mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
55afc33882
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6503 91177308-0d34-0410-b5e6-96231b3b80d8
1705 lines
62 KiB
C++
1705 lines
62 KiB
C++
//===-- SparcRegInfo.cpp - Sparc Target Register Information --------------===//
|
|
//
|
|
// This file contains implementation of Sparc specific helper methods
|
|
// used for register allocation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SparcInternals.h"
|
|
#include "SparcRegClassInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/PhyRegAlloc.h"
|
|
#include "llvm/CodeGen/InstrSelection.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
|
#include "llvm/CodeGen/MachineInstrAnnot.h"
|
|
#include "llvm/CodeGen/FunctionLiveVarInfo.h" // FIXME: Remove
|
|
#include "../../CodeGen/RegAlloc/RegAllocCommon.h" // FIXME!
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
|
|
enum {
|
|
BadRegClass = ~0
|
|
};
|
|
|
|
UltraSparcRegInfo::UltraSparcRegInfo(const UltraSparc &tgt)
|
|
: TargetRegInfo(tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32)
|
|
{
|
|
MachineRegClassArr.push_back(new SparcIntRegClass(IntRegClassID));
|
|
MachineRegClassArr.push_back(new SparcFloatRegClass(FloatRegClassID));
|
|
MachineRegClassArr.push_back(new SparcIntCCRegClass(IntCCRegClassID));
|
|
MachineRegClassArr.push_back(new SparcFloatCCRegClass(FloatCCRegClassID));
|
|
MachineRegClassArr.push_back(new SparcSpecialRegClass(SpecialRegClassID));
|
|
|
|
assert(SparcFloatRegClass::StartOfNonVolatileRegs == 32 &&
|
|
"32 Float regs are used for float arg passing");
|
|
}
|
|
|
|
|
|
// getZeroRegNum - returns the register that contains always zero.
|
|
// this is the unified register number
|
|
//
|
|
int UltraSparcRegInfo::getZeroRegNum() const {
|
|
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
|
|
SparcIntRegClass::g0);
|
|
}
|
|
|
|
// getCallAddressReg - returns the reg used for pushing the address when a
|
|
// method is called. This can be used for other purposes between calls
|
|
//
|
|
unsigned UltraSparcRegInfo::getCallAddressReg() const {
|
|
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
|
|
SparcIntRegClass::o7);
|
|
}
|
|
|
|
// Returns the register containing the return address.
|
|
// It should be made sure that this register contains the return
|
|
// value when a return instruction is reached.
|
|
//
|
|
unsigned UltraSparcRegInfo::getReturnAddressReg() const {
|
|
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
|
|
SparcIntRegClass::i7);
|
|
}
|
|
|
|
// Register get name implementations...
|
|
|
|
// Int register names in same order as enum in class SparcIntRegClass
|
|
static const char * const IntRegNames[] = {
|
|
"o0", "o1", "o2", "o3", "o4", "o5", "o7",
|
|
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
|
"i0", "i1", "i2", "i3", "i4", "i5",
|
|
"i6", "i7",
|
|
"g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
|
"o6"
|
|
};
|
|
|
|
const char * const SparcIntRegClass::getRegName(unsigned reg) const {
|
|
assert(reg < NumOfAllRegs);
|
|
return IntRegNames[reg];
|
|
}
|
|
|
|
static const char * const FloatRegNames[] = {
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",
|
|
"f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",
|
|
"f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",
|
|
"f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
|
|
"f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",
|
|
"f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",
|
|
"f60", "f61", "f62", "f63"
|
|
};
|
|
|
|
const char * const SparcFloatRegClass::getRegName(unsigned reg) const {
|
|
assert (reg < NumOfAllRegs);
|
|
return FloatRegNames[reg];
|
|
}
|
|
|
|
|
|
static const char * const IntCCRegNames[] = {
|
|
"xcc", "ccr"
|
|
};
|
|
|
|
const char * const SparcIntCCRegClass::getRegName(unsigned reg) const {
|
|
assert(reg < 2);
|
|
return IntCCRegNames[reg];
|
|
}
|
|
|
|
static const char * const FloatCCRegNames[] = {
|
|
"fcc0", "fcc1", "fcc2", "fcc3"
|
|
};
|
|
|
|
const char * const SparcFloatCCRegClass::getRegName(unsigned reg) const {
|
|
assert (reg < 5);
|
|
return FloatCCRegNames[reg];
|
|
}
|
|
|
|
static const char * const SpecialRegNames[] = {
|
|
"fsr"
|
|
};
|
|
|
|
const char * const SparcSpecialRegClass::getRegName(unsigned reg) const {
|
|
assert (reg < 1);
|
|
return SpecialRegNames[reg];
|
|
}
|
|
|
|
// Get unified reg number for frame pointer
|
|
unsigned UltraSparcRegInfo::getFramePointer() const {
|
|
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
|
|
SparcIntRegClass::i6);
|
|
}
|
|
|
|
// Get unified reg number for stack pointer
|
|
unsigned UltraSparcRegInfo::getStackPointer() const {
|
|
return getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
|
|
SparcIntRegClass::o6);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Finds whether a call is an indirect call
|
|
//---------------------------------------------------------------------------
|
|
|
|
inline bool
|
|
isVarArgsFunction(const Type *funcType) {
|
|
return cast<FunctionType>(cast<PointerType>(funcType)
|
|
->getElementType())->isVarArg();
|
|
}
|
|
|
|
inline bool
|
|
isVarArgsCall(const MachineInstr *CallMI) {
|
|
Value* callee = CallMI->getOperand(0).getVRegValue();
|
|
// const Type* funcType = isa<Function>(callee)? callee->getType()
|
|
// : cast<PointerType>(callee->getType())->getElementType();
|
|
const Type* funcType = callee->getType();
|
|
return isVarArgsFunction(funcType);
|
|
}
|
|
|
|
|
|
// Get the register number for the specified argument #argNo,
|
|
//
|
|
// Return value:
|
|
// getInvalidRegNum(), if there is no int register available for the arg.
|
|
// regNum, otherwise (this is NOT the unified reg. num).
|
|
// regClassId is set to the register class ID.
|
|
//
|
|
int
|
|
UltraSparcRegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall,
|
|
unsigned argNo, unsigned& regClassId) const
|
|
{
|
|
regClassId = IntRegClassID;
|
|
if (argNo >= NumOfIntArgRegs)
|
|
return getInvalidRegNum();
|
|
else
|
|
return argNo + (inCallee? SparcIntRegClass::i0 : SparcIntRegClass::o0);
|
|
}
|
|
|
|
// Get the register number for the specified FP argument #argNo,
|
|
// Use INT regs for FP args if this is a varargs call.
|
|
//
|
|
// Return value:
|
|
// getInvalidRegNum(), if there is no int register available for the arg.
|
|
// regNum, otherwise (this is NOT the unified reg. num).
|
|
// regClassId is set to the register class ID.
|
|
//
|
|
int
|
|
UltraSparcRegInfo::regNumForFPArg(unsigned regType,
|
|
bool inCallee, bool isVarArgsCall,
|
|
unsigned argNo, unsigned& regClassId) const
|
|
{
|
|
if (isVarArgsCall)
|
|
return regNumForIntArg(inCallee, isVarArgsCall, argNo, regClassId);
|
|
else
|
|
{
|
|
regClassId = FloatRegClassID;
|
|
if (regType == FPSingleRegType)
|
|
return (argNo*2+1 >= NumOfFloatArgRegs)?
|
|
getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2 + 1);
|
|
else if (regType == FPDoubleRegType)
|
|
return (argNo*2 >= NumOfFloatArgRegs)?
|
|
getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2);
|
|
else
|
|
assert(0 && "Illegal FP register type");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Finds the return address of a call sparc specific call instruction
|
|
//---------------------------------------------------------------------------
|
|
|
|
// The following 4 methods are used to find the RegType (SparcInternals.h)
|
|
// of a LiveRange, a Value, and for a given register unified reg number.
