mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-25 14:32:53 +00:00
6d309059a7
We don't want unused values forming their own equivalence classes, so we lump them all together in one class, and then merge them with the class of the last used value. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117670 91177308-0d34-0410-b5e6-96231b3b80d8
818 lines
26 KiB
C++
818 lines
26 KiB
C++
//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveRange and LiveInterval classes. Given some
|
|
// numbering of each the machine instructions an interval [i, j) is said to be a
|
|
// live interval for register v if there is no instruction with number j' > j
|
|
// such that v is live at j' and there is no instruction with number i' < i such
|
|
// that v is live at i'. In this implementation intervals can have holes,
|
|
// i.e. an interval might look like [1,20), [50,65), [1000,1001). Each
|
|
// individual range is represented as an instance of LiveRange, and the whole
|
|
// interval is represented as an instance of LiveInterval.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// CompEnd - Compare LiveRange ends.
|
|
namespace {
|
|
struct CompEnd {
|
|
bool operator()(const LiveRange &A, const LiveRange &B) const {
|
|
return A.end < B.end;
|
|
}
|
|
};
|
|
}
|
|
|
|
LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
|
|
assert(Pos.isValid() && "Cannot search for an invalid index");
|
|
return std::upper_bound(begin(), end(), LiveRange(SlotIndex(), Pos, 0),
|
|
CompEnd());
|
|
}
|
|
|
|
/// killedInRange - Return true if the interval has kills in [Start,End).
|
|
bool LiveInterval::killedInRange(SlotIndex Start, SlotIndex End) const {
|
|
Ranges::const_iterator r =
|
|
std::lower_bound(ranges.begin(), ranges.end(), End);
|
|
|
|
// Now r points to the first interval with start >= End, or ranges.end().
|
|
if (r == ranges.begin())
|
|
return false;
|
|
|
|
--r;
|
|
// Now r points to the last interval with end <= End.
|
|
// r->end is the kill point.
|
|
return r->end >= Start && r->end < End;
|
|
}
|
|
|
|
// overlaps - Return true if the intersection of the two live intervals is
|
|
// not empty.
|
|
//
|
|
// An example for overlaps():
|
|
//
|
|
// 0: A = ...
|
|
// 4: B = ...
|
|
// 8: C = A + B ;; last use of A
|
|
//
|
|
// The live intervals should look like:
|
|
//
|
|
// A = [3, 11)
|
|
// B = [7, x)
|
|
// C = [11, y)
|
|
//
|
|
// A->overlaps(C) should return false since we want to be able to join
|
|
// A and C.
|
|
//
|
|
bool LiveInterval::overlapsFrom(const LiveInterval& other,
|
|
const_iterator StartPos) const {
|
|
assert(!empty() && "empty interval");
|
|
const_iterator i = begin();
|
|
const_iterator ie = end();
|
|
const_iterator j = StartPos;
|
|
const_iterator je = other.end();
|
|
|
|
assert((StartPos->start <= i->start || StartPos == other.begin()) &&
|
|
StartPos != other.end() && "Bogus start position hint!");
|
|
|
|
if (i->start < j->start) {
|
|
i = std::upper_bound(i, ie, j->start);
|
|
if (i != ranges.begin()) --i;
|
|
} else if (j->start < i->start) {
|
|
++StartPos;
|
|
if (StartPos != other.end() && StartPos->start <= i->start) {
|
|
assert(StartPos < other.end() && i < end());
|
|
j = std::upper_bound(j, je, i->start);
|
|
if (j != other.ranges.begin()) --j;
|
|
}
|
|
} else {
|
|
return true;
|
|
}
|
|
|
|
if (j == je) return false;
|
|
|
|
while (i != ie) {
|
|
if (i->start > j->start) {
|
|
std::swap(i, j);
|
|
std::swap(ie, je);
|
|
}
|
|
|
|
if (i->end > j->start)
|
|
return true;
|
|
++i;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// overlaps - Return true if the live interval overlaps a range specified
|
|
/// by [Start, End).
