llvm-6502/lib/Target/SparcV9/SparcV9CodeEmitter.cpp
Misha Brukman 8631ac4b76 Print address out as hex.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6657 91177308-0d34-0410-b5e6-96231b3b80d8
2003-06-06 09:53:28 +00:00

672 lines
25 KiB
C++

//===-- SparcV9CodeEmitter.cpp - --------===//
//
//
//===----------------------------------------------------------------------===//
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "Support/Statistic.h"
#include "Support/hash_set"
#include "SparcInternals.h"
#include "SparcV9CodeEmitter.h"
bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
MachineCodeEmitter &MCE) {
MachineCodeEmitter *M = &MCE;
DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE));
PM.add(new SparcV9CodeEmitter(*this, *M));
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
return false;
}
namespace {
class JITResolver {
SparcV9CodeEmitter &SparcV9;
MachineCodeEmitter &MCE;
// LazyCodeGenMap - Keep track of call sites for functions that are to be
// lazily resolved.
std::map<uint64_t, Function*> LazyCodeGenMap;
// LazyResolverMap - Keep track of the lazy resolver created for a
// particular function so that we can reuse them if necessary.
std::map<Function*, uint64_t> LazyResolverMap;
public:
JITResolver(SparcV9CodeEmitter &V9,
MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
uint64_t getLazyResolver(Function *F);
uint64_t addFunctionReference(uint64_t Address, Function *F);
// Utility functions for accessing data from static callback
uint64_t getCurrentPCValue() {
return MCE.getCurrentPCValue();
}
unsigned getBinaryCodeForInstr(MachineInstr &MI) {
return SparcV9.getBinaryCodeForInstr(MI);
}
inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
private:
uint64_t emitStubForFunction(Function *F);
static void CompilationCallback();
uint64_t resolveFunctionReference(uint64_t RetAddr);
};
JITResolver *TheJITResolver;
}
/// addFunctionReference - This method is called when we need to emit the
/// address of a function that has not yet been emitted, so we don't know the
/// address. Instead, we emit a call to the CompilationCallback method, and
/// keep track of where we are.
///
uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
LazyCodeGenMap[Address] = F;
return (intptr_t)&JITResolver::CompilationCallback;
}
uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
assert(I != LazyCodeGenMap.end() && "Not in map!");
Function *F = I->second;
LazyCodeGenMap.erase(I);
return MCE.forceCompilationOf(F);
}
uint64_t JITResolver::getLazyResolver(Function *F) {
std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
if (I != LazyResolverMap.end() && I->first == F) return I->second;
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
uint64_t Stub = emitStubForFunction(F);
LazyResolverMap.insert(I, std::make_pair(F, Stub));
return Stub;
}
uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
i7 = SparcIntRegClass::i7,
o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0;
//
// Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2
//
// stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp
MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
delete STX;
Addr += 4;
// stx %i2, [%sp + 2127] ;; save %i2 to the stack
STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
delete STX;
Addr += 4;
//
// Get address to branch into %i2, using %i1 as a temporary
//
// sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1
MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
delete SH;
Addr += 4;
// or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1
MachineInstr *OR = BuildMI(V9::ORi, 3)
.addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
delete OR;
Addr += 4;
// sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word
MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL);
delete SL;
Addr += 4;
// sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg
SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
delete SH;
Addr += 4;
// or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2
OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
delete OR;
Addr += 4;
// or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2
OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
delete OR;
Addr += 4;
// ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72
MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
delete LDX;
Addr += 4;
// jmpl %i2, %g0, %g0 ;; indirect branch on %i2
MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J);
delete J;
Addr += 4;
// ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80
LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2);
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
delete LDX;
Addr += 4;
return Addr;
}
void JITResolver::CompilationCallback() {
uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n");
// Rewrite the call target... so that we don't fault every time we execute
// the call.
#if 0
int64_t RealCallTarget = (int64_t)
((NewVal - TheJITResolver->getCurrentPCValue()) >> 4);
if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) {
std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n";
abort();
}
#endif
//uint64_t CurrPC = TheJITResolver->getCurrentPCValue();
// we will insert 9 instructions before we do the actual jump
//int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2;
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6,
o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0;
// Subtract 4 to overwrite the 'save' that's there now
uint64_t InstAddr = CameFrom-4;
InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
// CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to
// the original caller, not here!!
// FIXME: add call 0 to make sure?!?