|
|
//
|
|
int UltraSparcRegInfo::getRegTypeForClassAndType(unsigned regClassID,
|
|
const Type* type) const
|
|
{
|
|
switch (regClassID) {
|
|
case IntRegClassID: return IntRegType;
|
|
case FloatRegClassID:
|
|
if (type == Type::FloatTy) return FPSingleRegType;
|
|
else if (type == Type::DoubleTy) return FPDoubleRegType;
|
|
assert(0 && "Unknown type in FloatRegClass"); return 0;
|
|
case IntCCRegClassID: return IntCCRegType;
|
|
case FloatCCRegClassID: return FloatCCRegType;
|
|
case SpecialRegClassID: return SpecialRegType;
|
|
default: assert( 0 && "Unknown reg class ID"); return 0;
|
|
}
|
|
}
|
|
|
|
int UltraSparcRegInfo::getRegType(const Type* type) const
|
|
{
|
|
return getRegTypeForClassAndType(getRegClassIDOfType(type), type);
|
|
}
|
|
|
|
int UltraSparcRegInfo::getRegType(const LiveRange *LR) const
|
|
{
|
|
return getRegTypeForClassAndType(LR->getRegClassID(), LR->getType());
|
|
}
|
|
|
|
int UltraSparcRegInfo::getRegType(int unifiedRegNum) const
|
|
{
|
|
if (unifiedRegNum < 32)
|
|
return IntRegType;
|
|
else if (unifiedRegNum < (32 + 32))
|
|
return FPSingleRegType;
|
|
else if (unifiedRegNum < (64 + 32))
|
|
return FPDoubleRegType;
|
|
else if (unifiedRegNum < (64+32+4))
|
|
return FloatCCRegType;
|
|
else if (unifiedRegNum < (64+32+4+2))
|
|
return IntCCRegType;
|
|
else
|
|
assert(0 && "Invalid unified register number in getRegType");
|
|
return 0;
|
|
}
|
|
|
|
|
|
// To find the register class used for a specified Type
|
|
//
|
|
unsigned UltraSparcRegInfo::getRegClassIDOfType(const Type *type,
|
|
bool isCCReg) const {
|
|
Type::PrimitiveID ty = type->getPrimitiveID();
|
|
unsigned res;
|
|
|
|
// FIXME: Comparing types like this isn't very safe...
|
|
if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
|
|
(ty == Type::FunctionTyID) || (ty == Type::PointerTyID) )
|
|
res = IntRegClassID; // sparc int reg (ty=0: void)
|
|
else if (ty <= Type::DoubleTyID)
|
|
res = FloatRegClassID; // sparc float reg class
|
|
else {
|
|
//std::cerr << "TypeID: " << ty << "\n";
|
|
assert(0 && "Cannot resolve register class for type");
|
|
return 0;
|
|
}
|
|
|
|
if (isCCReg)
|
|
return res + 2; // corresponding condition code register
|
|
else
|
|
return res;
|
|
}
|
|
|
|
unsigned UltraSparcRegInfo::getRegClassIDOfRegType(int regType) const {
|
|
switch(regType) {
|
|
case IntRegType: return IntRegClassID;
|
|
case FPSingleRegType:
|
|
case FPDoubleRegType: return FloatRegClassID;
|
|
case IntCCRegType: return IntCCRegClassID;
|
|
case FloatCCRegType: return FloatCCRegClassID;
|
|
default:
|
|
assert(0 && "Invalid register type in getRegClassIDOfRegType");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Suggests a register for the ret address in the RET machine instruction.
|
|
// We always suggest %i7 by convention.
|
|
//---------------------------------------------------------------------------
|
|
void UltraSparcRegInfo::suggestReg4RetAddr(MachineInstr *RetMI,
|
|
LiveRangeInfo& LRI) const {
|
|
|
|
assert(target.getInstrInfo().isReturn(RetMI->getOpCode()));
|
|
|
|
// return address is always mapped to i7 so set it immediately
|
|
RetMI->SetRegForOperand(0, getUnifiedRegNum(IntRegClassID,
|
|
SparcIntRegClass::i7));
|
|
|
|
// Possible Optimization:
|
|
// Instead of setting the color, we can suggest one. In that case,
|
|
// we have to test later whether it received the suggested color.
|
|
// In that case, a LR has to be created at the start of method.
|
|
// It has to be done as follows (remove the setRegVal above):
|
|
|
|
// MachineOperand & MO = RetMI->getOperand(0);
|
|
// const Value *RetAddrVal = MO.getVRegValue();
|
|
// assert( RetAddrVal && "LR for ret address must be created at start");
|
|
// LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal);
|
|
// RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID,
|
|
// SparcIntRegOrdr::i7) );
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Suggests a register for the ret address in the JMPL/CALL machine instr.
|
|
// Sparc ABI dictates that %o7 be used for this purpose.
|
|
//---------------------------------------------------------------------------
|
|
void
|
|
UltraSparcRegInfo::suggestReg4CallAddr(MachineInstr * CallMI,
|
|
LiveRangeInfo& LRI) const
|
|
{
|
|
CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
|
|
const Value *RetAddrVal = argDesc->getReturnAddrReg();
|
|
assert(RetAddrVal && "INTERNAL ERROR: Return address value is required");
|
|
|
|
// A LR must already exist for the return address.
|
|
LiveRange *RetAddrLR = LRI.getLiveRangeForValue(RetAddrVal);
|
|
assert(RetAddrLR && "INTERNAL ERROR: No LR for return address of call!");
|
|
|
|
unsigned RegClassID = RetAddrLR->getRegClassID();
|
|
RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID, SparcIntRegClass::o7));
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// This method will suggest colors to incoming args to a method.
|
|
// According to the Sparc ABI, the first 6 incoming args are in
|
|
// %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float).
|
|
// If the arg is passed on stack due to the lack of regs, NOTHING will be
|
|
// done - it will be colored (or spilled) as a normal live range.
|
|
//---------------------------------------------------------------------------
|
|
void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth,
|
|
LiveRangeInfo& LRI) const
|
|
{
|
|
// check if this is a varArgs function. needed for choosing regs.
|
|
bool isVarArgs = isVarArgsFunction(Meth->getType());
|
|
|
|
// for each argument. count INT and FP arguments separately.
|
|
unsigned argNo=0, intArgNo=0, fpArgNo=0;
|
|
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
|
|
I != E; ++I, ++argNo) {
|
|
// get the LR of arg
|
|
LiveRange *LR = LRI.getLiveRangeForValue(I);
|
|
assert(LR && "No live range found for method arg");
|
|
|
|
unsigned regType = getRegType(LR);
|
|
unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg (unused)
|
|
|
|
int regNum = (regType == IntRegType)
|
|
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
|
|
argNo, regClassIDOfArgReg)
|
|
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
|
|
argNo, regClassIDOfArgReg);
|
|
|
|
if(regNum != getInvalidRegNum())
|
|
LR->setSuggestedColor(regNum);
|
|
}
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// This method is called after graph coloring to move incoming args to
|
|
// the correct hardware registers if they did not receive the correct
|
|
// (suggested) color through graph coloring.
|
|
//---------------------------------------------------------------------------
|
|
void UltraSparcRegInfo::colorMethodArgs(const Function *Meth,
|
|
LiveRangeInfo &LRI,
|
|
AddedInstrns *FirstAI) const {
|
|
|
|
// check if this is a varArgs function. needed for choosing regs.
|
|
bool isVarArgs = isVarArgsFunction(Meth->getType());
|
|
MachineInstr *AdMI;
|
|
|
|
// for each argument
|
|
// for each argument. count INT and FP arguments separately.
|
|
unsigned argNo=0, intArgNo=0, fpArgNo=0;
|
|
for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
|
|
I != E; ++I, ++argNo) {
|
|
// get the LR of arg
|
|
LiveRange *LR = LRI.getLiveRangeForValue(I);
|
|
assert( LR && "No live range found for method arg");
|
|
|
|
unsigned regType = getRegType(LR);
|
|
unsigned RegClassID = LR->getRegClassID();
|
|
|
|
// Find whether this argument is coming in a register (if not, on stack)
|
|
// Also find the correct register the argument must use (UniArgReg)
|
|
//
|
|
bool isArgInReg = false;
|
|
unsigned UniArgReg = getInvalidRegNum(); // reg that LR MUST be colored with
|
|
unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg
|
|
|
|
int regNum = (regType == IntRegType)
|
|
? regNumForIntArg(/*inCallee*/ true, isVarArgs,
|
|
argNo, regClassIDOfArgReg)
|
|
: regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
|
|
argNo, regClassIDOfArgReg);
|
|
|
|
if(regNum != getInvalidRegNum()) {
|
|
isArgInReg = true;
|
|
UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
|
|
}
|
|
|
|
if( LR->hasColor() ) { // if this arg received a register
|
|
|
|
unsigned UniLRReg = getUnifiedRegNum( RegClassID, LR->getColor() );
|
|
|
|
// if LR received the correct color, nothing to do
|
|
//
|
|
if( UniLRReg == UniArgReg )
|
|
continue;
|
|
|
|
// We are here because the LR did not receive the suggested
|
|
// but LR received another register.
|
|
// Now we have to copy the %i reg (or stack pos of arg)
|
|
// to the register the LR was colored with.
|
|
|
|
// if the arg is coming in UniArgReg register, it MUST go into
|
|
// the UniLRReg register
|
|
//
|
|
if( isArgInReg ) {
|
|
if( regClassIDOfArgReg != RegClassID ) {
|
|
assert(0 && "This could should work but it is not tested yet");
|
|
|
|
// It is a variable argument call: the float reg must go in a %o reg.
|
|
// We have to move an int reg to a float reg via memory.