|
|
bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
|
|
assert(Start < End && "Invalid range");
|
|
const_iterator I = std::lower_bound(begin(), end(), End);
|
|
return I != begin() && (--I)->end > Start;
|
|
}
|
|
|
|
|
|
/// ValNo is dead, remove it. If it is the largest value number, just nuke it
|
|
/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
|
|
/// it can be nuked later.
|
|
void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
|
|
if (ValNo->id == getNumValNums()-1) {
|
|
do {
|
|
valnos.pop_back();
|
|
} while (!valnos.empty() && valnos.back()->isUnused());
|
|
} else {
|
|
ValNo->setIsUnused(true);
|
|
}
|
|
}
|
|
|
|
/// RenumberValues - Renumber all values in order of appearance and delete the
|
|
/// remaining unused values.
|
|
void LiveInterval::RenumberValues(LiveIntervals &lis) {
|
|
SmallPtrSet<VNInfo*, 8> Seen;
|
|
bool seenPHIDef = false;
|
|
valnos.clear();
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
VNInfo *VNI = I->valno;
|
|
if (!Seen.insert(VNI))
|
|
continue;
|
|
assert(!VNI->isUnused() && "Unused valno used by live range");
|
|
VNI->id = (unsigned)valnos.size();
|
|
valnos.push_back(VNI);
|
|
VNI->setHasPHIKill(false);
|
|
if (VNI->isPHIDef())
|
|
seenPHIDef = true;
|
|
}
|
|
|
|
// Recompute phi kill flags.
|
|
if (!seenPHIDef)
|
|
return;
|
|
for (const_vni_iterator I = vni_begin(), E = vni_end(); I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (!VNI->isPHIDef())
|
|
continue;
|
|
const MachineBasicBlock *PHIBB = lis.getMBBFromIndex(VNI->def);
|
|
assert(PHIBB && "No basic block for phi-def");
|
|
for (MachineBasicBlock::const_pred_iterator PI = PHIBB->pred_begin(),
|
|
PE = PHIBB->pred_end(); PI != PE; ++PI) {
|
|
VNInfo *KVNI = getVNInfoAt(lis.getMBBEndIdx(*PI).getPrevSlot());
|
|
if (KVNI)
|
|
KVNI->setHasPHIKill(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// extendIntervalEndTo - This method is used when we want to extend the range
|
|
/// specified by I to end at the specified endpoint. To do this, we should
|
|
/// merge and eliminate all ranges that this will overlap with. The iterator is
|
|
/// not invalidated.
|
|
void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
|
|
assert(I != ranges.end() && "Not a valid interval!");
|
|
VNInfo *ValNo = I->valno;
|
|
|
|
// Search for the first interval that we can't merge with.
|
|
Ranges::iterator MergeTo = llvm::next(I);
|
|
for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
|
|
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
|
|
}
|
|
|
|
// If NewEnd was in the middle of an interval, make sure to get its endpoint.
|
|
I->end = std::max(NewEnd, prior(MergeTo)->end);
|
|
|
|
// Erase any dead ranges.
|
|
ranges.erase(llvm::next(I), MergeTo);
|
|
|
|
// If the newly formed range now touches the range after it and if they have
|
|
// the same value number, merge the two ranges into one range.
|
|
Ranges::iterator Next = llvm::next(I);
|
|
if (Next != ranges.end() && Next->start <= I->end && Next->valno == ValNo) {
|
|
I->end = Next->end;
|
|
ranges.erase(Next);
|
|
}
|
|
}
|
|
|
|
|
|
/// extendIntervalStartTo - This method is used when we want to extend the range
|
|
/// specified by I to start at the specified endpoint. To do this, we should
|
|
/// merge and eliminate all ranges that this will overlap with.
