mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
8a757aeac4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111500 91177308-0d34-0410-b5e6-96231b3b80d8
1810 lines
58 KiB
C++
1810 lines
58 KiB
C++
//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LLVM Pass Manager infrastructure.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#include "llvm/PassManagers.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Assembly/PrintModulePass.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/PassNameParser.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/System/Mutex.h"
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
// See PassManagers.h for Pass Manager infrastructure overview.
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pass debugging information. Often it is useful to find out what pass is
|
|
// running when a crash occurs in a utility. When this library is compiled with
|
|
// debugging on, a command line option (--debug-pass) is enabled that causes the
|
|
// pass name to be printed before it executes.
|
|
//
|
|
|
|
// Different debug levels that can be enabled...
|
|
enum PassDebugLevel {
|
|
None, Arguments, Structure, Executions, Details
|
|
};
|
|
|
|
static cl::opt<enum PassDebugLevel>
|
|
PassDebugging("debug-pass", cl::Hidden,
|
|
cl::desc("Print PassManager debugging information"),
|
|
cl::values(
|
|
clEnumVal(None , "disable debug output"),
|
|
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
|
|
clEnumVal(Structure , "print pass structure before run()"),
|
|
clEnumVal(Executions, "print pass name before it is executed"),
|
|
clEnumVal(Details , "print pass details when it is executed"),
|
|
clEnumValEnd));
|
|
|
|
typedef llvm::cl::list<const llvm::PassInfo *, bool, PassNameParser>
|
|
PassOptionList;
|
|
|
|
// Print IR out before/after specified passes.
|
|
static PassOptionList
|
|
PrintBefore("print-before",
|
|
llvm::cl::desc("Print IR before specified passes"));
|
|
|
|
static PassOptionList
|
|
PrintAfter("print-after",
|
|
llvm::cl::desc("Print IR after specified passes"));
|
|
|
|
static cl::opt<bool>
|
|
PrintBeforeAll("print-before-all",
|
|
llvm::cl::desc("Print IR before each pass"),
|
|
cl::init(false));
|
|
static cl::opt<bool>
|
|
PrintAfterAll("print-after-all",
|
|
llvm::cl::desc("Print IR after each pass"),
|
|
cl::init(false));
|
|
|
|
/// This is a helper to determine whether to print IR before or
|
|
/// after a pass.
|
|
|
|
static bool ShouldPrintBeforeOrAfterPass(const void *PassID,
|
|
PassOptionList &PassesToPrint) {
|
|
if (const llvm::PassInfo *PI =
|
|
PassRegistry::getPassRegistry()->getPassInfo(PassID)) {
|
|
for (unsigned i = 0, ie = PassesToPrint.size(); i < ie; ++i) {
|
|
const llvm::PassInfo *PassInf = PassesToPrint[i];
|
|
if (PassInf)
|
|
if (PassInf->getPassArgument() == PI->getPassArgument()) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// This is a utility to check whether a pass should have IR dumped
|
|
/// before it.
|
|
static bool ShouldPrintBeforePass(const void *PassID) {
|
|
return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PassID, PrintBefore);
|
|
}
|
|
|
|
/// This is a utility to check whether a pass should have IR dumped
|
|
/// after it.
|
|
static bool ShouldPrintAfterPass(const void *PassID) {
|
|
return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PassID, PrintAfter);
|
|
}
|
|
|
|
} // End of llvm namespace
|
|
|
|
/// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions
|
|
/// or higher is specified.
|
|
bool PMDataManager::isPassDebuggingExecutionsOrMore() const {
|
|
return PassDebugging >= Executions;
|
|
}
|
|
|
|
|
|
|
|
|
|
void PassManagerPrettyStackEntry::print(raw_ostream &OS) const {
|
|
if (V == 0 && M == 0)
|
|
OS << "Releasing pass '";
|
|
else
|
|
OS << "Running pass '";
|
|
|
|
OS << P->getPassName() << "'";
|
|
|
|
if (M) {
|
|
OS << " on module '" << M->getModuleIdentifier() << "'.\n";
|
|
return;
|
|
}
|
|
if (V == 0) {
|
|
OS << '\n';
|
|
return;
|
|
}
|
|
|
|
OS << " on ";
|
|
if (isa<Function>(V))
|
|
OS << "function";
|
|
else if (isa<BasicBlock>(V))
|
|
OS << "basic block";
|
|
else
|
|
OS << "value";
|
|
|
|
OS << " '";
|
|
WriteAsOperand(OS, V, /*PrintTy=*/false, M);
|
|
OS << "'\n";
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BBPassManager
|
|
//
|
|
/// BBPassManager manages BasicBlockPass. It batches all the
|
|
/// pass together and sequence them to process one basic block before
|
|
/// processing next basic block.
|
|
class BBPassManager : public PMDataManager, public FunctionPass {
|
|
|
|
public:
|
|
static char ID;
|
|
explicit BBPassManager(int Depth)
|
|
: PMDataManager(Depth), FunctionPass(ID) {}
|
|
|
|
/// Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the function, and if so, return true.
|
|
bool runOnFunction(Function &F);
|
|
|
|
/// Pass Manager itself does not invalidate any analysis info.
|
|
void getAnalysisUsage(AnalysisUsage &Info) const {
|
|
Info.setPreservesAll();
|
|
}
|
|
|
|
bool doInitialization(Module &M);
|
|
bool doInitialization(Function &F);
|
|
bool doFinalization(Module &M);
|
|
bool doFinalization(Function &F);
|
|
|
|
virtual PMDataManager *getAsPMDataManager() { return this; }
|
|
virtual Pass *getAsPass() { return this; }
|
|
|
|
virtual const char *getPassName() const {
|
|
return "BasicBlock Pass Manager";
|
|
}
|
|
|
|
// Print passes managed by this manager
|
|
void dumpPassStructure(unsigned Offset) {
|
|
llvm::dbgs() << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
BasicBlockPass *BP = getContainedPass(Index);
|
|
BP->dumpPassStructure(Offset + 1);
|
|
dumpLastUses(BP, Offset+1);
|
|
}
|
|
}
|
|
|
|
BasicBlockPass *getContainedPass(unsigned N) {
|
|
assert(N < PassVector.size() && "Pass number out of range!");
|
|
BasicBlockPass *BP = static_cast<BasicBlockPass *>(PassVector[N]);
|
|
return BP;
|
|
}
|
|
|
|
virtual PassManagerType getPassManagerType() const {
|
|
return PMT_BasicBlockPassManager;
|
|
}
|
|
};
|
|
|
|
char BBPassManager::ID = 0;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionPassManagerImpl
|
|
//
|
|
/// FunctionPassManagerImpl manages FPPassManagers
|
|
class FunctionPassManagerImpl : public Pass,
|
|
public PMDataManager,
|
|
public PMTopLevelManager {
|
|
private:
|
|
bool wasRun;
|
|
public:
|
|
static char ID;
|
|
explicit FunctionPassManagerImpl(int Depth) :
|
|
Pass(PT_PassManager, ID), PMDataManager(Depth),
|
|
PMTopLevelManager(new FPPassManager(1)), wasRun(false) {}
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes ownership of
|
|
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
|
|
/// will be destroyed as well, so there is no need to delete the pass. This
|
|
/// implies that all passes MUST be allocated with 'new'.
|
|
void add(Pass *P) {
|
|
schedulePass(P);
|
|
}
|
|
|
|
/// createPrinterPass - Get a function printer pass.
|
|
Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const {
|
|
return createPrintFunctionPass(Banner, &O);
|
|
}
|
|
|
|
// Prepare for running an on the fly pass, freeing memory if needed
|
|
// from a previous run.
|
|
void releaseMemoryOnTheFly();
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool run(Function &F);
|
|
|
|
/// doInitialization - Run all of the initializers for the function passes.
|
|
///
|
|
bool doInitialization(Module &M);
|
|
|
|
/// doFinalization - Run all of the finalizers for the function passes.