|
|
//
|
|
assert(isVarArgs &&
|
|
RegClassID == FloatRegClassID &&
|
|
regClassIDOfArgReg == IntRegClassID &&
|
|
"This should only be an Int register for an FP argument");
|
|
|
|
int TmpOff = MachineFunction::get(Meth).getInfo()->pushTempValue(
|
|
getSpilledRegSize(regType));
|
|
cpReg2MemMI(FirstAI->InstrnsBefore,
|
|
UniArgReg, getFramePointer(), TmpOff, IntRegType);
|
|
|
|
cpMem2RegMI(FirstAI->InstrnsBefore,
|
|
getFramePointer(), TmpOff, UniLRReg, regType);
|
|
}
|
|
else {
|
|
cpReg2RegMI(FirstAI->InstrnsBefore, UniArgReg, UniLRReg, regType);
|
|
}
|
|
}
|
|
else {
|
|
|
|
// Now the arg is coming on stack. Since the LR recieved a register,
|
|
// we just have to load the arg on stack into that register
|
|
//
|
|
const TargetFrameInfo& frameInfo = target.getFrameInfo();
|
|
int offsetFromFP =
|
|
frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
|
|
argNo);
|
|
|
|
// float arguments on stack are right justified so adjust the offset!
|
|
// int arguments are also right justified but they are always loaded as
|
|
// a full double-word so the offset does not need to be adjusted.
|
|
if (regType == FPSingleRegType) {
|
|
unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
|
|
unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
|
|
assert(argSize <= slotSize && "Insufficient slot size!");
|
|
offsetFromFP += slotSize - argSize;
|
|
}
|
|
|
|
cpMem2RegMI(FirstAI->InstrnsBefore,
|
|
getFramePointer(), offsetFromFP, UniLRReg, regType);
|
|
}
|
|
|
|
} // if LR received a color
|
|
|
|
else {
|
|
|
|
// Now, the LR did not receive a color. But it has a stack offset for
|
|
// spilling.
|
|
// So, if the arg is coming in UniArgReg register, we can just move
|
|
// that on to the stack pos of LR
|
|
|
|
if( isArgInReg ) {
|
|
|
|
if( regClassIDOfArgReg != RegClassID ) {
|
|
assert(0 &&
|
|
"FP arguments to a varargs function should be explicitly "
|
|
"copied to/from int registers by instruction selection!");
|
|
|
|
// It must be a float arg for a variable argument call, which
|
|
// must come in a %o reg. Move the int reg to the stack.
|
|
//
|
|
assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
|
|
"This should only be an Int register for an FP argument");
|
|
|
|
cpReg2MemMI(FirstAI->InstrnsBefore, UniArgReg,
|
|
getFramePointer(), LR->getSpillOffFromFP(), IntRegType);
|
|
}
|
|
else {
|
|
cpReg2MemMI(FirstAI->InstrnsBefore, UniArgReg,
|
|
getFramePointer(), LR->getSpillOffFromFP(), regType);
|
|
}
|
|
}
|
|
|
|
else {
|
|
|
|
// Now the arg is coming on stack. Since the LR did NOT
|
|
// recieved a register as well, it is allocated a stack position. We
|
|
// can simply change the stack position of the LR. We can do this,
|
|
// since this method is called before any other method that makes
|
|
// uses of the stack pos of the LR (e.g., updateMachineInstr)
|
|
//
|
|
const TargetFrameInfo& frameInfo = target.getFrameInfo();
|
|
int offsetFromFP =
|
|
frameInfo.getIncomingArgOffset(MachineFunction::get(Meth),
|
|
argNo);
|
|
|
|
// FP arguments on stack are right justified so adjust offset!
|
|
// int arguments are also right justified but they are always loaded as
|
|
// a full double-word so the offset does not need to be adjusted.
|
|
if (regType == FPSingleRegType) {
|
|
unsigned argSize = target.getTargetData().getTypeSize(LR->getType());
|
|
unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
|
|
assert(argSize <= slotSize && "Insufficient slot size!");
|
|
offsetFromFP += slotSize - argSize;
|
|
}
|
|
|
|
LR->modifySpillOffFromFP( offsetFromFP );
|
|
}
|
|
|
|
}
|
|
|
|
} // for each incoming argument
|
|
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// This method is called before graph coloring to suggest colors to the
|
|
// outgoing call args and the return value of the call.
|
|
//---------------------------------------------------------------------------
|
|
void UltraSparcRegInfo::suggestRegs4CallArgs(MachineInstr *CallMI,
|
|
LiveRangeInfo& LRI) const {
|
|
assert ( (target.getInstrInfo()).isCall(CallMI->getOpCode()) );
|
|
|
|
CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
|
|
|
|
suggestReg4CallAddr(CallMI, LRI);
|
|
|
|
// First color the return value of the call instruction, if any.
|
|
// The return value will be in %o0 if the value is an integer type,
|
|
// or in %f0 if the value is a float type.
|
|
//
|
|
if (const Value *RetVal = argDesc->getReturnValue()) {
|
|
LiveRange *RetValLR = LRI.getLiveRangeForValue(RetVal);
|
|
assert(RetValLR && "No LR for return Value of call!");
|
|
|
|
unsigned RegClassID = RetValLR->getRegClassID();
|
|
|
|
// now suggest a register depending on the register class of ret arg
|
|
if( RegClassID == IntRegClassID )
|
|
RetValLR->setSuggestedColor(SparcIntRegClass::o0);
|
|
else if (RegClassID == FloatRegClassID )
|
|
RetValLR->setSuggestedColor(SparcFloatRegClass::f0 );
|
|
else assert( 0 && "Unknown reg class for return value of call\n");
|
|
}
|
|
|
|
// Now suggest colors for arguments (operands) of the call instruction.
|
|
// Colors are suggested only if the arg number is smaller than the
|
|
// the number of registers allocated for argument passing.
|
|
// Now, go thru call args - implicit operands of the call MI
|
|
|
|
unsigned NumOfCallArgs = argDesc->getNumArgs();
|
|
|
|
for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
|
|
i < NumOfCallArgs; ++i, ++argNo) {
|
|
|
|
const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
|
|
|
|
// get the LR of call operand (parameter)
|
|
LiveRange *const LR = LRI.getLiveRangeForValue(CallArg);
|
|
if (!LR)
|
|
continue; // no live ranges for constants and labels
|
|
|
|
unsigned regType = getRegType(LR);
|
|
unsigned regClassIDOfArgReg = BadRegClass; // chosen reg class (unused)
|
|
|
|
// Choose a register for this arg depending on whether it is
|
|
// an INT or FP value. Here we ignore whether or not it is a
|
|
// varargs calls, because FP arguments will be explicitly copied
|
|
// to an integer Value and handled under (argCopy != NULL) below.
|
|
int regNum = (regType == IntRegType)
|
|
? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
|
|
argNo, regClassIDOfArgReg)
|
|
: regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
|
|
argNo, regClassIDOfArgReg);
|
|
|
|
// If a register could be allocated, use it.
|
|
// If not, do NOTHING as this will be colored as a normal value.
|
|
if(regNum != getInvalidRegNum())
|
|
LR->setSuggestedColor(regNum);
|
|
|
|
#ifdef CANNOT_PRECOPY_CALLARGS
|
|
// Repeat for the second copy of the argument, which would be
|
|
// an FP argument being passed to a function with no prototype
|
|
const Value *argCopy = argDesc->getArgInfo(i).getArgCopy();
|
|
if (argCopy != NULL)
|
|
{
|
|
assert(regType != IntRegType && argCopy->getType()->isInteger()
|
|
&& "Must be passing copy of FP argument in int register");
|
|
int copyRegNum = regNumForIntArg(/*inCallee*/false, /*isVarArgs*/false,
|
|
argNo, regClassIDOfArgReg);
|
|
assert(copyRegNum != getInvalidRegNum());
|
|
LiveRange *const copyLR = LRI.getLiveRangeForValue(argCopy);
|
|
copyLR->setSuggestedColor(copyRegNum);
|
|
}
|
|
#endif
|
|
|
|
} // for all call arguments
|
|
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Helper method for UltraSparcRegInfo::colorCallArgs().
|
|
//---------------------------------------------------------------------------
|
|
|
|
void
|
|
UltraSparcRegInfo::InitializeOutgoingArg(MachineInstr* CallMI,
|
|
AddedInstrns *CallAI,
|
|
PhyRegAlloc &PRA, LiveRange* LR,
|
|
unsigned regType, unsigned RegClassID,
|
|
int UniArgRegOrNone, unsigned argNo,
|
|
std::vector<MachineInstr*> &AddedInstrnsBefore)
|
|
const
|
|
{
|
|
assert(0 && "Should never get here because we are now using precopying!");
|
|
|
|
MachineInstr *AdMI;
|
|
bool isArgInReg = false;
|
|
unsigned UniArgReg = BadRegClass; // unused unless initialized below
|
|
if (UniArgRegOrNone != getInvalidRegNum())
|
|
{
|
|
isArgInReg = true;
|
|
UniArgReg = (unsigned) UniArgRegOrNone;
|
|
}
|
|
|
|
if (LR->hasColor()) {
|
|
unsigned UniLRReg = getUnifiedRegNum(RegClassID, LR->getColor());
|
|
|
|
// if LR received the correct color, nothing to do
|
|
if( isArgInReg && UniArgReg == UniLRReg )
|
|
return;
|
|
|
|
// The LR is allocated to a register UniLRReg and must be copied
|
|
// to UniArgReg or to the stack slot.