|
|
LiveInterval::Ranges::iterator
|
|
LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
|
|
assert(I != ranges.end() && "Not a valid interval!");
|
|
VNInfo *ValNo = I->valno;
|
|
|
|
// Search for the first interval that we can't merge with.
|
|
Ranges::iterator MergeTo = I;
|
|
do {
|
|
if (MergeTo == ranges.begin()) {
|
|
I->start = NewStart;
|
|
ranges.erase(MergeTo, I);
|
|
return I;
|
|
}
|
|
assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
|
|
--MergeTo;
|
|
} while (NewStart <= MergeTo->start);
|
|
|
|
// If we start in the middle of another interval, just delete a range and
|
|
// extend that interval.
|
|
if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
|
|
MergeTo->end = I->end;
|
|
} else {
|
|
// Otherwise, extend the interval right after.
|
|
++MergeTo;
|
|
MergeTo->start = NewStart;
|
|
MergeTo->end = I->end;
|
|
}
|
|
|
|
ranges.erase(llvm::next(MergeTo), llvm::next(I));
|
|
return MergeTo;
|
|
}
|
|
|
|
LiveInterval::iterator
|
|
LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
|
|
SlotIndex Start = LR.start, End = LR.end;
|
|
iterator it = std::upper_bound(From, ranges.end(), Start);
|
|
|
|
// If the inserted interval starts in the middle or right at the end of
|
|
// another interval, just extend that interval to contain the range of LR.
|
|
if (it != ranges.begin()) {
|
|
iterator B = prior(it);
|
|
if (LR.valno == B->valno) {
|
|
if (B->start <= Start && B->end >= Start) {
|
|
extendIntervalEndTo(B, End);
|
|
return B;
|
|
}
|
|
} else {
|
|
// Check to make sure that we are not overlapping two live ranges with
|
|
// different valno's.
|
|
assert(B->end <= Start &&
|
|
"Cannot overlap two LiveRanges with differing ValID's"
|
|
" (did you def the same reg twice in a MachineInstr?)");
|
|
}
|
|
}
|
|
|
|
// Otherwise, if this range ends in the middle of, or right next to, another
|
|
// interval, merge it into that interval.
|
|
if (it != ranges.end()) {
|
|
if (LR.valno == it->valno) {
|
|
if (it->start <= End) {
|
|
it = extendIntervalStartTo(it, Start);
|
|
|
|
// If LR is a complete superset of an interval, we may need to grow its
|
|
// endpoint as well.
|
|
if (End > it->end)
|
|
extendIntervalEndTo(it, End);
|
|
return it;
|
|
}
|
|
} else {
|
|
// Check to make sure that we are not overlapping two live ranges with
|
|
// different valno's.
|
|
assert(it->start >= End &&
|
|
"Cannot overlap two LiveRanges with differing ValID's");
|
|
}
|
|
}
|
|
|
|
// Otherwise, this is just a new range that doesn't interact with anything.
|
|
// Insert it.
|
|
return ranges.insert(it, LR);
|
|
}
|
|
|
|
|
|
/// removeRange - Remove the specified range from this interval. Note that
|
|
/// the range must be in a single LiveRange in its entirety.
|
|
void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
|
|
bool RemoveDeadValNo) {
|
|
// Find the LiveRange containing this span.
|
|
Ranges::iterator I = find(Start);
|
|
assert(I != ranges.end() && "Range is not in interval!");
|
|
assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
|
|
|
|
// If the span we are removing is at the start of the LiveRange, adjust it.
|
|
VNInfo *ValNo = I->valno;
|
|
if (I->start == Start) {
|
|
if (I->end == End) {
|
|
if (RemoveDeadValNo) {
|
|
// Check if val# is dead.
|
|
bool isDead = true;
|
|
for (const_iterator II = begin(), EE = end(); II != EE; ++II)
|
|
if (II != I && II->valno == ValNo) {
|
|
isDead = false;
|
|
break;
|
|
}
|
|
if (isDead) {
|
|
// Now that ValNo is dead, remove it.