|
|
///
|
|
bool doFinalization(Module &M);
|
|
|
|
|
|
virtual PMDataManager *getAsPMDataManager() { return this; }
|
|
virtual Pass *getAsPass() { return this; }
|
|
|
|
/// Pass Manager itself does not invalidate any analysis info.
|
|
void getAnalysisUsage(AnalysisUsage &Info) const {
|
|
Info.setPreservesAll();
|
|
}
|
|
|
|
void addTopLevelPass(Pass *P) {
|
|
if (ImmutablePass *IP = P->getAsImmutablePass()) {
|
|
// P is a immutable pass and it will be managed by this
|
|
// top level manager. Set up analysis resolver to connect them.
|
|
AnalysisResolver *AR = new AnalysisResolver(*this);
|
|
P->setResolver(AR);
|
|
initializeAnalysisImpl(P);
|
|
addImmutablePass(IP);
|
|
recordAvailableAnalysis(IP);
|
|
} else {
|
|
P->assignPassManager(activeStack, PMT_FunctionPassManager);
|
|
}
|
|
|
|
}
|
|
|
|
FPPassManager *getContainedManager(unsigned N) {
|
|
assert(N < PassManagers.size() && "Pass number out of range!");
|
|
FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
|
|
return FP;
|
|
}
|
|
};
|
|
|
|
char FunctionPassManagerImpl::ID = 0;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MPPassManager
|
|
//
|
|
/// MPPassManager manages ModulePasses and function pass managers.
|
|
/// It batches all Module passes and function pass managers together and
|
|
/// sequences them to process one module.
|
|
class MPPassManager : public Pass, public PMDataManager {
|
|
public:
|
|
static char ID;
|
|
explicit MPPassManager(int Depth) :
|
|
Pass(PT_PassManager, ID), PMDataManager(Depth) { }
|
|
|
|
// Delete on the fly managers.
|
|
virtual ~MPPassManager() {
|
|
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
|
|
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
|
|
I != E; ++I) {
|
|
FunctionPassManagerImpl *FPP = I->second;
|
|
delete FPP;
|
|
}
|
|
}
|
|
|
|
/// createPrinterPass - Get a module printer pass.
|
|
Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const {
|
|
return createPrintModulePass(&O, false, Banner);
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool runOnModule(Module &M);
|
|
|
|
/// Pass Manager itself does not invalidate any analysis info.
|
|
void getAnalysisUsage(AnalysisUsage &Info) const {
|
|
Info.setPreservesAll();
|
|
}
|
|
|
|
/// Add RequiredPass into list of lower level passes required by pass P.
|
|
/// RequiredPass is run on the fly by Pass Manager when P requests it
|
|
/// through getAnalysis interface.
|
|
virtual void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass);
|
|
|
|
/// Return function pass corresponding to PassInfo PI, that is
|
|
/// required by module pass MP. Instantiate analysis pass, by using
|
|
/// its runOnFunction() for function F.
|
|
virtual Pass* getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "Module Pass Manager";
|
|
}
|
|
|
|
virtual PMDataManager *getAsPMDataManager() { return this; }
|
|
virtual Pass *getAsPass() { return this; }
|
|
|
|
// Print passes managed by this manager
|
|
void dumpPassStructure(unsigned Offset) {
|
|
llvm::dbgs() << std::string(Offset*2, ' ') << "ModulePass Manager\n";
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
ModulePass *MP = getContainedPass(Index);
|
|
MP->dumpPassStructure(Offset + 1);
|
|
std::map<Pass *, FunctionPassManagerImpl *>::const_iterator I =
|
|
OnTheFlyManagers.find(MP);
|
|
if (I != OnTheFlyManagers.end())
|
|
I->second->dumpPassStructure(Offset + 2);
|
|
dumpLastUses(MP, Offset+1);
|
|
}
|
|
}
|
|
|
|
ModulePass *getContainedPass(unsigned N) {
|
|
assert(N < PassVector.size() && "Pass number out of range!");
|
|
return static_cast<ModulePass *>(PassVector[N]);
|
|
}
|
|
|
|
virtual PassManagerType getPassManagerType() const {
|
|
return PMT_ModulePassManager;
|
|
}
|
|
|
|
private:
|
|
/// Collection of on the fly FPPassManagers. These managers manage
|
|
/// function passes that are required by module passes.
|
|
std::map<Pass *, FunctionPassManagerImpl *> OnTheFlyManagers;
|
|
};
|
|
|
|
char MPPassManager::ID = 0;
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerImpl
|
|
//
|
|
|
|
/// PassManagerImpl manages MPPassManagers
|
|
class PassManagerImpl : public Pass,
|
|
public PMDataManager,
|
|
public PMTopLevelManager {
|
|
|
|
public:
|
|
static char ID;
|
|
explicit PassManagerImpl(int Depth) :
|
|
Pass(PT_PassManager, ID), PMDataManager(Depth),
|
|
PMTopLevelManager(new MPPassManager(1)) {}
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes ownership of
|
|
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
|
|
/// will be destroyed as well, so there is no need to delete the pass. This
|
|
/// implies that all passes MUST be allocated with 'new'.
|
|
void add(Pass *P) {
|
|
schedulePass(P);
|
|
}
|
|
|
|
/// createPrinterPass - Get a module printer pass.
|
|
Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const {
|
|
return createPrintModulePass(&O, false, Banner);
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool run(Module &M);
|
|
|
|
/// Pass Manager itself does not invalidate any analysis info.
|
|
void getAnalysisUsage(AnalysisUsage &Info) const {
|
|
Info.setPreservesAll();
|
|
}
|
|
|
|
void addTopLevelPass(Pass *P) {
|
|
if (ImmutablePass *IP = P->getAsImmutablePass()) {
|
|
// P is a immutable pass and it will be managed by this
|
|
// top level manager. Set up analysis resolver to connect them.
|
|
AnalysisResolver *AR = new AnalysisResolver(*this);
|
|
P->setResolver(AR);
|
|
initializeAnalysisImpl(P);
|
|
addImmutablePass(IP);
|
|
recordAvailableAnalysis(IP);
|
|
} else {
|
|
P->assignPassManager(activeStack, PMT_ModulePassManager);
|
|
}
|
|
}
|
|
|
|
virtual PMDataManager *getAsPMDataManager() { return this; }
|
|
virtual Pass *getAsPass() { return this; }
|
|
|
|
MPPassManager *getContainedManager(unsigned N) {
|
|
assert(N < PassManagers.size() && "Pass number out of range!");
|
|
MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]);
|
|
return MP;
|
|
}
|
|
};
|
|
|
|
char PassManagerImpl::ID = 0;
|
|
} // End of llvm namespace
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// TimingInfo Class - This class is used to calculate information about the
|
|
/// amount of time each pass takes to execute. This only happens when
|
|
/// -time-passes is enabled on the command line.
|
|
///
|
|
|
|
static ManagedStatic<sys::SmartMutex<true> > TimingInfoMutex;
|
|
|
|
class TimingInfo {
|
|
DenseMap<Pass*, Timer*> TimingData;
|
|
TimerGroup TG;
|
|
public:
|
|
// Use 'create' member to get this.
|
|
TimingInfo() : TG("... Pass execution timing report ...") {}
|
|
|
|
// TimingDtor - Print out information about timing information
|
|
~TimingInfo() {
|
|
// Delete all of the timers, which accumulate their info into the
|
|
// TimerGroup.
|
|
for (DenseMap<Pass*, Timer*>::iterator I = TimingData.begin(),
|
|
E = TimingData.end(); I != E; ++I)
|
|
delete I->second;
|
|
// TimerGroup is deleted next, printing the report.
|
|
}
|
|
|
|
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer
|
|
// to a non null value (if the -time-passes option is enabled) or it leaves it
|
|
// null. It may be called multiple times.
|
|
static void createTheTimeInfo();
|
|
|
|
/// getPassTimer - Return the timer for the specified pass if it exists.