|
|
//
|
|
if( isArgInReg ) {
|
|
// Copy UniLRReg to UniArgReg
|
|
cpReg2RegMI(AddedInstrnsBefore, UniLRReg, UniArgReg, regType);
|
|
}
|
|
else {
|
|
// Copy UniLRReg to the stack to pass the arg on stack.
|
|
const TargetFrameInfo& frameInfo = target.getFrameInfo();
|
|
int argOffset = frameInfo.getOutgoingArgOffset(PRA.MF, argNo);
|
|
cpReg2MemMI(CallAI->InstrnsBefore,
|
|
UniLRReg, getStackPointer(), argOffset, regType);
|
|
}
|
|
|
|
} else { // LR is not colored (i.e., spilled)
|
|
|
|
if( isArgInReg ) {
|
|
// Insert a load instruction to load the LR to UniArgReg
|
|
cpMem2RegMI(AddedInstrnsBefore, getFramePointer(),
|
|
LR->getSpillOffFromFP(), UniArgReg, regType);
|
|
// Now add the instruction
|
|
}
|
|
|
|
else {
|
|
// Now, we have to pass the arg on stack. Since LR also did NOT
|
|
// receive a register we have to move an argument in memory to
|
|
// outgoing parameter on stack.
|
|
// Use TReg to load and store the value.
|
|
// Use TmpOff to save TReg, since that may have a live value.
|
|
//
|
|
int TReg = PRA.getUniRegNotUsedByThisInst(LR->getRegClass(), CallMI);
|
|
int TmpOff = PRA.MF.getInfo()->
|
|
pushTempValue(getSpilledRegSize(getRegType(LR)));
|
|
const TargetFrameInfo& frameInfo = target.getFrameInfo();
|
|
int argOffset = frameInfo.getOutgoingArgOffset(PRA.MF, argNo);
|
|
|
|
MachineInstr *Ad1, *Ad2, *Ad3, *Ad4;
|
|
|
|
// Sequence:
|
|
// (1) Save TReg on stack
|
|
// (2) Load LR value into TReg from stack pos of LR
|
|
// (3) Store Treg on outgoing Arg pos on stack
|
|
// (4) Load the old value of TReg from stack to TReg (restore it)
|
|
//
|
|
// OPTIMIZE THIS:
|
|
// When reverse pointers in MahineInstr are introduced:
|
|
// Call PRA.getUnusedRegAtMI(....) to get an unused reg. Step 1 is
|
|
// needed only if this fails. Currently, we cannot call the
|
|
// above method since we cannot find LVSetBefore without the BB
|
|
//
|
|
// NOTE: We directly add to CallAI->InstrnsBefore instead of adding to
|
|
// AddedInstrnsBefore since these instructions must not be reordered.
|
|
cpReg2MemMI(CallAI->InstrnsBefore,
|
|
TReg, getFramePointer(), TmpOff, regType);
|
|
cpMem2RegMI(CallAI->InstrnsBefore,
|
|
getFramePointer(), LR->getSpillOffFromFP(), TReg, regType);
|
|
cpReg2MemMI(CallAI->InstrnsBefore,
|
|
TReg, getStackPointer(), argOffset, regType);
|
|
cpMem2RegMI(CallAI->InstrnsBefore,
|
|
getFramePointer(), TmpOff, TReg, regType);
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// After graph coloring, we have call this method to see whehter the return
|
|
// value and the call args received the correct colors. If not, we have
|
|
// to instert copy instructions.
|
|
//---------------------------------------------------------------------------
|
|
|
|
void UltraSparcRegInfo::colorCallArgs(MachineInstr *CallMI,
|
|
LiveRangeInfo &LRI,
|
|
AddedInstrns *CallAI,
|
|
PhyRegAlloc &PRA,
|
|
const BasicBlock *BB) const {
|
|
|
|
assert ( (target.getInstrInfo()).isCall(CallMI->getOpCode()) );
|
|
|
|
CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
|
|
|
|
// First color the return value of the call.
|
|
// If there is a LR for the return value, it means this
|
|
// method returns a value
|
|
|
|
MachineInstr *AdMI;
|
|
|
|
const Value *RetVal = argDesc->getReturnValue();
|
|
|
|
if (RetVal) {
|
|
LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
|
|
assert(RetValLR && "ERROR: No LR for non-void return value");
|
|
|
|
// Mark the return value register as used by this instruction
|
|
unsigned RegClassID = RetValLR->getRegClassID();
|
|
unsigned CorrectCol = (RegClassID == IntRegClassID
|
|
? (unsigned) SparcIntRegClass::o0
|
|
: (unsigned) SparcFloatRegClass::f0);
|
|
|
|
CallMI->insertUsedReg(getUnifiedRegNum(RegClassID, CorrectCol));
|
|
|
|
#ifdef CANNOT_PRECOPY_CALLARGS
|
|
// unified number for CorrectCol
|
|
unsigned UniRetReg = getUnifiedRegNum(RegClassID, CorrectCol);
|
|
recvCorrectColor;
|
|
|
|
// if the LR received the correct color, NOTHING to do
|
|
bool recvCorrectColor = (RetValLR->hasColor()
|
|
? RetValLR->getColor() == CorrectCol : false);
|
|
|
|
// if we didn't receive the correct color for some reason,
|
|
// put copy instruction
|
|
if( !recvCorrectColor ) {
|
|
|
|
unsigned regType = getRegType(RetValLR);
|
|
|
|
if( RetValLR->hasColor() ) {
|
|
|
|
unsigned UniRetLRReg=getUnifiedRegNum(RegClassID,RetValLR->getColor());
|
|
|
|
// the return value is coming in UniRetReg but has to go into
|
|
// the UniRetLRReg
|
|
|
|
cpReg2RegMI(CallAI->InstrnsAfter, UniRetReg, UniRetLRReg, regType);
|
|
|
|
} // if LR has color
|
|
else {
|
|
|
|
// if the LR did NOT receive a color, we have to move the return
|
|
// value coming in UniRetReg to the stack pos of spilled LR
|
|
|
|
cpReg2MemMI(CallAI->InstrnsAfter, UniRetReg,
|
|
getFramePointer(),RetValLR->getSpillOffFromFP(), regType);
|
|
}
|
|
} // the LR didn't receive the suggested color
|
|
#endif
|
|
|
|
} // if there a return value
|
|
|
|
|
|
//-------------------------------------------
|
|
// Now color all args of the call instruction
|
|
//-------------------------------------------
|
|
|
|
std::vector<MachineInstr*> AddedInstrnsBefore;
|
|
|
|
unsigned NumOfCallArgs = argDesc->getNumArgs();
|
|
|
|
for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
|
|
i < NumOfCallArgs; ++i, ++argNo) {
|
|
|
|
const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
|
|
unsigned regType = getRegType(CallArg->getType());
|
|
|
|
// Find whether this argument is coming in a register (if not, on stack)
|
|
// Also find the correct register the argument must use (UniArgReg)
|
|
//
|
|
bool isArgInReg = false;
|
|
int UniArgReg = getInvalidRegNum(); // reg that LR MUST be colored with
|
|
unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg
|
|
|
|
// Find the register that must be used for this arg, depending on
|
|
// whether it is an INT or FP value. Here we ignore whether or not it
|
|
// is a varargs calls, because FP arguments will be explicitly copied
|
|
// to an integer Value and handled under (argCopy != NULL) below.
|
|
//
|
|
int regNum = (regType == IntRegType)
|
|
? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
|
|
argNo, regClassIDOfArgReg)
|
|
: regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
|
|
argNo, regClassIDOfArgReg);
|
|
|
|
if (regNum != getInvalidRegNum()) {
|
|
isArgInReg = true;
|
|
UniArgReg = getUnifiedRegNum(regClassIDOfArgReg, regNum);
|
|
CallMI->insertUsedReg(UniArgReg); // mark the reg as used
|
|
}
|
|
|
|
#ifdef CANNOT_PRECOPY_CALLARGS
|
|
|
|
// Get the LR of call operand (parameter). There must be one because
|
|
// all args (even constants) must be defined before.