|
|
markValNoForDeletion(ValNo);
|
|
}
|
|
}
|
|
|
|
ranges.erase(I); // Removed the whole LiveRange.
|
|
} else
|
|
I->start = End;
|
|
return;
|
|
}
|
|
|
|
// Otherwise if the span we are removing is at the end of the LiveRange,
|
|
// adjust the other way.
|
|
if (I->end == End) {
|
|
I->end = Start;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are splitting the LiveRange into two pieces.
|
|
SlotIndex OldEnd = I->end;
|
|
I->end = Start; // Trim the old interval.
|
|
|
|
// Insert the new one.
|
|
ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
|
|
}
|
|
|
|
/// removeValNo - Remove all the ranges defined by the specified value#.
|
|
/// Also remove the value# from value# list.
|
|
void LiveInterval::removeValNo(VNInfo *ValNo) {
|
|
if (empty()) return;
|
|
Ranges::iterator I = ranges.end();
|
|
Ranges::iterator E = ranges.begin();
|
|
do {
|
|
--I;
|
|
if (I->valno == ValNo)
|
|
ranges.erase(I);
|
|
} while (I != E);
|
|
// Now that ValNo is dead, remove it.
|
|
markValNoForDeletion(ValNo);
|
|
}
|
|
|
|
/// findDefinedVNInfo - Find the VNInfo defined by the specified
|
|
/// index (register interval).
|
|
VNInfo *LiveInterval::findDefinedVNInfoForRegInt(SlotIndex Idx) const {
|
|
for (LiveInterval::const_vni_iterator i = vni_begin(), e = vni_end();
|
|
i != e; ++i) {
|
|
if ((*i)->def == Idx)
|
|
return *i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// join - Join two live intervals (this, and other) together. This applies
|
|
/// mappings to the value numbers in the LHS/RHS intervals as specified. If
|
|
/// the intervals are not joinable, this aborts.
|
|
void LiveInterval::join(LiveInterval &Other,
|
|
const int *LHSValNoAssignments,
|
|
const int *RHSValNoAssignments,
|
|
SmallVector<VNInfo*, 16> &NewVNInfo,
|
|
MachineRegisterInfo *MRI) {
|
|
// Determine if any of our live range values are mapped. This is uncommon, so
|
|
// we want to avoid the interval scan if not.
|
|
bool MustMapCurValNos = false;
|
|
unsigned NumVals = getNumValNums();
|
|
unsigned NumNewVals = NewVNInfo.size();
|
|
for (unsigned i = 0; i != NumVals; ++i) {
|
|
unsigned LHSValID = LHSValNoAssignments[i];
|
|
if (i != LHSValID ||
|
|
(NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i)))
|
|
MustMapCurValNos = true;
|
|
}
|
|
|
|
// If we have to apply a mapping to our base interval assignment, rewrite it
|
|
// now.
|
|
if (MustMapCurValNos) {
|
|
// Map the first live range.
|
|
iterator OutIt = begin();
|
|
OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
|
|
++OutIt;
|
|
for (iterator I = OutIt, E = end(); I != E; ++I) {
|
|
OutIt->valno = NewVNInfo[LHSValNoAssignments[I->valno->id]];
|
|
|
|
// If this live range has the same value # as its immediate predecessor,
|
|
// and if they are neighbors, remove one LiveRange. This happens when we
|
|
// have [0,3:0)[4,7:1) and map 0/1 onto the same value #.
|
|
if (OutIt->valno == (OutIt-1)->valno && (OutIt-1)->end == OutIt->start) {
|
|
(OutIt-1)->end = OutIt->end;
|
|
} else {
|
|
if (I != OutIt) {
|
|
OutIt->start = I->start;
|
|
OutIt->end = I->end;
|
|
}
|
|
|
|
// Didn't merge, on to the next one.
|
|
++OutIt;
|
|
}
|
|
}
|
|
|
|
// If we merge some live ranges, chop off the end.