// =============== THE REAL STUB ENDS HERE =========================
// What follows below is one-time restore code, because this callback may be
// changing registers in unpredictible ways. However, since it is executed
// only once per function (after the function is resolved, the callback is no
// longer in the path), this has to be done only once.
//
// Thus, it is after the regular stub code. The call back returns to THIS
// point, but every other call to the target function will execute the code
// above. Hence, this code is one-time use.
uint64_t OneTimeRestore = InstAddr;
// restore %g0, 0, %g0
//MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
// .addMReg(g0, MOTy::Def);
//*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R);
//delete R;
// FIXME: BuildMI() above crashes. Encode the instruction directly.
// restore %g0, 0, %g0
*((unsigned*)(intptr_t)InstAddr) = 0x81e82000U;
InstAddr += 4;
InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
// FIXME: if the target function is close enough to fit into the 19bit disp of
// BA, we should use this version, as its much cheaper to generate.
/*
MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget);
*((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
delete MI;
InstAddr += 4;
// Add another NOP
MachineInstr *Nop = BuildMI(V9::NOP, 0);
*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop);
delete Nop;
InstAddr += 4;
MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2);
*((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA);
delete BA;
*/
// Change the return address to reexecute the call instruction...
// The return address is really %o7, but will disappear after this function
// returns, and the register windows are rotated away.
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
__asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8));
#endif
}
/// emitStubForFunction - This method is used by the JIT when it needs to emit
/// the address of a function for a function whose code has not yet been
/// generated. In order to do this, it generates a stub which jumps to the lazy
/// function compiler, which will eventually get fixed to call the function
/// directly.
///
uint64_t JITResolver::emitStubForFunction(Function *F) {
MCE.startFunctionStub(*F, 6);
DEBUG(std::cerr << "Emitting stub at addr: 0x"
<< std::hex << MCE.getCurrentPCValue() << "\n");
unsigned o6 = SparcIntRegClass::o6;
// save %sp, -192, %sp
MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
delete SV;
int64_t CurrPC = MCE.getCurrentPCValue();
int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
int64_t CallTarget = (Addr-CurrPC) >> 2;
if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) {
std::cerr << "Call target beyond 30 bit limit of CALL: "
<< CallTarget << "\n";
abort();
}
// call CallTarget ;; invoke the callback
MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
delete Call;
// nop ;; call delay slot
MachineInstr *Nop = BuildMI(V9::NOP, 0);
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
delete Nop;
SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
return (intptr_t)MCE.finishFunctionStub(*F);
}
SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
MachineCodeEmitter &M): TM(tm), MCE(M)
{
TheJITResolver = new JITResolver(*this, M);
}
SparcV9CodeEmitter::~SparcV9CodeEmitter() {
delete TheJITResolver;
}
void SparcV9CodeEmitter::emitWord(unsigned Val) {
// Output the constant in big endian byte order...
unsigned byteVal;
for (int i = 3; i >= 0; --i) {
byteVal = Val >> 8*i;
MCE.emitByte(byteVal & 255);
}
}
bool SparcV9CodeEmitter::isFPInstr(MachineInstr &MI) {
for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isPhysicalRegister()) {
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
regType = TM.getRegInfo().getRegType(fakeReg);
// At least map fakeReg into its class
fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
if (regClass == UltraSparcRegInfo::FPSingleRegType ||
regClass == UltraSparcRegInfo::FPDoubleRegType)
return true;
}
}
return false;
}
unsigned
SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, unsigned regClass,
MachineInstr &MI) {
switch (regClass) {
case UltraSparcRegInfo::IntRegType: {
// Sparc manual, p31
static const unsigned IntRegMap[] = {
// "o0", "o1", "o2", "o3", "o4", "o5", "o7",
8, 9, 10, 11, 12, 13, 15,
// "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
16, 17, 18, 19, 20, 21, 22, 23,
// "i0", "i1", "i2", "i3", "i4", "i5",
24, 25, 26, 27, 28, 29,
// "i6", "i7",
30, 31,
// "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
0, 1, 2, 3, 4, 5, 6, 7,
// "o6"
14
};
return IntRegMap[fakeReg];
break;
}
case UltraSparcRegInfo::FPSingleRegType: {
return fakeReg;
}
case UltraSparcRegInfo::FPDoubleRegType: {
return fakeReg;
}
case UltraSparcRegInfo::FloatCCRegType: {
/* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
return fakeReg;
}
case UltraSparcRegInfo::IntCCRegType: {
static const unsigned FPInstrIntCCReg[] = { 6 /* xcc */, 4 /* icc */ };
static const unsigned IntInstrIntCCReg[] = { 2 /* xcc */, 0 /* icc */ };
if (isFPInstr(MI)) {
assert(fakeReg < sizeof(FPInstrIntCCReg)/sizeof(FPInstrIntCCReg[0])
&& "Int CC register out of bounds for FPInstr IntCCReg map");
return FPInstrIntCCReg[fakeReg];
} else {
assert(fakeReg < sizeof(IntInstrIntCCReg)/sizeof(IntInstrIntCCReg[0])
&& "Int CC register out of bounds for IntInstr IntCCReg map");
return IntInstrIntCCReg[fakeReg];
}
}
default:
assert(0 && "Invalid unified register number in getRegType");
return fakeReg;
}
}
int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
MachineOperand &MO) {
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
// or things that get fixed up later by the JIT.