|
|
LiveRange *const LR = LRI.getLiveRangeForValue(CallArg);
|
|
assert(LR && "NO LR for call arg");
|
|
|
|
unsigned RegClassID = getRegClassIDOfType(CallArg->getType());
|
|
|
|
if (regNum != getInvalidRegNum()) {
|
|
assert(regClassIDOfArgReg == RegClassID &&
|
|
"Moving values between reg classes must happen during selection");
|
|
}
|
|
|
|
InitializeOutgoingArg(CallMI, CallAI, PRA, LR, regType, RegClassID,
|
|
UniArgReg, argNo, AddedInstrnsBefore);
|
|
#endif
|
|
|
|
// Repeat for the second copy of the argument, which would be
|
|
// an FP argument being passed to a function with no prototype.
|
|
// It may either be passed as a copy in an integer register
|
|
// (in argCopy), or on the stack (useStackSlot).
|
|
int argCopyReg = argDesc->getArgInfo(i).getArgCopy();
|
|
if (argCopyReg != TargetRegInfo::getInvalidRegNum())
|
|
{
|
|
CallMI->insertUsedReg(argCopyReg); // mark the reg as used
|
|
|
|
#ifdef CANNOT_PRECOPY_CALLARGS
|
|
assert(regType != IntRegType && argCopy->getType()->isInteger()
|
|
&& "Must be passing copy of FP argument in int register");
|
|
|
|
unsigned copyRegClassID = getRegClassIDOfType(argCopy->getType());
|
|
unsigned copyRegType = getRegType(argCopy->getType());
|
|
|
|
int copyRegNum = regNumForIntArg(/*inCallee*/false, /*isVarArgs*/false,
|
|
argNo, regClassIDOfArgReg);
|
|
assert(copyRegNum != getInvalidRegNum());
|
|
assert(regClassIDOfArgReg == copyRegClassID &&
|
|
"Moving values between reg classes must happen during selection");
|
|
|
|
InitializeOutgoingArg(CallMI, CallAI, PRA,
|
|
LRI.getLiveRangeForValue(argCopy), copyRegType,
|
|
copyRegClassID, copyRegNum, argNo,
|
|
AddedInstrnsBefore);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CANNOT_PRECOPY_CALLARGS
|
|
if (regNum != getInvalidRegNum() &&
|
|
argDesc->getArgInfo(i).usesStackSlot())
|
|
{
|
|
// Pass the argument via the stack in addition to regNum
|
|
assert(regType != IntRegType && "Passing an integer arg. twice?");
|
|
assert(!argCopy && "Passing FP arg in FP reg, INT reg, and stack?");
|
|
InitializeOutgoingArg(CallMI, CallAI, PRA, LR, regType, RegClassID,
|
|
getInvalidRegNum(), argNo, AddedInstrnsBefore);
|
|
}
|
|
#endif
|
|
} // for each parameter in call instruction
|
|
|
|
// If we added any instruction before the call instruction, verify
|
|
// that they are in the proper order and if not, reorder them
|
|
//
|
|
std::vector<MachineInstr*> ReorderedVec;
|
|
if (!AddedInstrnsBefore.empty()) {
|
|
|
|
if (DEBUG_RA) {
|
|
std::cerr << "\nCalling reorder with instrns: \n";
|
|
for(unsigned i=0; i < AddedInstrnsBefore.size(); i++)
|
|
std::cerr << *(AddedInstrnsBefore[i]);
|
|
}
|
|
|
|
OrderAddedInstrns(AddedInstrnsBefore, ReorderedVec, PRA);
|
|
assert(ReorderedVec.size() >= AddedInstrnsBefore.size()
|
|
&& "Dropped some instructions when reordering!");
|
|
|
|
if (DEBUG_RA) {
|
|
std::cerr << "\nAfter reordering instrns: \n";
|
|
for(unsigned i = 0; i < ReorderedVec.size(); i++)
|
|
std::cerr << *ReorderedVec[i];
|
|
}
|
|
}
|
|
|
|
// Now insert caller saving code for this call instruction
|
|
//
|
|
insertCallerSavingCode(CallAI->InstrnsBefore, CallAI->InstrnsAfter,
|
|
CallMI, BB, PRA);
|
|
|
|
// Then insert the final reordered code for the call arguments.
|
|
//
|
|
for(unsigned i=0; i < ReorderedVec.size(); i++)
|
|
CallAI->InstrnsBefore.push_back( ReorderedVec[i] );
|
|
|
|
//Insert machine instructions before and after call into the
|
|
//call instructions map --- Anand
|
|
const CallInst *callInst = argDesc->getCallInst();
|
|
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(callInst);
|
|
mvec.insert(mvec.begin(), CallAI->InstrnsBefore.begin(),
|
|
CallAI->InstrnsBefore.end());
|
|
mvec.insert(mvec.end(), CallAI->InstrnsAfter.begin(),
|
|
CallAI->InstrnsAfter.end());
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// this method is called for an LLVM return instruction to identify which
|
|
// values will be returned from this method and to suggest colors.
|
|
//---------------------------------------------------------------------------
|
|
void UltraSparcRegInfo::suggestReg4RetValue(MachineInstr *RetMI,
|
|
LiveRangeInfo &LRI) const {
|
|
|
|
assert( (target.getInstrInfo()).isReturn( RetMI->getOpCode() ) );
|
|
|
|
suggestReg4RetAddr(RetMI, LRI);
|
|
|
|
// To find the return value (if any), we can get the LLVM return instr.
|
|
// from the return address register, which is the first operand
|
|
Value* tmpI = RetMI->getOperand(0).getVRegValue();
|
|
ReturnInst* retI=cast<ReturnInst>(cast<TmpInstruction>(tmpI)->getOperand(0));
|
|
if (const Value *RetVal = retI->getReturnValue())
|
|
if (LiveRange *const LR = LRI.getLiveRangeForValue(RetVal))
|
|
LR->setSuggestedColor(LR->getRegClassID() == IntRegClassID
|
|
? (unsigned) SparcIntRegClass::i0
|
|
: (unsigned) SparcFloatRegClass::f0);
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Colors the return value of a method to %i0 or %f0, if possible. If it is
|
|
// not possilbe to directly color the LR, insert a copy instruction to move
|
|
// the LR to %i0 or %f0. When the LR is spilled, instead of the copy, we
|
|
// have to put a load instruction.
|
|
//---------------------------------------------------------------------------
|
|
void UltraSparcRegInfo::colorRetValue(MachineInstr *RetMI,
|
|
LiveRangeInfo &LRI,
|
|
AddedInstrns *RetAI) const {
|
|
|
|
assert((target.getInstrInfo()).isReturn( RetMI->getOpCode()));
|
|
|
|
// To find the return value (if any), we can get the LLVM return instr.
|
|
// from the return address register, which is the first operand
|
|
Value* tmpI = RetMI->getOperand(0).getVRegValue();
|
|
ReturnInst* retI=cast<ReturnInst>(cast<TmpInstruction>(tmpI)->getOperand(0));
|
|
if (const Value *RetVal = retI->getReturnValue()) {
|
|
|
|
unsigned RegClassID = getRegClassIDOfType(RetVal->getType());
|
|
unsigned regType = getRegType(RetVal->getType());
|
|
unsigned CorrectCol = (RegClassID == IntRegClassID
|
|
? (unsigned) SparcIntRegClass::i0
|
|
: (unsigned) SparcFloatRegClass::f0);
|
|
|
|
// convert to unified number
|
|
unsigned UniRetReg = getUnifiedRegNum(RegClassID, CorrectCol);
|
|
|
|
// Mark the register as used by this instruction
|
|
RetMI->insertUsedReg(UniRetReg);
|
|
|
|
#ifdef CANNOT_PRECOPY_CALLARGS
|
|
LiveRange *LR = LRI.getLiveRangeForValue(RetVal);
|
|
assert(LR && "No LR for return value of non-void method?");
|
|
|
|
if (LR->hasColor()) {
|
|
// if the LR received the correct color, NOTHING to do
|
|
if (LR->getColor() == CorrectCol)
|
|
return;
|
|
|
|
// We are here because the LR was allocated a register
|
|
// It may be the suggested register or not
|
|
|
|
// copy the LR of retun value to i0 or f0
|
|
|
|
unsigned UniLRReg =getUnifiedRegNum( RegClassID, LR->getColor());
|
|
|
|
// the LR received UniLRReg but must be colored with UniRetReg
|
|
// to pass as the return value
|
|
cpReg2RegMI(RetAI->InstrnsBefore, UniLRReg, UniRetReg, regType);
|
|
}
|
|
else { // if the LR is spilled
|
|
cpMem2RegMI(RetAI->InstrnsBefore, getFramePointer(),
|
|
LR->getSpillOffFromFP(), UniRetReg, regType);
|
|
//std::cerr << "\nCopied the return value from stack\n";
|
|
}
|
|
#endif
|
|
|
|
} // if there is a return value
|
|
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Check if a specified register type needs a scratch register to be
|
|
// copied to/from memory. If it does, the reg. type that must be used
|
|
// for scratch registers is returned in scratchRegType.
|
|
//
|
|
// Only the int CC register needs such a scratch register.