|
|
ranges.erase(OutIt, end());
|
|
}
|
|
|
|
// Remember assignements because val# ids are changing.
|
|
SmallVector<unsigned, 16> OtherAssignments;
|
|
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
|
|
OtherAssignments.push_back(RHSValNoAssignments[I->valno->id]);
|
|
|
|
// Update val# info. Renumber them and make sure they all belong to this
|
|
// LiveInterval now. Also remove dead val#'s.
|
|
unsigned NumValNos = 0;
|
|
for (unsigned i = 0; i < NumNewVals; ++i) {
|
|
VNInfo *VNI = NewVNInfo[i];
|
|
if (VNI) {
|
|
if (NumValNos >= NumVals)
|
|
valnos.push_back(VNI);
|
|
else
|
|
valnos[NumValNos] = VNI;
|
|
VNI->id = NumValNos++; // Renumber val#.
|
|
}
|
|
}
|
|
if (NumNewVals < NumVals)
|
|
valnos.resize(NumNewVals); // shrinkify
|
|
|
|
// Okay, now insert the RHS live ranges into the LHS.
|
|
iterator InsertPos = begin();
|
|
unsigned RangeNo = 0;
|
|
for (iterator I = Other.begin(), E = Other.end(); I != E; ++I, ++RangeNo) {
|
|
// Map the valno in the other live range to the current live range.
|
|
I->valno = NewVNInfo[OtherAssignments[RangeNo]];
|
|
assert(I->valno && "Adding a dead range?");
|
|
InsertPos = addRangeFrom(*I, InsertPos);
|
|
}
|
|
|
|
ComputeJoinedWeight(Other);
|
|
}
|
|
|
|
/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
|
|
/// interval as the specified value number. The LiveRanges in RHS are
|
|
/// allowed to overlap with LiveRanges in the current interval, but only if
|
|
/// the overlapping LiveRanges have the specified value number.
|
|
void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
|
|
VNInfo *LHSValNo) {
|
|
// TODO: Make this more efficient.
|
|
iterator InsertPos = begin();
|
|
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
|
|
// Map the valno in the other live range to the current live range.
|
|
LiveRange Tmp = *I;
|
|
Tmp.valno = LHSValNo;
|
|
InsertPos = addRangeFrom(Tmp, InsertPos);
|
|
}
|
|
}
|
|
|
|
|
|
/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
|
|
/// in RHS into this live interval as the specified value number.
|
|
/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
|
|
/// current interval, it will replace the value numbers of the overlaped
|
|
/// live ranges with the specified value number.
|
|
void LiveInterval::MergeValueInAsValue(
|
|
const LiveInterval &RHS,
|
|
const VNInfo *RHSValNo, VNInfo *LHSValNo) {
|
|
SmallVector<VNInfo*, 4> ReplacedValNos;
|
|
iterator IP = begin();
|
|
for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
|
|
assert(I->valno == RHS.getValNumInfo(I->valno->id) && "Bad VNInfo");
|
|
if (I->valno != RHSValNo)
|
|
continue;
|
|
SlotIndex Start = I->start, End = I->end;
|
|
IP = std::upper_bound(IP, end(), Start);
|
|
// If the start of this range overlaps with an existing liverange, trim it.
|
|
if (IP != begin() && IP[-1].end > Start) {
|
|
if (IP[-1].valno != LHSValNo) {
|
|
ReplacedValNos.push_back(IP[-1].valno);
|
|
IP[-1].valno = LHSValNo; // Update val#.
|
|
}
|
|
Start = IP[-1].end;
|
|
// Trimmed away the whole range?
|
|
if (Start >= End) continue;
|
|
}
|
|
// If the end of this range overlaps with an existing liverange, trim it.
|
|
if (IP != end() && End > IP->start) {
|
|
if (IP->valno != LHSValNo) {
|
|
ReplacedValNos.push_back(IP->valno);
|
|
IP->valno = LHSValNo; // Update val#.