if (MO.isVirtualRegister()) {
std::cerr << "ERROR: virtual register found in machine code.\n";
abort();
} else if (MO.isPCRelativeDisp()) {
DEBUG(std::cerr << "PCRelativeDisp: ");
Value *V = MO.getVRegValue();
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
DEBUG(std::cerr << "Saving reference to BB (VReg)\n");
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (const Constant *C = dyn_cast<Constant>(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n");
} else {
std::cerr << "ERROR: constant not in map:" << MO << "\n";
abort();
}
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// same as MO.isGlobalAddress()
DEBUG(std::cerr << "GlobalValue: ");
// external function calls, etc.?
if (Function *F = dyn_cast<Function>(GV)) {
DEBUG(std::cerr << "Function: ");
if (F->isExternal()) {
// Sparc backend broken: this MO should be `ExternalSymbol'
rv = (int64_t)MCE.getGlobalValueAddress(F->getName());
} else {
rv = (int64_t)MCE.getGlobalValueAddress(F);
}
if (rv == 0) {
DEBUG(std::cerr << "not yet generated\n");
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
// Delayed resolution...
rv = TheJITResolver->getLazyResolver(F);
} else {
DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n");
}
} else {
rv = (int64_t)MCE.getGlobalValueAddress(GV);
if (rv == 0) {
if (Constant *C = ConstantPointerRef::get(GV)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
rv = MCE.getConstantPoolEntryAddress(ConstantMap[C]);
} else {
std::cerr << "Constant: 0x" << std::hex << (intptr_t)C
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
}
}
DEBUG(std::cerr << "Global addr: " << rv << "\n");
}
// The real target of the call is Addr = PC + (rv * 4)
// So undo that: give the instruction (Addr - PC) / 4
if (MI.getOpcode() == V9::CALL) {
int64_t CurrPC = MCE.getCurrentPCValue();
DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n"
<< "curr PC: 0x" << CurrPC << "\n");
rv = (rv - CurrPC) >> 2;
if (rv >= (1<<29) || rv <= -(1<<29)) {
std::cerr << "addr out of bounds for the 30-bit call: " << rv << "\n";
abort();
}
DEBUG(std::cerr << "returning addr: 0x" << rv << "\n");
}
} else {
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
abort();
}
} else if (MO.isPhysicalRegister() ||
MO.getType() == MachineOperand::MO_CCRegister)
{
// This is necessary because the Sparc doesn't actually lay out registers
// in the real fashion -- it skips those that it chooses not to allocate,
// i.e. those that are the SP, etc.
unsigned fakeReg = MO.getReg(), realReg, regClass, regType;
regType = TM.getRegInfo().getRegType(fakeReg);
// At least map fakeReg into its class
fakeReg = TM.getRegInfo().getClassRegNum(fakeReg, regClass);
// Find the real register number for use in an instruction
/////realReg = getRealRegNum(fakeReg, regClass, MI);
realReg = getRealRegNum(fakeReg, regType, MI);
DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] = "
<< realReg << "\n");
rv = realReg;
} else if (MO.isImmediate()) {
rv = MO.getImmedValue();
DEBUG(std::cerr << "immed: " << rv << "\n");
} else if (MO.isGlobalAddress()) {
DEBUG(std::cerr << "GlobalAddress: not PC-relative\n");
rv = (int64_t)
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
MI, MO.isPCRelative());
} else if (MO.isMachineBasicBlock()) {
// Duplicate code of the above case for VirtualRegister, BasicBlock...
