->dump(G);
|
|
else
|
|
cerr << "CROSS RC COPY ";
|
|
cerr << "\n";
|
|
if (FlaggedNodes.size() != 0) {
|
|
for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
|
|
cerr << " ";
|
|
FlaggedNodes[i]->dump(G);
|
|
cerr << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void SUnit::dumpAll(const SelectionDAG *G) const {
|
|
dump(G);
|
|
|
|
cerr << " # preds left : " << NumPredsLeft << "\n";
|
|
cerr << " # succs left : " << NumSuccsLeft << "\n";
|
|
cerr << " Latency : " << Latency << "\n";
|
|
cerr << " Depth : " << Depth << "\n";
|
|
cerr << " Height : " << Height << "\n";
|
|
|
|
if (Preds.size() != 0) {
|
|
cerr << " Predecessors:\n";
|
|
for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl)
|
|
cerr << " ch #";
|
|
else
|
|
cerr << " val #";
|
|
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
|
if (I->isSpecial)
|
|
cerr << " *";
|
|
cerr << "\n";
|
|
}
|
|
}
|
|
if (Succs.size() != 0) {
|
|
cerr << " Successors:\n";
|
|
for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl)
|
|
cerr << " ch #";
|
|
else
|
|
cerr << " val #";
|
|
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
|
if (I->isSpecial)
|
|
cerr << " *";
|
|
cerr << "\n";
|
|
}
|
|
}
|
|
cerr << "\n";
|
|
}
|