|
|
// The FP CC registers can (and must) be copied directly to/from memory.
|
|
//---------------------------------------------------------------------------
|
|
|
|
bool
|
|
UltraSparcRegInfo::regTypeNeedsScratchReg(int RegType,
|
|
int& scratchRegType) const
|
|
{
|
|
if (RegType == IntCCRegType)
|
|
{
|
|
scratchRegType = IntRegType;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Copy from a register to register. Register number must be the unified
|
|
// register number.
|
|
//---------------------------------------------------------------------------
|
|
|
|
void
|
|
UltraSparcRegInfo::cpReg2RegMI(std::vector<MachineInstr*>& mvec,
|
|
unsigned SrcReg,
|
|
unsigned DestReg,
|
|
int RegType) const {
|
|
assert( ((int)SrcReg != getInvalidRegNum()) && ((int)DestReg != getInvalidRegNum()) &&
|
|
"Invalid Register");
|
|
|
|
MachineInstr * MI = NULL;
|
|
|
|
switch( RegType ) {
|
|
|
|
case IntCCRegType:
|
|
if (getRegType(DestReg) == IntRegType) {
|
|
// copy intCC reg to int reg
|
|
// Use SrcReg+1 to get the name "%ccr" instead of "%xcc" for RDCCR
|
|
MI = BuildMI(V9::RDCCR, 2).addMReg(SrcReg+1).addMReg(DestReg,MOTy::Def);
|
|
} else {
|
|
// copy int reg to intCC reg
|
|
// Use DestReg+1 to get the name "%ccr" instead of "%xcc" for WRCCR
|
|
assert(getRegType(SrcReg) == IntRegType
|
|
&& "Can only copy CC reg to/from integer reg");
|
|
MI = BuildMI(V9::WRCCR, 2).addMReg(SrcReg).addMReg(DestReg+1, MOTy::Def);
|
|
}
|
|
break;
|
|
|
|
case FloatCCRegType:
|
|
assert(0 && "Cannot copy FPCC register to any other register");
|
|
break;
|
|
|
|
case IntRegType:
|
|
MI = BuildMI(V9::ADDr, 3).addMReg(SrcReg).addMReg(getZeroRegNum())
|
|
.addMReg(DestReg, MOTy::Def);
|
|
break;
|
|
|
|
case FPSingleRegType:
|
|
MI = BuildMI(V9::FMOVS, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def);
|
|
break;
|
|
|
|
case FPDoubleRegType:
|
|
MI = BuildMI(V9::FMOVD, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def);
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unknown RegType");
|
|
break;
|
|
}
|
|
|
|
if (MI)
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Copy from a register to memory (i.e., Store). Register number must
|
|
// be the unified register number
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
void
|
|
UltraSparcRegInfo::cpReg2MemMI(std::vector<MachineInstr*>& mvec,
|
|
unsigned SrcReg,
|
|
unsigned DestPtrReg,
|
|
int Offset, int RegType,
|
|
int scratchReg) const {
|
|
MachineInstr * MI = NULL;
|
|
switch (RegType) {
|
|
case IntRegType:
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::STXi, Offset));
|
|
MI = BuildMI(V9::STXi,3).addMReg(SrcReg).addMReg(DestPtrReg)
|
|
.addSImm(Offset);
|
|
break;
|
|
|
|
case FPSingleRegType:
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::STFi, Offset));
|
|
MI = BuildMI(V9::STFi, 3).addMReg(SrcReg).addMReg(DestPtrReg)
|
|
.addSImm(Offset);
|
|
break;
|
|
|
|
case FPDoubleRegType:
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::STDFi, Offset));
|
|
MI = BuildMI(V9::STDFi,3).addMReg(SrcReg).addMReg(DestPtrReg)
|
|
.addSImm(Offset);
|
|
break;
|
|
|
|
case IntCCRegType:
|
|
assert(scratchReg >= 0 && "Need scratch reg to store %ccr to memory");
|
|
assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
|
|
|
|
// Use SrcReg+1 to get the name "%ccr" instead of "%xcc" for RDCCR
|
|
MI = BuildMI(V9::RDCCR, 2).addMReg(SrcReg+1).addMReg(scratchReg, MOTy::Def);
|
|
mvec.push_back(MI);
|
|
|
|
cpReg2MemMI(mvec, scratchReg, DestPtrReg, Offset, IntRegType);
|
|
return;
|
|
|
|
case FloatCCRegType: {
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::STXFSRi, Offset));
|
|
unsigned fsrRegNum = getUnifiedRegNum(UltraSparcRegInfo::SpecialRegClassID,
|
|
SparcSpecialRegClass::fsr);
|
|
MI = BuildMI(V9::STXFSRi, 3)
|
|
.addMReg(fsrRegNum).addMReg(DestPtrReg).addSImm(Offset);
|
|
break;
|
|
}
|
|
default:
|
|
assert(0 && "Unknown RegType in cpReg2MemMI");
|
|
}
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Copy from memory to a reg (i.e., Load) Register number must be the unified
|
|
// register number
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
void
|
|
UltraSparcRegInfo::cpMem2RegMI(std::vector<MachineInstr*>& mvec,
|
|
unsigned SrcPtrReg,
|
|
int Offset,
|
|
unsigned DestReg,
|
|
int RegType,
|
|
int scratchReg) const {
|
|
MachineInstr * MI = NULL;
|
|
switch (RegType) {
|
|
case IntRegType:
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset));
|
|
MI = BuildMI(V9::LDXi, 3).addMReg(SrcPtrReg).addSImm(Offset)
|
|
.addMReg(DestReg, MOTy::Def);
|
|
break;
|
|
|
|
case FPSingleRegType:
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::LDFi, Offset));
|
|
MI = BuildMI(V9::LDFi, 3).addMReg(SrcPtrReg).addSImm(Offset)
|
|
.addMReg(DestReg, MOTy::Def);
|
|
break;
|
|
|
|
case FPDoubleRegType:
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::LDDFi, Offset));
|
|
MI = BuildMI(V9::LDDFi, 3).addMReg(SrcPtrReg).addSImm(Offset)
|
|
.addMReg(DestReg, MOTy::Def);
|
|
break;
|
|
|
|
case IntCCRegType:
|
|
assert(scratchReg >= 0 && "Need scratch reg to load %ccr from memory");
|
|
assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
|
|
cpMem2RegMI(mvec, SrcPtrReg, Offset, scratchReg, IntRegType);
|
|
|
|
// Use DestReg+1 to get the name "%ccr" instead of "%xcc" for WRCCR
|
|
MI = BuildMI(V9::WRCCR, 2).addMReg(scratchReg).addMReg(DestReg+1,MOTy::Def);
|
|
break;
|
|
|
|
case FloatCCRegType: {
|
|
assert(target.getInstrInfo().constantFitsInImmedField(V9::LDXFSRi, Offset));
|
|
unsigned fsrRegNum = getUnifiedRegNum(UltraSparcRegInfo::SpecialRegClassID,
|
|
SparcSpecialRegClass::fsr);
|
|
MI = BuildMI(V9::LDXFSRi, 3).addMReg(SrcPtrReg).addSImm(Offset)
|
|
.addMReg(fsrRegNum, MOTy::UseAndDef);
|
|
break;
|
|
}
|
|
default:
|
|
assert(0 && "Unknown RegType in cpMem2RegMI");
|
|
}
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Generate a copy instruction to copy a value to another. Temporarily
|
|
// used by PhiElimination code.
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
void
|
|
UltraSparcRegInfo::cpValue2Value(Value *Src, Value *Dest,
|
|
std::vector<MachineInstr*>& mvec) const {
|
|
int RegType = getRegType(Src->getType());
|
|
MachineInstr * MI = NULL;
|
|
|
|
switch( RegType ) {
|
|
case IntRegType:
|
|
MI = BuildMI(V9::ADDr, 3).addReg(Src).addMReg(getZeroRegNum())
|
|
.addRegDef(Dest);
|
|
break;
|
|
case FPSingleRegType:
|
|
MI = BuildMI(V9::FMOVS, 2).addReg(Src).addRegDef(Dest);
|
|
break;
|
|
case FPDoubleRegType:
|
|
MI = BuildMI(V9::FMOVD, 2).addReg(Src).addRegDef(Dest);
|
|
break;
|
|
default:
|
|
assert(0 && "Unknow RegType in CpValu2Value");
|
|
}
|
|
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// This method inserts caller saving/restoring instructons before/after
|
|
// a call machine instruction. The caller saving/restoring instructions are
|
|
// inserted like:
|
|
//
|
|
// ** caller saving instructions
|
|
// other instructions inserted for the call by ColorCallArg
|
|
// CALL instruction
|
|
// other instructions inserted for the call ColorCallArg
|
|
// ** caller restoring instructions
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
|
|
void
|
|
UltraSparcRegInfo::insertCallerSavingCode
|
|
(std::vector<MachineInstr*> &instrnsBefore,
|
|
std::vector<MachineInstr*> &instrnsAfter,
|
|
MachineInstr *CallMI,
|
|
const BasicBlock *BB,
|
|
PhyRegAlloc &PRA) const
|
|
{
|
|
assert ( (target.getInstrInfo()).isCall(CallMI->getOpCode()) );
|
|
|
|
// has set to record which registers were saved/restored
|
|
//
|
|
hash_set<unsigned> PushedRegSet;
|
|
|
|
CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
|
|
|
|
// Now check if the call has a return value (using argDesc) and if so,
|
|
// find the LR of the TmpInstruction representing the return value register.