// It should really hit this case, but Sparc backend uses VRegs instead
DEBUG(std::cerr << "Saving reference to MBB\n");
BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
} else if (MO.isExternalSymbol()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
abort();
} else if (MO.isFrameIndex()) {
// Sparc backend doesn't generate this (yet...)
int FrameIndex = MO.getFrameIndex();
std::cerr << "ERROR: Frame index unhandled.\n";
abort();
} else if (MO.isConstantPoolIndex()) {
// Sparc backend doesn't generate this (yet...)
std::cerr << "ERROR: Constant Pool index unhandled.\n";
abort();
} else {
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
abort();
}
// Finally, deal with the various bitfield-extracting functions that
// are used in SPARC assembly. (Some of these make no sense in combination
// with some of the above; we'll trust that the instruction selector
// will not produce nonsense, and not check for valid combinations here.)
if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc
return rv & 0x03ff;
} else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc
return (rv >> 10) & 0x03fffff;
} else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc
return (rv >> 32) & 0x03ff;
} else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc
return rv >> 42;
} else { // (unadorned) val
return rv;
}
}
unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
Val >>= bit;
return (Val & 1);
}
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
MCE.startFunction(MF);
DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName()
<< ", address: " << "0x" << std::hex
<< (long)MCE.getCurrentPCValue() << "\n");
// The Sparc backend does not use MachineConstantPool;
// instead, it has its own constant pool implementation.
// We create a new MachineConstantPool here to be compatible with the emitter.
MachineConstantPool MCP;
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
E = pool.end(); I != E; ++I)
{
Constant *C = (Constant*)*I;
unsigned idx = MCP.getConstantPoolIndex(C);
DEBUG(std::cerr << "Mapping constant 0x" << (intptr_t)C << " to "
<< idx << "\n");
ConstantMap[C] = idx;
}
MCE.emitConstantPool(&MCP);
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
emitBasicBlock(*I);
MCE.finishFunction(MF);
DEBUG(std::cerr << "Finishing function " << MF.getFunction()->getName()
<< "\n");
ConstantMap.clear();
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
DEBUG(std::cerr << "Fixup @" << std::hex << Ref << " to " << Location
<< " in instr: " << std::dec << *MI << "\n");
}
// Resolve branches to BasicBlocks for the entire function
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
long Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second.first;
MachineInstr *MI = BBRefs[i].second.second;
DEBUG(std::cerr << "attempting to resolve BB: " << i << "\n");
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
MachineOperand &op = MI->getOperand(ii);
if (op.isPCRelativeDisp()) {
// the instruction's branch target is made such that it branches to
// PC + (br target * 4), so undo that arithmetic here:
// Location is the target of the branch
// Ref is the location of the instruction, and hence the PC
unsigned branchTarget = (Location - (long)Ref) >> 2;
// Save the flags.
bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
if (op.opLoBits32()) { loBits32=true; }
if (op.opHiBits32()) { hiBits32=true; }
if (op.opLoBits64()) { loBits64=true; }
if (op.opHiBits64()) { hiBits64=true; }
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
branchTarget);
if (loBits32) { MI->setOperandLo32(ii); }
else if (hiBits32) { MI->setOperandHi32(ii); }
else if (loBits64) { MI->setOperandLo64(ii); }
else if (hiBits64) { MI->setOperandHi64(ii); }
DEBUG(std::cerr << "Rewrote BB ref: ");
unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
*Ref = fixedInstr;
break;
}
}
}
BBRefs.clear();
BBLocations.clear();
return false;
}
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
currBB = MBB.getBasicBlock();
BBLocations[currBB] = MCE.getCurrentPCValue();
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I)
emitWord(getBinaryCodeForInstr(**I));
}
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
bool isPCRelative)
{
if (isPCRelative) { // must be a call, this is a major hack!
// Try looking up the function to see if it is already compiled!
if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
intptr_t CurByte = MCE.getCurrentPCValue();
// The real target of the call is Addr = PC + (target * 4)
// CurByte is the PC, Addr we just received
return (void*) (((long)Addr - (long)CurByte) >> 2);
} else {
if (Function *F = dyn_cast<Function>(V)) {
// Function has not yet been code generated!
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
cast<Function>(V));
// Delayed resolution...
return
(void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
} else if (Constant *C = ConstantPointerRef::get(V)) {
if (ConstantMap.find(C) != ConstantMap.end()) {
return (void*)
(intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
} else {
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
<< ", " << *V << " not found in ConstantMap!\n";
abort();
}
} else {
std::cerr << "Unhandled global: " << *V << "\n";
abort();
}
}
} else {
return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
}
}
#include "SparcV9CodeEmitter.inc"