|
|
}
|
|
End = IP->start;
|
|
// If this trimmed away the whole range, ignore it.
|
|
if (Start == End) continue;
|
|
}
|
|
|
|
// Map the valno in the other live range to the current live range.
|
|
IP = addRangeFrom(LiveRange(Start, End, LHSValNo), IP);
|
|
}
|
|
|
|
|
|
SmallSet<VNInfo*, 4> Seen;
|
|
for (unsigned i = 0, e = ReplacedValNos.size(); i != e; ++i) {
|
|
VNInfo *V1 = ReplacedValNos[i];
|
|
if (Seen.insert(V1)) {
|
|
bool isDead = true;
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I)
|
|
if (I->valno == V1) {
|
|
isDead = false;
|
|
break;
|
|
}
|
|
if (isDead) {
|
|
// Now that V1 is dead, remove it.
|
|
markValNoForDeletion(V1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// MergeValueNumberInto - This method is called when two value nubmers
|
|
/// are found to be equivalent. This eliminates V1, replacing all
|
|
/// LiveRanges with the V1 value number with the V2 value number. This can
|
|
/// cause merging of V1/V2 values numbers and compaction of the value space.
|
|
VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
|
|
assert(V1 != V2 && "Identical value#'s are always equivalent!");
|
|
|
|
// This code actually merges the (numerically) larger value number into the
|
|
// smaller value number, which is likely to allow us to compactify the value
|
|
// space. The only thing we have to be careful of is to preserve the
|
|
// instruction that defines the result value.
|
|
|
|
// Make sure V2 is smaller than V1.
|
|
if (V1->id < V2->id) {
|
|
V1->copyFrom(*V2);
|
|
std::swap(V1, V2);
|
|
}
|
|
|
|
// Merge V1 live ranges into V2.
|
|
for (iterator I = begin(); I != end(); ) {
|
|
iterator LR = I++;
|
|
if (LR->valno != V1) continue; // Not a V1 LiveRange.
|
|
|
|
// Okay, we found a V1 live range. If it had a previous, touching, V2 live
|
|
// range, extend it.
|
|
if (LR != begin()) {
|
|
iterator Prev = LR-1;
|
|
if (Prev->valno == V2 && Prev->end == LR->start) {
|
|
Prev->end = LR->end;
|
|
|
|
// Erase this live-range.
|
|
ranges.erase(LR);
|
|
I = Prev+1;
|
|
LR = Prev;
|
|
}
|
|
}
|
|
|
|
// Okay, now we have a V1 or V2 live range that is maximally merged forward.
|
|
// Ensure that it is a V2 live-range.
|
|
LR->valno = V2;
|
|
|
|
// If we can merge it into later V2 live ranges, do so now. We ignore any
|
|
// following V1 live ranges, as they will be merged in subsequent iterations
|
|
// of the loop.
|
|
if (I != end()) {
|
|
if (I->start == LR->end && I->valno == V2) {
|
|
LR->end = I->end;
|
|
ranges.erase(I);
|
|
I = LR+1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge the relevant flags.
|
|
V2->mergeFlags(V1);
|
|
|
|
// Now that V1 is dead, remove it.
|
|
markValNoForDeletion(V1);
|
|
|
|
return V2;
|
|
}
|
|
|
|
void LiveInterval::Copy(const LiveInterval &RHS,
|
|
MachineRegisterInfo *MRI,
|
|
VNInfo::Allocator &VNInfoAllocator) {
|
|
ranges.clear();
|
|
valnos.clear();
|
|
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(RHS.reg);
|
|
MRI->setRegAllocationHint(reg, Hint.first, Hint.second);
|
|
|
|
weight = RHS.weight;
|
|
for (unsigned i = 0, e = RHS.getNumValNums(); i != e; ++i) {
|
|
const VNInfo *VNI = RHS.getValNumInfo(i);
|
|
createValueCopy(VNI, VNInfoAllocator);
|
|
}
|
|
for (unsigned i = 0, e = RHS.ranges.size(); i != e; ++i) {
|
|
const LiveRange &LR = RHS.ranges[i];
|
|
addRange(LiveRange(LR.start, LR.end, getValNumInfo(LR.valno->id)));
|
|
}
|
|
}
|
|
|
|
unsigned LiveInterval::getSize() const {
|
|
unsigned Sum = 0;
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I)
|
|
Sum += I->start.distance(I->end);
|
|
return Sum;
|
|
}
|
|
|
|
/// ComputeJoinedWeight - Set the weight of a live interval Joined
|
|
/// after Other has been merged into it.