|
|
// (using the last or second-last *implicit operand* of the call MI).
|
|
// Insert it to to the PushedRegSet since we must not save that register
|
|
// and restore it after the call.
|
|
// We do this because, we look at the LV set *after* the instruction
|
|
// to determine, which LRs must be saved across calls. The return value
|
|
// of the call is live in this set - but we must not save/restore it.
|
|
//
|
|
if (const Value *origRetVal = argDesc->getReturnValue()) {
|
|
unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
|
|
(argDesc->getIndirectFuncPtr()? 1 : 2));
|
|
const TmpInstruction* tmpRetVal =
|
|
cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
|
|
assert(tmpRetVal->getOperand(0) == origRetVal &&
|
|
tmpRetVal->getType() == origRetVal->getType() &&
|
|
"Wrong implicit ref?");
|
|
LiveRange *RetValLR = PRA.LRI.getLiveRangeForValue( tmpRetVal );
|
|
assert(RetValLR && "No LR for RetValue of call");
|
|
|
|
if (RetValLR->hasColor())
|
|
PushedRegSet.insert(getUnifiedRegNum(RetValLR->getRegClassID(),
|
|
RetValLR->getColor()));
|
|
}
|
|
|
|
const ValueSet &LVSetAft = PRA.LVI->getLiveVarSetAfterMInst(CallMI, BB);
|
|
ValueSet::const_iterator LIt = LVSetAft.begin();
|
|
|
|
// for each live var in live variable set after machine inst
|
|
for( ; LIt != LVSetAft.end(); ++LIt) {
|
|
|
|
// get the live range corresponding to live var
|
|
LiveRange *const LR = PRA.LRI.getLiveRangeForValue(*LIt );
|
|
|
|
// LR can be null if it is a const since a const
|
|
// doesn't have a dominating def - see Assumptions above
|
|
if( LR ) {
|
|
|
|
if( LR->hasColor() ) {
|
|
|
|
unsigned RCID = LR->getRegClassID();
|
|
unsigned Color = LR->getColor();
|
|
|
|
if ( isRegVolatile(RCID, Color) ) {
|
|
|
|
// if the value is in both LV sets (i.e., live before and after
|
|
// the call machine instruction)
|
|
|
|
unsigned Reg = getUnifiedRegNum(RCID, Color);
|
|
|
|
if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
|
|
|
|
// if we haven't already pushed that register
|
|
|
|
unsigned RegType = getRegType(LR);
|
|
|
|
// Now get two instructions - to push on stack and pop from stack
|
|
// and add them to InstrnsBefore and InstrnsAfter of the
|
|
// call instruction
|
|
//
|
|
int StackOff =
|
|
PRA.MF.getInfo()->pushTempValue(getSpilledRegSize(RegType));
|
|
|
|
std::vector<MachineInstr*> AdIBef, AdIAft;
|
|
|
|
//---- Insert code for pushing the reg on stack ----------
|
|
|
|
// We may need a scratch register to copy the saved value
|
|
// to/from memory. This may itself have to insert code to
|
|
// free up a scratch register. Any such code should go before
|
|
// the save code. The scratch register, if any, is by default
|
|
// temporary and not "used" by the instruction unless the
|
|
// copy code itself decides to keep the value in the scratch reg.
|
|
int scratchRegType = -1;
|
|
int scratchReg = -1;
|
|
if (regTypeNeedsScratchReg(RegType, scratchRegType))
|
|
{ // Find a register not live in the LVSet before CallMI
|
|
const ValueSet &LVSetBef =
|
|
PRA.LVI->getLiveVarSetBeforeMInst(CallMI, BB);
|
|
scratchReg = PRA.getUsableUniRegAtMI(scratchRegType, &LVSetBef,
|
|
CallMI, AdIBef, AdIAft);
|
|
assert(scratchReg != getInvalidRegNum());
|
|
}
|
|
|
|
if (AdIBef.size() > 0)
|
|
instrnsBefore.insert(instrnsBefore.end(),
|
|
AdIBef.begin(), AdIBef.end());
|
|
|
|
cpReg2MemMI(instrnsBefore, Reg,getFramePointer(),StackOff,RegType,
|
|
scratchReg);
|
|
|
|
if (AdIAft.size() > 0)
|
|
instrnsBefore.insert(instrnsBefore.end(),
|
|
AdIAft.begin(), AdIAft.end());
|
|
|
|
//---- Insert code for popping the reg from the stack ----------
|
|
|
|
// We may need a scratch register to copy the saved value
|
|
// from memory. This may itself have to insert code to
|
|
// free up a scratch register. Any such code should go
|
|
// after the save code. As above, scratch is not marked "used".
|
|
//
|
|
scratchRegType = -1;
|
|
scratchReg = -1;
|
|
if (regTypeNeedsScratchReg(RegType, scratchRegType))
|
|
{ // Find a register not live in the LVSet after CallMI
|
|
scratchReg = PRA.getUsableUniRegAtMI(scratchRegType, &LVSetAft,
|
|
CallMI, AdIBef, AdIAft);
|
|
assert(scratchReg != getInvalidRegNum());
|
|
}
|
|
|
|
if (AdIBef.size() > 0)
|
|
instrnsAfter.insert(instrnsAfter.end(),
|
|
AdIBef.begin(), AdIBef.end());
|
|
|
|
cpMem2RegMI(instrnsAfter, getFramePointer(), StackOff,Reg,RegType,
|
|
scratchReg);
|
|
|
|
if (AdIAft.size() > 0)
|
|
instrnsAfter.insert(instrnsAfter.end(),
|
|
AdIAft.begin(), AdIAft.end());
|
|
|
|
PushedRegSet.insert(Reg);
|
|
|
|
if(DEBUG_RA) {
|
|
std::cerr << "\nFor call inst:" << *CallMI;
|
|
std::cerr << " -inserted caller saving instrs: Before:\n\t ";
|
|
for_each(instrnsBefore.begin(), instrnsBefore.end(),
|
|
std::mem_fun(&MachineInstr::dump));
|
|
std::cerr << " -and After:\n\t ";
|
|
for_each(instrnsAfter.begin(), instrnsAfter.end(),
|
|
std::mem_fun(&MachineInstr::dump));
|
|
}
|
|
} // if not already pushed
|
|
|
|
} // if LR has a volatile color
|
|
|
|
} // if LR has color
|
|
|
|
} // if there is a LR for Var
|
|
|
|
} // for each value in the LV set after instruction
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Print the register assigned to a LR
|
|
//---------------------------------------------------------------------------
|
|
|
|
void UltraSparcRegInfo::printReg(const LiveRange *LR) const {
|
|
unsigned RegClassID = LR->getRegClassID();
|
|
std::cerr << " *Node " << (LR->getUserIGNode())->getIndex();
|
|
|
|
if (!LR->hasColor()) {
|
|
std::cerr << " - could not find a color\n";
|
|
return;
|
|
}
|
|
|
|
// if a color is found
|
|
|
|
std::cerr << " colored with color "<< LR->getColor();
|
|
|
|
unsigned uRegName = getUnifiedRegNum(RegClassID, LR->getColor());
|
|
|
|
std::cerr << "[";
|
|
std::cerr<< getUnifiedRegName(uRegName);
|
|
if (RegClassID == FloatRegClassID && LR->getType() == Type::DoubleTy)
|
|
std::cerr << "+" << getUnifiedRegName(uRegName+1);
|
|
std::cerr << "]\n";
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// This method examines instructions inserted by RegAlloc code before a
|
|
// machine instruction to detect invalid orders that destroy values before
|
|
// they are used. If it detects such conditions, it reorders the instructions.
|
|
//
|
|
// The unordered instructions come in the UnordVec. These instructions are
|
|
// instructions inserted by RegAlloc. All such instruction MUST have
|
|
// their USES BEFORE THE DEFS after reordering.
|
|
//
|
|
// The UnordVec & OrdVec must be DISTINCT. The OrdVec must be empty when
|
|
// this method is called.
|
|
//
|
|
// This method uses two vectors for efficiency in accessing
|
|
//
|
|
// Since instructions are inserted in RegAlloc, this assumes that the
|
|
// first operand is the source reg and the last operand is the dest reg.
|
|
// It also does not consider operands that are both use and def.