|
|
Timer *getPassTimer(Pass *P) {
|
|
if (P->getAsPMDataManager())
|
|
return 0;
|
|
|
|
sys::SmartScopedLock<true> Lock(*TimingInfoMutex);
|
|
Timer *&T = TimingData[P];
|
|
if (T == 0)
|
|
T = new Timer(P->getPassName(), TG);
|
|
return T;
|
|
}
|
|
};
|
|
|
|
} // End of anon namespace
|
|
|
|
static TimingInfo *TheTimeInfo;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PMTopLevelManager implementation
|
|
|
|
/// Initialize top level manager. Create first pass manager.
|
|
PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) {
|
|
PMDM->setTopLevelManager(this);
|
|
addPassManager(PMDM);
|
|
activeStack.push(PMDM);
|
|
}
|
|
|
|
/// Set pass P as the last user of the given analysis passes.
|
|
void PMTopLevelManager::setLastUser(SmallVector<Pass *, 12> &AnalysisPasses,
|
|
Pass *P) {
|
|
for (SmallVector<Pass *, 12>::iterator I = AnalysisPasses.begin(),
|
|
E = AnalysisPasses.end(); I != E; ++I) {
|
|
Pass *AP = *I;
|
|
LastUser[AP] = P;
|
|
|
|
if (P == AP)
|
|
continue;
|
|
|
|
// If AP is the last user of other passes then make P last user of
|
|
// such passes.
|
|
for (DenseMap<Pass *, Pass *>::iterator LUI = LastUser.begin(),
|
|
LUE = LastUser.end(); LUI != LUE; ++LUI) {
|
|
if (LUI->second == AP)
|
|
// DenseMap iterator is not invalidated here because
|
|
// this is just updating exisitng entry.
|
|
LastUser[LUI->first] = P;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Collect passes whose last user is P
|
|
void PMTopLevelManager::collectLastUses(SmallVector<Pass *, 12> &LastUses,
|
|
Pass *P) {
|
|
DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator DMI =
|
|
InversedLastUser.find(P);
|
|
if (DMI == InversedLastUser.end())
|
|
return;
|
|
|
|
SmallPtrSet<Pass *, 8> &LU = DMI->second;
|
|
for (SmallPtrSet<Pass *, 8>::iterator I = LU.begin(),
|
|
E = LU.end(); I != E; ++I) {
|
|
LastUses.push_back(*I);
|
|
}
|
|
|
|
}
|
|
|
|
AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) {
|
|
AnalysisUsage *AnUsage = NULL;
|
|
DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.find(P);
|
|
if (DMI != AnUsageMap.end())
|
|
AnUsage = DMI->second;
|
|
else {
|
|
AnUsage = new AnalysisUsage();
|
|
P->getAnalysisUsage(*AnUsage);
|
|
AnUsageMap[P] = AnUsage;
|
|
}
|
|
return AnUsage;
|
|
}
|
|
|
|
/// Schedule pass P for execution. Make sure that passes required by
|
|
/// P are run before P is run. Update analysis info maintained by
|
|
/// the manager. Remove dead passes. This is a recursive function.
|
|
void PMTopLevelManager::schedulePass(Pass *P) {
|
|
|
|
// TODO : Allocate function manager for this pass, other wise required set
|
|
// may be inserted into previous function manager
|
|
|
|
// Give pass a chance to prepare the stage.
|
|
P->preparePassManager(activeStack);
|
|
|
|
// If P is an analysis pass and it is available then do not
|
|
// generate the analysis again. Stale analysis info should not be
|
|
// available at this point.
|
|
const PassInfo *PI =
|
|
PassRegistry::getPassRegistry()->getPassInfo(P->getPassID());
|
|
if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) {
|
|
delete P;
|
|
return;
|
|
}
|
|
|
|
AnalysisUsage *AnUsage = findAnalysisUsage(P);
|
|
|
|
bool checkAnalysis = true;
|
|
while (checkAnalysis) {
|
|
checkAnalysis = false;
|
|
|
|
const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet();
|
|
for (AnalysisUsage::VectorType::const_iterator I = RequiredSet.begin(),
|
|
E = RequiredSet.end(); I != E; ++I) {
|
|
|
|
Pass *AnalysisPass = findAnalysisPass(*I);
|
|
if (!AnalysisPass) {
|
|
const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I);
|
|
AnalysisPass = PI->createPass();
|
|
if (P->getPotentialPassManagerType () ==
|
|
AnalysisPass->getPotentialPassManagerType())
|
|
// Schedule analysis pass that is managed by the same pass manager.
|
|
schedulePass(AnalysisPass);
|
|
else if (P->getPotentialPassManagerType () >
|
|
AnalysisPass->getPotentialPassManagerType()) {
|
|
// Schedule analysis pass that is managed by a new manager.
|
|
schedulePass(AnalysisPass);
|
|
// Recheck analysis passes to ensure that required analyses that
|
|
// are already checked are still available.
|
|
checkAnalysis = true;
|
|
}
|
|
else
|
|
// Do not schedule this analysis. Lower level analsyis
|
|
// passes are run on the fly.
|
|
delete AnalysisPass;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now all required passes are available.
|
|
addTopLevelPass(P);
|
|
}
|
|
|
|
/// Find the pass that implements Analysis AID. Search immutable
|
|
/// passes and all pass managers. If desired pass is not found
|
|
/// then return NULL.
|
|
Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
|
|
|
|
Pass *P = NULL;
|
|
// Check pass managers
|
|
for (SmallVector<PMDataManager *, 8>::iterator I = PassManagers.begin(),
|
|
E = PassManagers.end(); P == NULL && I != E; ++I) {
|
|
PMDataManager *PMD = *I;
|
|
P = PMD->findAnalysisPass(AID, false);
|
|
}
|
|
|
|
// Check other pass managers
|
|
for (SmallVector<PMDataManager *, 8>::iterator
|
|
I = IndirectPassManagers.begin(),
|
|
E = IndirectPassManagers.end(); P == NULL && I != E; ++I)
|
|
P = (*I)->findAnalysisPass(AID, false);
|
|
|
|
for (SmallVector<ImmutablePass *, 8>::iterator I = ImmutablePasses.begin(),
|
|
E = ImmutablePasses.end(); P == NULL && I != E; ++I) {
|
|
AnalysisID PI = (*I)->getPassID();
|
|
if (PI == AID)
|
|
P = *I;
|
|
|
|
// If Pass not found then check the interfaces implemented by Immutable Pass
|
|
if (!P) {
|
|
const PassInfo *PassInf =
|
|
PassRegistry::getPassRegistry()->getPassInfo(PI);
|
|
const std::vector<const PassInfo*> &ImmPI =
|
|
PassInf->getInterfacesImplemented();
|
|
for (std::vector<const PassInfo*>::const_iterator II = ImmPI.begin(),
|
|
EE = ImmPI.end(); II != EE; ++II) {
|
|
if ((*II)->getTypeInfo() == AID)
|
|
P = *I;
|
|
}
|
|
}
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
// Print passes managed by this top level manager.
|
|
void PMTopLevelManager::dumpPasses() const {
|
|
|
|
if (PassDebugging < Structure)
|
|
return;
|
|
|
|
// Print out the immutable passes
|
|
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
|
|
ImmutablePasses[i]->dumpPassStructure(0);
|
|
}
|
|
|
|
// Every class that derives from PMDataManager also derives from Pass
|
|
// (sometimes indirectly), but there's no inheritance relationship
|
|
// between PMDataManager and Pass, so we have to getAsPass to get
|
|
// from a PMDataManager* to a Pass*.