|
|
void LiveInterval::ComputeJoinedWeight(const LiveInterval &Other) {
|
|
// If either of these intervals was spilled, the weight is the
|
|
// weight of the non-spilled interval. This can only happen with
|
|
// iterative coalescers.
|
|
|
|
if (Other.weight != HUGE_VALF) {
|
|
weight += Other.weight;
|
|
}
|
|
else if (weight == HUGE_VALF &&
|
|
!TargetRegisterInfo::isPhysicalRegister(reg)) {
|
|
// Remove this assert if you have an iterative coalescer
|
|
assert(0 && "Joining to spilled interval");
|
|
weight = Other.weight;
|
|
}
|
|
else {
|
|
// Otherwise the weight stays the same
|
|
// Remove this assert if you have an iterative coalescer
|
|
assert(0 && "Joining from spilled interval");
|
|
}
|
|
}
|
|
|
|
raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
|
|
return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
|
|
}
|
|
|
|
void LiveRange::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
|
|
void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
|
|
if (isStackSlot())
|
|
OS << "SS#" << getStackSlotIndex();
|
|
else if (TRI && TargetRegisterInfo::isPhysicalRegister(reg))
|
|
OS << TRI->getName(reg);
|
|
else
|
|
OS << "%reg" << reg;
|
|
|
|
OS << ',' << weight;
|
|
|
|
if (empty())
|
|
OS << " EMPTY";
|
|
else {
|
|
OS << " = ";
|
|
for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
|
|
E = ranges.end(); I != E; ++I) {
|
|
OS << *I;
|
|
assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
|
|
}
|
|
}
|
|
|
|
// Print value number info.
|
|
if (getNumValNums()) {
|
|
OS << " ";
|
|
unsigned vnum = 0;
|
|
for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
|
|
++i, ++vnum) {
|
|
const VNInfo *vni = *i;
|
|
if (vnum) OS << " ";
|
|
OS << vnum << "@";
|
|
if (vni->isUnused()) {
|
|
OS << "x";
|
|
} else {
|
|
OS << vni->def;
|
|
if (vni->isPHIDef())
|
|
OS << "-phidef";
|
|
if (vni->hasPHIKill())
|
|
OS << "-phikill";
|
|
if (vni->hasRedefByEC())
|
|
OS << "-ec";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LiveInterval::dump() const {
|
|
dbgs() << *this << "\n";
|
|
}
|
|
|
|
|
|
void LiveRange::print(raw_ostream &os) const {
|
|
os << *this;
|
|
}
|
|
|
|
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
|
|
/// LiveInterval into equivalence clases of connected components. A
|
|
/// LiveInterval that has multiple connected components can be broken into
|
|
/// multiple LiveIntervals.
|
|
|
|
void ConnectedVNInfoEqClasses::Connect(unsigned a, unsigned b) {
|
|
while (eqClass_[a] != eqClass_[b]) {
|
|
if (eqClass_[a] > eqClass_[b])
|
|
std::swap(a, b);
|
|
unsigned t = eqClass_[b];
|
|
assert(t <= b && "Invariant broken");
|
|
eqClass_[b] = eqClass_[a];
|
|
b = t;
|
|
}
|
|
}
|
|
|
|
unsigned ConnectedVNInfoEqClasses::Renumber() {
|
|
// Assign final class numbers.