|
|
//
|
|
// All the uses are before THE def to a register
|
|
//---------------------------------------------------------------------------
|
|
|
|
void UltraSparcRegInfo::OrderAddedInstrns(std::vector<MachineInstr*> &UnordVec,
|
|
std::vector<MachineInstr*> &OrdVec,
|
|
PhyRegAlloc &PRA) const{
|
|
|
|
/*
|
|
Problem: We can have instructions inserted by RegAlloc like
|
|
1. add %ox %g0 %oy
|
|
2. add %oy %g0 %oz, where z!=x or z==x
|
|
|
|
This is wrong since %oy used by 2 is overwritten by 1
|
|
|
|
Solution:
|
|
We re-order the instructions so that the uses are before the defs
|
|
|
|
Algorithm:
|
|
|
|
do
|
|
for each instruction 'DefInst' in the UnOrdVec
|
|
for each instruction 'UseInst' that follows the DefInst
|
|
if the reg defined by DefInst is used by UseInst
|
|
mark DefInst as not movable in this iteration
|
|
If DefInst is not marked as not-movable, move DefInst to OrdVec
|
|
while all instructions in DefInst are moved to OrdVec
|
|
|
|
For moving, we call the move2OrdVec(). It checks whether there is a def
|
|
in it for the uses in the instruction to be added to OrdVec. If there
|
|
are no preceding defs, it just appends the instruction. If there is a
|
|
preceding def, it puts two instructions to save the reg on stack before
|
|
the load and puts a restore at use.
|
|
|
|
*/
|
|
|
|
bool CouldMoveAll;
|
|
bool DebugPrint = false;
|
|
|
|
do {
|
|
CouldMoveAll = true;
|
|
std::vector<MachineInstr*>::iterator DefIt = UnordVec.begin();
|
|
|
|
for( ; DefIt != UnordVec.end(); ++DefIt ) {
|
|
|
|
// for each instruction in the UnordVec do ...
|
|
|
|
MachineInstr *DefInst = *DefIt;
|
|
|
|
if( DefInst == NULL) continue;
|
|
|
|
//std::cerr << "\nInst in UnordVec = " << *DefInst;
|
|
|
|
// last operand is the def (unless for a store which has no def reg)
|
|
MachineOperand& DefOp = DefInst->getOperand(DefInst->getNumOperands()-1);
|
|
|
|
if ((DefOp.opIsDefOnly() || DefOp.opIsDefAndUse()) &&
|
|
DefOp.getType() == MachineOperand::MO_MachineRegister) {
|
|
|
|
// If the operand in DefInst is a def ...
|
|
bool DefEqUse = false;
|
|
|
|
std::vector<MachineInstr*>::iterator UseIt = DefIt;
|
|
UseIt++;
|
|
|
|
for( ; UseIt != UnordVec.end(); ++UseIt ) {
|
|
|
|
MachineInstr *UseInst = *UseIt;
|
|
if( UseInst == NULL) continue;
|
|
|
|
// for each inst (UseInst) that is below the DefInst do ...
|
|
MachineOperand& UseOp = UseInst->getOperand(0);
|
|
|
|
if (!UseOp.opIsDefOnly() &&
|
|
UseOp.getType() == MachineOperand::MO_MachineRegister) {
|
|
|
|
// if use is a register ...
|
|
|
|
if( DefOp.getMachineRegNum() == UseOp.getMachineRegNum() ) {
|
|
|
|
// if Def and this use are the same, it means that this use
|
|
// is destroyed by a def before it is used
|
|
|
|
// std::cerr << "\nCouldn't move " << *DefInst;
|
|
|
|
DefEqUse = true;
|
|
CouldMoveAll = false;
|
|
DebugPrint = true;
|
|
break;
|
|
} // if two registers are equal
|
|
|
|
} // if use is a register
|
|
|
|
}// for all use instructions
|
|
|
|
if( ! DefEqUse ) {
|
|
|
|
// after examining all the instructions that follow the DefInst
|
|
// if there are no dependencies, we can move it to the OrdVec
|
|
|
|
// std::cerr << "Moved to Ord: " << *DefInst;
|
|
|
|
moveInst2OrdVec(OrdVec, DefInst, PRA);
|
|
|
|
//OrdVec.push_back(DefInst);
|
|
|
|
// mark the pos of DefInst with NULL to indicate that it is
|
|
// empty
|
|
*DefIt = NULL;
|
|
}
|
|
|
|
} // if Def is a machine register
|
|
|
|
} // for all instructions in the UnordVec
|
|
|
|
|
|
} while(!CouldMoveAll);
|
|
|
|
if (DebugPrint && DEBUG_RA) {
|
|
std::cerr << "\nAdded instructions were reordered to:\n";
|
|
for(unsigned i=0; i < OrdVec.size(); i++)
|
|
std::cerr << *OrdVec[i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UltraSparcRegInfo::moveInst2OrdVec(std::vector<MachineInstr*> &OrdVec,
|
|
MachineInstr *UnordInst,
|
|
PhyRegAlloc &PRA) const {
|
|
MachineOperand& UseOp = UnordInst->getOperand(0);
|
|
|
|
if (!UseOp.opIsDefOnly() &&
|
|
UseOp.getType() == MachineOperand::MO_MachineRegister) {
|
|
|
|
// for the use of UnordInst, see whether there is a defining instr
|
|
// before in the OrdVec
|
|
bool DefEqUse = false;
|
|
|
|
std::vector<MachineInstr*>::iterator OrdIt = OrdVec.begin();
|
|
|
|
for( ; OrdIt != OrdVec.end(); ++OrdIt ) {
|
|
|
|
MachineInstr *OrdInst = *OrdIt ;
|
|
|
|
MachineOperand& DefOp =
|
|
OrdInst->getOperand(OrdInst->getNumOperands()-1);
|
|
|
|
if( (DefOp.opIsDefOnly() || DefOp.opIsDefAndUse()) &&
|
|
DefOp.getType() == MachineOperand::MO_MachineRegister) {
|
|
|
|
//std::cerr << "\nDefining Ord Inst: " << *OrdInst;
|
|
|
|
if( DefOp.getMachineRegNum() == UseOp.getMachineRegNum() ) {
|
|
|
|
// we are here because there is a preceding def in the OrdVec
|
|
// for the use in this intr we are going to insert. This
|
|
// happened because the original code was like:
|
|
// 1. add %ox %g0 %oy
|
|
// 2. add %oy %g0 %ox
|
|
// In Round1, we added 2 to OrdVec but 1 remained in UnordVec
|
|
// Now we are processing %ox of 1.
|
|
// We have to
|
|
|
|
int UReg = DefOp.getMachineRegNum();
|
|
int RegType = getRegType(UReg);
|
|
MachineInstr *AdIBef, *AdIAft;
|
|
|
|
int StackOff =
|
|
PRA.MF.getInfo()->pushTempValue(getSpilledRegSize(RegType));
|
|
|
|
// Save the UReg (%ox) on stack before it's destroyed
|
|
std::vector<MachineInstr*> mvec;
|
|
cpReg2MemMI(mvec, UReg, getFramePointer(), StackOff, RegType);
|
|
for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
|
|
MI != mvec.end(); ++MI)
|
|
OrdIt = 1+OrdVec.insert(OrdIt, *MI);
|
|
|
|
// Load directly into DReg (%oy)
|
|
MachineOperand& DOp=
|
|
(UnordInst->getOperand(UnordInst->getNumOperands()-1));
|
|
assert((DOp.opIsDefOnly() || DefOp.opIsDefAndUse()) &&
|
|
"Last operand is not the def");
|
|
const int DReg = DOp.getMachineRegNum();
|
|
|
|
cpMem2RegMI(OrdVec, getFramePointer(), StackOff, DReg, RegType);
|
|
|
|
if( DEBUG_RA ) {
|
|
std::cerr << "\nFixed CIRCULAR references by reordering:";
|
|
std::cerr << "\nBefore CIRCULAR Reordering:\n";
|
|
std::cerr << *UnordInst;
|
|
std::cerr << *OrdInst;
|
|
|
|
std::cerr << "\nAfter CIRCULAR Reordering - All Inst so far:\n";
|
|
for(unsigned i=0; i < OrdVec.size(); i++)
|
|
std::cerr << *(OrdVec[i]);
|
|
}
|
|
|
|
// Do not copy the UseInst to OrdVec
|
|
DefEqUse = true;
|
|
break;
|
|
|
|
}// if two registers are equal
|
|
|
|
} // if Def is a register
|
|
|
|
} // for each instr in OrdVec
|
|
|
|
if(!DefEqUse) {
|
|
|
|
// We didn't find a def in the OrdVec, so just append this inst
|
|
OrdVec.push_back( UnordInst );
|
|
//std::cerr << "Reordered Inst (Moved Dn): " << *UnordInst;
|
|
}
|
|
|
|
}// if the operand in UnordInst is a use
|
|
}
|