|
|
for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(),
|
|
E = PassManagers.end(); I != E; ++I)
|
|
(*I)->getAsPass()->dumpPassStructure(1);
|
|
}
|
|
|
|
void PMTopLevelManager::dumpArguments() const {
|
|
|
|
if (PassDebugging < Arguments)
|
|
return;
|
|
|
|
dbgs() << "Pass Arguments: ";
|
|
for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(),
|
|
E = PassManagers.end(); I != E; ++I)
|
|
(*I)->dumpPassArguments();
|
|
dbgs() << "\n";
|
|
}
|
|
|
|
void PMTopLevelManager::initializeAllAnalysisInfo() {
|
|
for (SmallVector<PMDataManager *, 8>::iterator I = PassManagers.begin(),
|
|
E = PassManagers.end(); I != E; ++I)
|
|
(*I)->initializeAnalysisInfo();
|
|
|
|
// Initailize other pass managers
|
|
for (SmallVector<PMDataManager *, 8>::iterator
|
|
I = IndirectPassManagers.begin(), E = IndirectPassManagers.end();
|
|
I != E; ++I)
|
|
(*I)->initializeAnalysisInfo();
|
|
|
|
for (DenseMap<Pass *, Pass *>::iterator DMI = LastUser.begin(),
|
|
DME = LastUser.end(); DMI != DME; ++DMI) {
|
|
DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator InvDMI =
|
|
InversedLastUser.find(DMI->second);
|
|
if (InvDMI != InversedLastUser.end()) {
|
|
SmallPtrSet<Pass *, 8> &L = InvDMI->second;
|
|
L.insert(DMI->first);
|
|
} else {
|
|
SmallPtrSet<Pass *, 8> L; L.insert(DMI->first);
|
|
InversedLastUser[DMI->second] = L;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Destructor
|
|
PMTopLevelManager::~PMTopLevelManager() {
|
|
for (SmallVector<PMDataManager *, 8>::iterator I = PassManagers.begin(),
|
|
E = PassManagers.end(); I != E; ++I)
|
|
delete *I;
|
|
|
|
for (SmallVector<ImmutablePass *, 8>::iterator
|
|
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
|
|
delete *I;
|
|
|
|
for (DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.begin(),
|
|
DME = AnUsageMap.end(); DMI != DME; ++DMI)
|
|
delete DMI->second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PMDataManager implementation
|
|
|
|
/// Augement AvailableAnalysis by adding analysis made available by pass P.
|
|
void PMDataManager::recordAvailableAnalysis(Pass *P) {
|
|
AnalysisID PI = P->getPassID();
|
|
|
|
AvailableAnalysis[PI] = P;
|
|
|
|
assert(!AvailableAnalysis.empty());
|
|
|
|
// This pass is the current implementation of all of the interfaces it
|
|
// implements as well.
|
|
const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI);
|
|
if (PInf == 0) return;
|
|
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
|
|
for (unsigned i = 0, e = II.size(); i != e; ++i)
|
|
AvailableAnalysis[II[i]->getTypeInfo()] = P;
|
|
}
|
|
|
|
// Return true if P preserves high level analysis used by other
|
|
// passes managed by this manager
|
|
bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) {
|
|
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
|
|
if (AnUsage->getPreservesAll())
|
|
return true;
|
|
|
|
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
|
|
for (SmallVector<Pass *, 8>::iterator I = HigherLevelAnalysis.begin(),
|
|
E = HigherLevelAnalysis.end(); I != E; ++I) {
|
|
Pass *P1 = *I;
|
|
if (P1->getAsImmutablePass() == 0 &&
|
|
std::find(PreservedSet.begin(), PreservedSet.end(),
|
|
P1->getPassID()) ==
|
|
PreservedSet.end())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// verifyPreservedAnalysis -- Verify analysis preserved by pass P.
|
|
void PMDataManager::verifyPreservedAnalysis(Pass *P) {
|
|
// Don't do this unless assertions are enabled.
|
|
#ifdef NDEBUG
|
|
return;
|
|
#endif
|
|
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
|
|
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
|
|
|
|
// Verify preserved analysis
|
|
for (AnalysisUsage::VectorType::const_iterator I = PreservedSet.begin(),
|
|
E = PreservedSet.end(); I != E; ++I) {
|
|
AnalysisID AID = *I;
|
|
if (Pass *AP = findAnalysisPass(AID, true)) {
|
|
TimeRegion PassTimer(getPassTimer(AP));
|
|
AP->verifyAnalysis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove Analysis not preserved by Pass P
|
|
void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
|
|
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
|
|
if (AnUsage->getPreservesAll())
|
|
return;
|
|
|
|
const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet();
|
|
for (std::map<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
|
|
E = AvailableAnalysis.end(); I != E; ) {
|
|
std::map<AnalysisID, Pass*>::iterator Info = I++;
|
|
if (Info->second->getAsImmutablePass() == 0 &&
|
|
std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
|
|
PreservedSet.end()) {
|
|
// Remove this analysis
|
|
if (PassDebugging >= Details) {
|
|
Pass *S = Info->second;
|
|
dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
|
|
dbgs() << S->getPassName() << "'\n";
|
|
}
|
|
AvailableAnalysis.erase(Info);
|
|
}
|
|
}
|
|
|
|
// Check inherited analysis also. If P is not preserving analysis
|
|
// provided by parent manager then remove it here.
|
|
for (unsigned Index = 0; Index < PMT_Last; ++Index) {
|
|
|
|
if (!InheritedAnalysis[Index])
|
|
continue;
|
|
|
|
for (std::map<AnalysisID, Pass*>::iterator
|
|
I = InheritedAnalysis[Index]->begin(),
|
|
E = InheritedAnalysis[Index]->end(); I != E; ) {
|
|
std::map<AnalysisID, Pass *>::iterator Info = I++;
|
|
if (Info->second->getAsImmutablePass() == 0 &&
|
|
std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
|
|
PreservedSet.end()) {
|
|
// Remove this analysis
|
|
if (PassDebugging >= Details) {
|
|
Pass *S = Info->second;
|
|
dbgs() << " -- '" << P->getPassName() << "' is not preserving '";
|
|
dbgs() << S->getPassName() << "'\n";
|
|
}
|
|
InheritedAnalysis[Index]->erase(Info);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove analysis passes that are not used any longer
|
|
void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg,
|
|
enum PassDebuggingString DBG_STR) {
|
|
|
|
SmallVector<Pass *, 12> DeadPasses;
|
|
|
|
// If this is a on the fly manager then it does not have TPM.
|
|
if (!TPM)
|
|
return;
|
|
|
|
TPM->collectLastUses(DeadPasses, P);
|
|
|
|
if (PassDebugging >= Details && !DeadPasses.empty()) {
|
|
dbgs() << " -*- '" << P->getPassName();
|
|
dbgs() << "' is the last user of following pass instances.";
|
|
dbgs() << " Free these instances\n";
|
|
}
|
|
|
|
for (SmallVector<Pass *, 12>::iterator I = DeadPasses.begin(),
|
|
E = DeadPasses.end(); I != E; ++I)
|
|
freePass(*I, Msg, DBG_STR);
|
|
}
|
|
|
|
void PMDataManager::freePass(Pass *P, StringRef Msg,
|
|
enum PassDebuggingString DBG_STR) {
|
|
dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg);
|
|
|
|
{
|
|
// If the pass crashes releasing memory, remember this.
|
|
PassManagerPrettyStackEntry X(P);
|
|
TimeRegion PassTimer(getPassTimer(P));
|
|
|
|
P->releaseMemory();
|
|
}
|
|
|
|
AnalysisID PI = P->getPassID();
|
|
if (const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI)) {
|
|
// Remove the pass itself (if it is not already removed).
|
|
AvailableAnalysis.erase(PI);
|
|
|
|
// Remove all interfaces this pass implements, for which it is also
|
|
// listed as the available implementation.
|
|
const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented();
|
|
for (unsigned i = 0, e = II.size(); i != e; ++i) {
|
|
std::map<AnalysisID, Pass*>::iterator Pos =
|
|
AvailableAnalysis.find(II[i]->getTypeInfo());
|
|
if (Pos != AvailableAnalysis.end() && Pos->second == P)
|
|
AvailableAnalysis.erase(Pos);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Add pass P into the PassVector. Update
|
|
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
|
|
void PMDataManager::add(Pass *P, bool ProcessAnalysis) {
|
|
// This manager is going to manage pass P. Set up analysis resolver
|
|
// to connect them.