|
|
// We use the fact that eqClass_[i] == i for class leaders.
|
|
// For others, eqClass_[i] points to an earlier value in the same class.
|
|
unsigned count = 0;
|
|
for (unsigned i = 0, e = eqClass_.size(); i != e; ++i) {
|
|
unsigned q = eqClass_[i];
|
|
assert(q <= i && "Invariant broken");
|
|
eqClass_[i] = q == i ? count++ : eqClass_[q];
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
|
|
// Create initial equivalence classes.
|
|
eqClass_.clear();
|
|
eqClass_.reserve(LI->getNumValNums());
|
|
for (unsigned i = 0, e = LI->getNumValNums(); i != e; ++i)
|
|
eqClass_.push_back(i);
|
|
|
|
const VNInfo *used = 0, *unused = 0;
|
|
|
|
// Determine connections.
|
|
for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
|
|
I != E; ++I) {
|
|
const VNInfo *VNI = *I;
|
|
// Group all unused values into one class.
|
|
if (VNI->isUnused()) {
|
|
if (unused)
|
|
Connect(unused->id, VNI->id);
|
|
unused = VNI;
|
|
continue;
|
|
}
|
|
used = VNI;
|
|
if (VNI->isPHIDef()) {
|
|
const MachineBasicBlock *MBB = lis_.getMBBFromIndex(VNI->def);
|
|
assert(MBB && "Phi-def has no defining MBB");
|
|
// Connect to values live out of predecessors.
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI)
|
|
if (const VNInfo *PVNI =
|
|
LI->getVNInfoAt(lis_.getMBBEndIdx(*PI).getPrevSlot()))
|
|
Connect(VNI->id, PVNI->id);
|
|
} else {
|
|
// Normal value defined by an instruction. Check for two-addr redef.
|
|
// FIXME: This could be coincidental. Should we really check for a tied
|
|
// operand constraint?
|
|
if (const VNInfo *UVNI = LI->getVNInfoAt(VNI->def.getUseIndex()))
|
|
Connect(VNI->id, UVNI->id);
|
|
}
|
|
}
|
|
|
|
// Lump all the unused values in with the last used value.
|
|
if (used && unused)
|
|
Connect(used->id, unused->id);
|
|
|
|
return Renumber();
|
|
}
|
|
|
|
void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[]) {
|
|
assert(LIV[0] && "LIV[0] must be set");
|
|
LiveInterval &LI = *LIV[0];
|
|
// Check that they likely ran Classify() on LIV[0] first.
|
|
assert(eqClass_.size() == LI.getNumValNums() && "Bad classification data");
|
|
|
|
// First move runs to new intervals.
|
|
LiveInterval::iterator J = LI.begin(), E = LI.end();
|
|
while (J != E && eqClass_[J->valno->id] == 0)
|
|
++J;
|
|
for (LiveInterval::iterator I = J; I != E; ++I) {
|
|
if (unsigned eq = eqClass_[I->valno->id]) {
|
|
assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
|
|
"New intervals should be empty");
|
|
LIV[eq]->ranges.push_back(*I);
|
|
} else
|
|
*J++ = *I;
|
|
}
|
|
LI.ranges.erase(J, E);
|
|
|
|
// Transfer VNInfos to their new owners and renumber them.
|
|
unsigned j = 0, e = LI.getNumValNums();
|
|
while (j != e && eqClass_[j] == 0)
|
|
++j;
|
|
for (unsigned i = j; i != e; ++i) {
|
|
VNInfo *VNI = LI.getValNumInfo(i);
|
|
if (unsigned eq = eqClass_[i]) {
|
|
VNI->id = LIV[eq]->getNumValNums();
|
|
LIV[eq]->valnos.push_back(VNI);
|
|
} else {
|
|
VNI->id = j;
|
|
LI.valnos[j++] = VNI;
|
|
}
|
|
}
|
|
LI.valnos.resize(j);
|
|
}
|