|
|
AnalysisResolver *AR = new AnalysisResolver(*this);
|
|
P->setResolver(AR);
|
|
|
|
// If a FunctionPass F is the last user of ModulePass info M
|
|
// then the F's manager, not F, records itself as a last user of M.
|
|
SmallVector<Pass *, 12> TransferLastUses;
|
|
|
|
if (!ProcessAnalysis) {
|
|
// Add pass
|
|
PassVector.push_back(P);
|
|
return;
|
|
}
|
|
|
|
// At the moment, this pass is the last user of all required passes.
|
|
SmallVector<Pass *, 12> LastUses;
|
|
SmallVector<Pass *, 8> RequiredPasses;
|
|
SmallVector<AnalysisID, 8> ReqAnalysisNotAvailable;
|
|
|
|
unsigned PDepth = this->getDepth();
|
|
|
|
collectRequiredAnalysis(RequiredPasses,
|
|
ReqAnalysisNotAvailable, P);
|
|
for (SmallVector<Pass *, 8>::iterator I = RequiredPasses.begin(),
|
|
E = RequiredPasses.end(); I != E; ++I) {
|
|
Pass *PRequired = *I;
|
|
unsigned RDepth = 0;
|
|
|
|
assert(PRequired->getResolver() && "Analysis Resolver is not set");
|
|
PMDataManager &DM = PRequired->getResolver()->getPMDataManager();
|
|
RDepth = DM.getDepth();
|
|
|
|
if (PDepth == RDepth)
|
|
LastUses.push_back(PRequired);
|
|
else if (PDepth > RDepth) {
|
|
// Let the parent claim responsibility of last use
|
|
TransferLastUses.push_back(PRequired);
|
|
// Keep track of higher level analysis used by this manager.
|
|
HigherLevelAnalysis.push_back(PRequired);
|
|
} else
|
|
llvm_unreachable("Unable to accomodate Required Pass");
|
|
}
|
|
|
|
// Set P as P's last user until someone starts using P.
|
|
// However, if P is a Pass Manager then it does not need
|
|
// to record its last user.
|
|
if (P->getAsPMDataManager() == 0)
|
|
LastUses.push_back(P);
|
|
TPM->setLastUser(LastUses, P);
|
|
|
|
if (!TransferLastUses.empty()) {
|
|
Pass *My_PM = getAsPass();
|
|
TPM->setLastUser(TransferLastUses, My_PM);
|
|
TransferLastUses.clear();
|
|
}
|
|
|
|
// Now, take care of required analyses that are not available.
|
|
for (SmallVector<AnalysisID, 8>::iterator
|
|
I = ReqAnalysisNotAvailable.begin(),
|
|
E = ReqAnalysisNotAvailable.end() ;I != E; ++I) {
|
|
const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I);
|
|
Pass *AnalysisPass = PI->createPass();
|
|
this->addLowerLevelRequiredPass(P, AnalysisPass);
|
|
}
|
|
|
|
// Take a note of analysis required and made available by this pass.
|
|
// Remove the analysis not preserved by this pass
|
|
removeNotPreservedAnalysis(P);
|
|
recordAvailableAnalysis(P);
|
|
|
|
// Add pass
|
|
PassVector.push_back(P);
|
|
}
|
|
|
|
|
|
/// Populate RP with analysis pass that are required by
|
|
/// pass P and are available. Populate RP_NotAvail with analysis
|
|
/// pass that are required by pass P but are not available.
|
|
void PMDataManager::collectRequiredAnalysis(SmallVector<Pass *, 8>&RP,
|
|
SmallVector<AnalysisID, 8> &RP_NotAvail,
|
|
Pass *P) {
|
|
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
|
|
const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet();
|
|
for (AnalysisUsage::VectorType::const_iterator
|
|
I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) {
|
|
if (Pass *AnalysisPass = findAnalysisPass(*I, true))
|
|
RP.push_back(AnalysisPass);
|
|
else
|
|
RP_NotAvail.push_back(*I);
|
|
}
|
|
|
|
const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet();
|
|
for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(),
|
|
E = IDs.end(); I != E; ++I) {
|
|
if (Pass *AnalysisPass = findAnalysisPass(*I, true))
|
|
RP.push_back(AnalysisPass);
|
|
else
|
|
RP_NotAvail.push_back(*I);
|
|
}
|
|
}
|
|
|
|
// All Required analyses should be available to the pass as it runs! Here
|
|
// we fill in the AnalysisImpls member of the pass so that it can
|
|
// successfully use the getAnalysis() method to retrieve the
|
|
// implementations it needs.
|
|
//
|
|
void PMDataManager::initializeAnalysisImpl(Pass *P) {
|
|
AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P);
|
|
|
|
for (AnalysisUsage::VectorType::const_iterator
|
|
I = AnUsage->getRequiredSet().begin(),
|
|
E = AnUsage->getRequiredSet().end(); I != E; ++I) {
|
|
Pass *Impl = findAnalysisPass(*I, true);
|
|
if (Impl == 0)
|
|
// This may be analysis pass that is initialized on the fly.
|
|
// If that is not the case then it will raise an assert when it is used.
|
|
continue;
|
|
AnalysisResolver *AR = P->getResolver();
|
|
assert(AR && "Analysis Resolver is not set");
|
|
AR->addAnalysisImplsPair(*I, Impl);
|
|
}
|
|
}
|
|
|
|
/// Find the pass that implements Analysis AID. If desired pass is not found
|
|
/// then return NULL.
|
|
Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) {
|
|
|
|
// Check if AvailableAnalysis map has one entry.
|
|
std::map<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID);
|
|
|
|
if (I != AvailableAnalysis.end())
|
|
return I->second;
|
|
|
|
// Search Parents through TopLevelManager
|
|
if (SearchParent)
|
|
return TPM->findAnalysisPass(AID);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Print list of passes that are last used by P.
|
|
void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
|
|
|
|
SmallVector<Pass *, 12> LUses;
|
|
|
|
// If this is a on the fly manager then it does not have TPM.
|
|
if (!TPM)
|
|
return;
|
|
|
|
TPM->collectLastUses(LUses, P);
|
|
|
|
for (SmallVector<Pass *, 12>::iterator I = LUses.begin(),
|
|
E = LUses.end(); I != E; ++I) {
|
|
llvm::dbgs() << "--" << std::string(Offset*2, ' ');
|
|
(*I)->dumpPassStructure(0);
|
|
}
|
|
}
|
|
|
|
void PMDataManager::dumpPassArguments() const {
|
|
for (SmallVector<Pass *, 8>::const_iterator I = PassVector.begin(),
|
|
E = PassVector.end(); I != E; ++I) {
|
|
if (PMDataManager *PMD = (*I)->getAsPMDataManager())
|
|
PMD->dumpPassArguments();
|
|
else
|
|
if (const PassInfo *PI =
|
|
PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID()))
|
|
if (!PI->isAnalysisGroup())
|
|
dbgs() << " -" << PI->getPassArgument();
|
|
}
|
|
}
|
|
|
|
void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1,
|
|
enum PassDebuggingString S2,
|
|
StringRef Msg) {
|
|
if (PassDebugging < Executions)
|
|
return;
|
|
dbgs() << (void*)this << std::string(getDepth()*2+1, ' ');
|
|
switch (S1) {
|
|
case EXECUTION_MSG:
|
|
dbgs() << "Executing Pass '" << P->getPassName();
|
|
break;
|
|
case MODIFICATION_MSG:
|
|
dbgs() << "Made Modification '" << P->getPassName();
|
|
break;
|
|
case FREEING_MSG:
|
|
dbgs() << " Freeing Pass '" << P->getPassName();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
switch (S2) {
|
|
case ON_BASICBLOCK_MSG:
|
|
dbgs() << "' on BasicBlock '" << Msg << "'...\n";
|
|
break;
|
|
case ON_FUNCTION_MSG:
|
|
dbgs() << "' on Function '" << Msg << "'...\n";
|
|
break;
|
|
case ON_MODULE_MSG:
|
|
dbgs() << "' on Module '" << Msg << "'...\n";
|
|
break;
|
|
case ON_LOOP_MSG:
|
|
dbgs() << "' on Loop '" << Msg << "'...\n";
|
|
break;
|
|
case ON_CG_MSG:
|
|
dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PMDataManager::dumpRequiredSet(const Pass *P) const {
|
|
if (PassDebugging < Details)
|
|
return;
|
|
|
|
AnalysisUsage analysisUsage;
|
|
P->getAnalysisUsage(analysisUsage);
|
|
dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet());
|
|
}
|
|
|
|
void PMDataManager::dumpPreservedSet(const Pass *P) const {
|
|
if (PassDebugging < Details)
|
|
return;
|
|
|
|
AnalysisUsage analysisUsage;
|
|
P->getAnalysisUsage(analysisUsage);
|
|
dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet());
|
|
}
|
|
|
|
void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P,
|
|
const AnalysisUsage::VectorType &Set) const {
|
|
assert(PassDebugging >= Details);
|
|
if (Set.empty())
|
|
return;
|
|
dbgs() << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
|
|
for (unsigned i = 0; i != Set.size(); ++i) {
|
|
if (i) dbgs() << ',';
|
|
const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(Set[i]);
|
|
dbgs() << ' ' << PInf->getPassName();
|
|
}
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
/// Add RequiredPass into list of lower level passes required by pass P.
|
|
/// RequiredPass is run on the fly by Pass Manager when P requests it
|
|
/// through getAnalysis interface.
|
|
/// This should be handled by specific pass manager.
|
|
void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
|
|
if (TPM) {
|
|
TPM->dumpArguments();
|
|
TPM->dumpPasses();
|
|
}
|
|
|
|
// Module Level pass may required Function Level analysis info
|
|
// (e.g. dominator info). Pass manager uses on the fly function pass manager
|
|
// to provide this on demand. In that case, in Pass manager terminology,
|
|
// module level pass is requiring lower level analysis info managed by
|
|
// lower level pass manager.
|
|
|
|
// When Pass manager is not able to order required analysis info, Pass manager
|
|
// checks whether any lower level manager will be able to provide this
|
|
// analysis info on demand or not.
|
|
#ifndef NDEBUG
|
|
dbgs() << "Unable to schedule '" << RequiredPass->getPassName();
|
|
dbgs() << "' required by '" << P->getPassName() << "'\n";
|
|
#endif
|
|
llvm_unreachable("Unable to schedule pass");
|
|
}
|
|
|
|
Pass *PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) {
|
|
assert(0 && "Unable to find on the fly pass");
|
|
return NULL;
|
|
}
|
|
|
|
// Destructor
|
|
PMDataManager::~PMDataManager() {
|
|
for (SmallVector<Pass *, 8>::iterator I = PassVector.begin(),
|
|
E = PassVector.end(); I != E; ++I)
|
|
delete *I;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NOTE: Is this the right place to define this method ?
|
|
// getAnalysisIfAvailable - Return analysis result or null if it doesn't exist.
|
|
Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const {
|
|
return PM.findAnalysisPass(ID, dir);
|
|
}
|
|
|
|
Pass *AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI,
|
|
Function &F) {
|
|
return PM.getOnTheFlyPass(P, AnalysisPI, F);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BBPassManager implementation
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnBasicBlock method. Keep track of whether any of the passes modifies
|
|
/// the function, and if so, return true.
|
|
bool BBPassManager::runOnFunction(Function &F) {
|
|
if (F.isDeclaration())
|
|
return false;
|
|
|
|
bool Changed = doInitialization(F);
|
|
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
BasicBlockPass *BP = getContainedPass(Index);
|
|
bool LocalChanged = false;
|
|
|
|
dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getName());
|
|
dumpRequiredSet(BP);
|
|
|
|
initializeAnalysisImpl(BP);
|
|
|
|
{
|
|
// If the pass crashes, remember this.
|
|
PassManagerPrettyStackEntry X(BP, *I);
|
|
TimeRegion PassTimer(getPassTimer(BP));
|
|
|
|
LocalChanged |= BP->runOnBasicBlock(*I);
|
|
}
|
|
|
|
Changed |= LocalChanged;
|
|
if (LocalChanged)
|
|
dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG,
|
|
I->getName());
|
|
dumpPreservedSet(BP);
|
|
|
|
verifyPreservedAnalysis(BP);
|
|
removeNotPreservedAnalysis(BP);
|
|
recordAvailableAnalysis(BP);
|
|
removeDeadPasses(BP, I->getName(), ON_BASICBLOCK_MSG);
|
|
}
|
|
|
|
return doFinalization(F) || Changed;
|
|
}
|
|
|
|
// Implement doInitialization and doFinalization
|
|
bool BBPassManager::doInitialization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
|
|
Changed |= getContainedPass(Index)->doInitialization(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool BBPassManager::doFinalization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
|
|
Changed |= getContainedPass(Index)->doFinalization(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool BBPassManager::doInitialization(Function &F) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
BasicBlockPass *BP = getContainedPass(Index);
|
|
Changed |= BP->doInitialization(F);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool BBPassManager::doFinalization(Function &F) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
BasicBlockPass *BP = getContainedPass(Index);
|
|
Changed |= BP->doFinalization(F);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionPassManager implementation
|
|
|
|
/// Create new Function pass manager
|
|
FunctionPassManager::FunctionPassManager(Module *m) : M(m) {
|
|
FPM = new FunctionPassManagerImpl(0);
|
|
// FPM is the top level manager.
|
|
FPM->setTopLevelManager(FPM);
|
|
|
|
AnalysisResolver *AR = new AnalysisResolver(*FPM);
|
|
FPM->setResolver(AR);
|
|
}
|
|
|
|
FunctionPassManager::~FunctionPassManager() {
|
|
delete FPM;
|
|
}
|
|
|
|
/// addImpl - Add a pass to the queue of passes to run, without
|
|
/// checking whether to add a printer pass.
|
|
void FunctionPassManager::addImpl(Pass *P) {
|
|
FPM->add(P);
|
|
}
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes
|
|
/// ownership of the Pass to the PassManager. When the
|
|
/// PassManager_X is destroyed, the pass will be destroyed as well, so
|
|
/// there is no need to delete the pass. (TODO delete passes.)
|
|
/// This implies that all passes MUST be allocated with 'new'.
|
|
void FunctionPassManager::add(Pass *P) {
|
|
// If this is a not a function pass, don't add a printer for it.
|
|
const void *PassID = P->getPassID();
|
|
if (P->getPassKind() == PT_Function)
|
|
if (ShouldPrintBeforePass(PassID))
|
|
addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump Before ")
|
|
+ P->getPassName() + " ***"));
|
|
|
|
addImpl(P);
|
|
|
|
if (P->getPassKind() == PT_Function)
|
|
if (ShouldPrintAfterPass(PassID))
|
|
addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump After ")
|
|
+ P->getPassName() + " ***"));
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep
|
|
/// track of whether any of the passes modifies the function, and if
|
|
/// so, return true.
|
|
///
|
|
bool FunctionPassManager::run(Function &F) {
|
|
if (F.isMaterializable()) {
|
|
std::string errstr;
|
|
if (F.Materialize(&errstr))
|
|
report_fatal_error("Error reading bitcode file: " + Twine(errstr));
|
|
}
|
|
return FPM->run(F);
|
|
}
|
|
|
|
|
|
/// doInitialization - Run all of the initializers for the function passes.
|
|
///
|
|
bool FunctionPassManager::doInitialization() {
|
|
return FPM->doInitialization(*M);
|
|
}
|
|
|
|
/// doFinalization - Run all of the finalizers for the function passes.
|
|
///
|
|
bool FunctionPassManager::doFinalization() {
|
|
return FPM->doFinalization(*M);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionPassManagerImpl implementation
|
|
//
|
|
bool FunctionPassManagerImpl::doInitialization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
dumpArguments();
|
|
dumpPasses();
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
|
|
Changed |= getContainedManager(Index)->doInitialization(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool FunctionPassManagerImpl::doFinalization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
|
|
Changed |= getContainedManager(Index)->doFinalization(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// cleanup - After running all passes, clean up pass manager cache.
|
|
void FPPassManager::cleanup() {
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
FunctionPass *FP = getContainedPass(Index);
|
|
AnalysisResolver *AR = FP->getResolver();
|
|
assert(AR && "Analysis Resolver is not set");
|
|
AR->clearAnalysisImpls();
|
|
}
|
|
}
|
|
|
|
void FunctionPassManagerImpl::releaseMemoryOnTheFly() {
|
|
if (!wasRun)
|
|
return;
|
|
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
|
|
FPPassManager *FPPM = getContainedManager(Index);
|
|
for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) {
|
|
FPPM->getContainedPass(Index)->releaseMemory();
|
|
}
|
|
}
|
|
wasRun = false;
|
|
}
|
|
|
|
// Execute all the passes managed by this top level manager.
|
|
// Return true if any function is modified by a pass.
|
|
bool FunctionPassManagerImpl::run(Function &F) {
|
|
bool Changed = false;
|
|
TimingInfo::createTheTimeInfo();
|
|
|
|
initializeAllAnalysisInfo();
|
|
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
|
|
Changed |= getContainedManager(Index)->runOnFunction(F);
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
|
|
getContainedManager(Index)->cleanup();
|
|
|
|
wasRun = true;
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FPPassManager implementation
|
|
|
|
char FPPassManager::ID = 0;
|
|
/// Print passes managed by this manager
|
|
void FPPassManager::dumpPassStructure(unsigned Offset) {
|
|
llvm::dbgs() << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
FunctionPass *FP = getContainedPass(Index);
|
|
FP->dumpPassStructure(Offset + 1);
|
|
dumpLastUses(FP, Offset+1);
|
|
}
|
|
}
|
|
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnFunction method. Keep track of whether any of the passes modifies
|
|
/// the function, and if so, return true.
|
|
bool FPPassManager::runOnFunction(Function &F) {
|
|
if (F.isDeclaration())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
// Collect inherited analysis from Module level pass manager.
|
|
populateInheritedAnalysis(TPM->activeStack);
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
FunctionPass *FP = getContainedPass(Index);
|
|
bool LocalChanged = false;
|
|
|
|
dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName());
|
|
dumpRequiredSet(FP);
|
|
|
|
initializeAnalysisImpl(FP);
|
|
|
|
{
|
|
PassManagerPrettyStackEntry X(FP, F);
|
|
TimeRegion PassTimer(getPassTimer(FP));
|
|
|
|
LocalChanged |= FP->runOnFunction(F);
|
|
}
|
|
|
|
Changed |= LocalChanged;
|
|
if (LocalChanged)
|
|
dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName());
|
|
dumpPreservedSet(FP);
|
|
|
|
verifyPreservedAnalysis(FP);
|
|
removeNotPreservedAnalysis(FP);
|
|
recordAvailableAnalysis(FP);
|
|
removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool FPPassManager::runOnModule(Module &M) {
|
|
bool Changed = doInitialization(M);
|
|
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
|
runOnFunction(*I);
|
|
|
|
return doFinalization(M) || Changed;
|
|
}
|
|
|
|
bool FPPassManager::doInitialization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
|
|
Changed |= getContainedPass(Index)->doInitialization(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool FPPassManager::doFinalization(Module &M) {
|
|
bool Changed = false;
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index)
|
|
Changed |= getContainedPass(Index)->doFinalization(M);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MPPassManager implementation
|
|
|
|
/// Execute all of the passes scheduled for execution by invoking
|
|
/// runOnModule method. Keep track of whether any of the passes modifies
|
|
/// the module, and if so, return true.
|
|
bool
|
|
MPPassManager::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
|
|
// Initialize on-the-fly passes
|
|
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
|
|
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
|
|
I != E; ++I) {
|
|
FunctionPassManagerImpl *FPP = I->second;
|
|
Changed |= FPP->doInitialization(M);
|
|
}
|
|
|
|
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
|
|
ModulePass *MP = getContainedPass(Index);
|
|
bool LocalChanged = false;
|
|
|
|
dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier());
|
|
dumpRequiredSet(MP);
|
|
|
|
initializeAnalysisImpl(MP);
|
|
|
|
{
|
|
PassManagerPrettyStackEntry X(MP, M);
|
|
TimeRegion PassTimer(getPassTimer(MP));
|
|
|
|
LocalChanged |= MP->runOnModule(M);
|
|
}
|
|
|
|
Changed |= LocalChanged;
|
|
if (LocalChanged)
|
|
dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG,
|
|
M.getModuleIdentifier());
|
|
dumpPreservedSet(MP);
|
|
|
|
verifyPreservedAnalysis(MP);
|
|
removeNotPreservedAnalysis(MP);
|
|
recordAvailableAnalysis(MP);
|
|
removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG);
|
|
}
|
|
|
|
// Finalize on-the-fly passes
|
|
for (std::map<Pass *, FunctionPassManagerImpl *>::iterator
|
|
I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end();
|
|
I != E; ++I) {
|
|
FunctionPassManagerImpl *FPP = I->second;
|
|
// We don't know when is the last time an on-the-fly pass is run,
|
|
// so we need to releaseMemory / finalize here
|
|
FPP->releaseMemoryOnTheFly();
|
|
Changed |= FPP->doFinalization(M);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Add RequiredPass into list of lower level passes required by pass P.
|
|
/// RequiredPass is run on the fly by Pass Manager when P requests it
|
|
/// through getAnalysis interface.
|
|
void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) {
|
|
assert(P->getPotentialPassManagerType() == PMT_ModulePassManager &&
|
|
"Unable to handle Pass that requires lower level Analysis pass");
|
|
assert((P->getPotentialPassManagerType() <
|
|
RequiredPass->getPotentialPassManagerType()) &&
|
|
"Unable to handle Pass that requires lower level Analysis pass");
|
|
|
|
FunctionPassManagerImpl *FPP = OnTheFlyManagers[P];
|
|
if (!FPP) {
|
|
FPP = new FunctionPassManagerImpl(0);
|
|
// FPP is the top level manager.
|
|
FPP->setTopLevelManager(FPP);
|
|
|
|
OnTheFlyManagers[P] = FPP;
|
|
}
|
|
FPP->add(RequiredPass);
|
|
|
|
// Register P as the last user of RequiredPass.
|
|
SmallVector<Pass *, 12> LU;
|
|
LU.push_back(RequiredPass);
|
|
FPP->setLastUser(LU, P);
|
|
}
|
|
|
|
/// Return function pass corresponding to PassInfo PI, that is
|
|
/// required by module pass MP. Instantiate analysis pass, by using
|
|
/// its runOnFunction() for function F.
|
|
Pass* MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F){
|
|
FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP];
|
|
assert(FPP && "Unable to find on the fly pass");
|
|
|
|
FPP->releaseMemoryOnTheFly();
|
|
FPP->run(F);
|
|
return ((PMTopLevelManager*)FPP)->findAnalysisPass(PI);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManagerImpl implementation
|
|
//
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool PassManagerImpl::run(Module &M) {
|
|
bool Changed = false;
|
|
TimingInfo::createTheTimeInfo();
|
|
|
|
dumpArguments();
|
|
dumpPasses();
|
|
|
|
initializeAllAnalysisInfo();
|
|
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index)
|
|
Changed |= getContainedManager(Index)->runOnModule(M);
|
|
return Changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PassManager implementation
|
|
|
|
/// Create new pass manager
|
|
PassManager::PassManager() {
|
|
PM = new PassManagerImpl(0);
|
|
// PM is the top level manager
|
|
PM->setTopLevelManager(PM);
|
|
}
|
|
|
|
PassManager::~PassManager() {
|
|
delete PM;
|
|
}
|
|
|
|
/// addImpl - Add a pass to the queue of passes to run, without
|
|
/// checking whether to add a printer pass.
|
|
void PassManager::addImpl(Pass *P) {
|
|
PM->add(P);
|
|
}
|
|
|
|
/// add - Add a pass to the queue of passes to run. This passes ownership of
|
|
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
|
|
/// will be destroyed as well, so there is no need to delete the pass. This
|
|
/// implies that all passes MUST be allocated with 'new'.
|
|
void PassManager::add(Pass *P) {
|
|
const void* PassID = P->getPassID();
|
|
if (ShouldPrintBeforePass(PassID))
|
|
addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump Before ")
|
|
+ P->getPassName() + " ***"));
|
|
|
|
addImpl(P);
|
|
|
|
if (ShouldPrintAfterPass(PassID))
|
|
addImpl(P->createPrinterPass(dbgs(), std::string("*** IR Dump After ")
|
|
+ P->getPassName() + " ***"));
|
|
}
|
|
|
|
/// run - Execute all of the passes scheduled for execution. Keep track of
|
|
/// whether any of the passes modifies the module, and if so, return true.
|
|
bool PassManager::run(Module &M) {
|
|
return PM->run(M);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TimingInfo Class - This class is used to calculate information about the
|
|
// amount of time each pass takes to execute. This only happens with
|
|
// -time-passes is enabled on the command line.
|
|
//
|
|
bool llvm::TimePassesIsEnabled = false;
|
|
static cl::opt<bool,true>
|
|
EnableTiming("time-passes", cl::location(TimePassesIsEnabled),
|
|
cl::desc("Time each pass, printing elapsed time for each on exit"));
|
|
|
|
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer to
|
|
// a non null value (if the -time-passes option is enabled) or it leaves it
|
|
// null. It may be called multiple times.
|
|
void TimingInfo::createTheTimeInfo() {
|
|
if (!TimePassesIsEnabled || TheTimeInfo) return;
|
|
|
|
// Constructed the first time this is called, iff -time-passes is enabled.
|
|
// This guarantees that the object will be constructed before static globals,
|
|
// thus it will be destroyed before them.
|
|
static ManagedStatic<TimingInfo> TTI;
|
|
TheTimeInfo = &*TTI;
|
|
}
|
|
|
|
/// If TimingInfo is enabled then start pass timer.
|
|
Timer *llvm::getPassTimer(Pass *P) {
|
|
if (TheTimeInfo)
|
|
return TheTimeInfo->getPassTimer(P);
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PMStack implementation
|
|
//
|
|
|
|
// Pop Pass Manager from the stack and clear its analysis info.
|
|
void PMStack::pop() {
|
|
|
|
PMDataManager *Top = this->top();
|
|
Top->initializeAnalysisInfo();
|
|
|
|
S.pop_back();
|
|
}
|
|
|
|
// Push PM on the stack and set its top level manager.
|
|
void PMStack::push(PMDataManager *PM) {
|
|
assert(PM && "Unable to push. Pass Manager expected");
|
|
|
|
if (!this->empty()) {
|
|
PMTopLevelManager *TPM = this->top()->getTopLevelManager();
|
|
|
|
assert(TPM && "Unable to find top level manager");
|
|
TPM->addIndirectPassManager(PM);
|
|
PM->setTopLevelManager(TPM);
|
|
}
|
|
|
|
S.push_back(PM);
|
|
}
|
|
|
|
// Dump content of the pass manager stack.
|
|
void PMStack::dump() const {
|
|
for (std::vector<PMDataManager *>::const_iterator I = S.begin(),
|
|
E = S.end(); I != E; ++I)
|
|
printf("%s ", (*I)->getAsPass()->getPassName());
|
|
|
|
if (!S.empty())
|
|
printf("\n");
|
|
}
|
|
|
|
/// Find appropriate Module Pass Manager in the PM Stack and
|
|
/// add self into that manager.
|
|
void ModulePass::assignPassManager(PMStack &PMS,
|
|
PassManagerType PreferredType) {
|
|
// Find Module Pass Manager
|
|
while (!PMS.empty()) {
|
|
PassManagerType TopPMType = PMS.top()->getPassManagerType();
|
|
if (TopPMType == PreferredType)
|
|
break; // We found desired pass manager
|
|
else if (TopPMType > PMT_ModulePassManager)
|
|
PMS.pop(); // Pop children pass managers
|
|
else
|
|
break;
|
|
}
|
|
assert(!PMS.empty() && "Unable to find appropriate Pass Manager");
|
|
PMS.top()->add(this);
|
|
}
|
|
|
|
/// Find appropriate Function Pass Manager or Call Graph Pass Manager
|
|
/// in the PM Stack and add self into that manager.
|
|
void FunctionPass::assignPassManager(PMStack &PMS,
|
|
PassManagerType PreferredType) {
|
|
|
|
// Find Module Pass Manager
|
|
while (!PMS.empty()) {
|
|
if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager)
|
|
PMS.pop();
|
|
else
|
|
break;
|
|
}
|
|
|
|
// Create new Function Pass Manager if needed.
|
|
FPPassManager *FPP;
|
|
if (PMS.top()->getPassManagerType() == PMT_FunctionPassManager) {
|
|
FPP = (FPPassManager *)PMS.top();
|
|
} else {
|
|
assert(!PMS.empty() && "Unable to create Function Pass Manager");
|
|
PMDataManager *PMD = PMS.top();
|
|
|
|
// [1] Create new Function Pass Manager
|
|
FPP = new FPPassManager(PMD->getDepth() + 1);
|
|
FPP->populateInheritedAnalysis(PMS);
|
|
|
|
// [2] Set up new manager's top level manager
|
|
PMTopLevelManager *TPM = PMD->getTopLevelManager();
|
|
TPM->addIndirectPassManager(FPP);
|
|
|
|
// [3] Assign manager to manage this new manager. This may create
|
|
// and push new managers into PMS
|
|
FPP->assignPassManager(PMS, PMD->getPassManagerType());
|
|
|
|
// [4] Push new manager into PMS
|
|
PMS.push(FPP);
|
|
}
|
|
|
|
// Assign FPP as the manager of this pass.
|
|
FPP->add(this);
|
|
}
|
|
|
|
/// Find appropriate Basic Pass Manager or Call Graph Pass Manager
|
|
/// in the PM Stack and add self into that manager.
|
|
void BasicBlockPass::assignPassManager(PMStack &PMS,
|
|
PassManagerType PreferredType) {
|
|
BBPassManager *BBP;
|
|
|
|
// Basic Pass Manager is a leaf pass manager. It does not handle
|
|
// any other pass manager.
|
|
if (!PMS.empty() &&
|
|
PMS.top()->getPassManagerType() == PMT_BasicBlockPassManager) {
|
|
BBP = (BBPassManager *)PMS.top();
|
|
} else {
|
|
// If leaf manager is not Basic Block Pass manager then create new
|
|
// basic Block Pass manager.
|
|
assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager");
|
|
PMDataManager *PMD = PMS.top();
|
|
|
|
// [1] Create new Basic Block Manager
|
|
BBP = new BBPassManager(PMD->getDepth() + 1);
|
|
|
|
// [2] Set up new manager's top level manager
|
|
// Basic Block Pass Manager does not live by itself
|
|
PMTopLevelManager *TPM = PMD->getTopLevelManager();
|
|
TPM->addIndirectPassManager(BBP);
|
|
|
|
// [3] Assign manager to manage this new manager. This may create
|
|
// and push new managers into PMS
|
|
BBP->assignPassManager(PMS, PreferredType);
|
|
|
|
// [4] Push new manager into PMS
|
|
PMS.push(BBP);
|
|
}
|
|
|
|
// Assign BBP as the manager of this pass.
|
|
BBP->add(this);
|
|
}
|
|
|
|
PassManagerBase::~PassManagerBase() {}
|