llvm-6502/lib/Bytecode/Reader/ConstantReader.cpp
Chris Lattner cfe26c930a Add more support for new style casts
Convert more code to use them


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@695 91177308-0d34-0410-b5e6-96231b3b80d8
2001-10-01 18:26:53 +00:00

317 lines
9.6 KiB
C++

//===- ReadConst.cpp - Code to constants and constant pools -----------------===
//
// This file implements functionality to deserialize constants and entire
// constant pools.
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
//===------------------------------------------------------------------------===
#include "llvm/Module.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/DerivedTypes.h"
#include "ReaderInternals.h"
#include <algorithm>
const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf,
const uchar *EndBuf) {
unsigned PrimType;
if (read_vbr(Buf, EndBuf, PrimType)) return failure<const Type*>(0);
const Type *Val = 0;
if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
return Val;
switch (PrimType) {
case Type::MethodTyID: {
unsigned Typ;
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
const Type *RetType = getType(Typ);
if (RetType == 0) return failure(Val);
unsigned NumParams;
if (read_vbr(Buf, EndBuf, NumParams)) return failure(Val);
vector<const Type*> Params;
while (NumParams--) {
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(Val);
Params.push_back(Ty);
}
Val = MethodType::get(RetType, Params);
break;
}
case Type::ArrayTyID: {
unsigned ElTyp;
if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val);
const Type *ElementType = getType(ElTyp);
if (ElementType == 0) return failure(Val);
int NumElements;
if (read_vbr(Buf, EndBuf, NumElements)) return failure(Val);
Val = ArrayType::get(ElementType, NumElements);
break;
}
case Type::StructTyID: {
unsigned Typ;
vector<const Type*> Elements;
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
while (Typ) { // List is terminated by void/0 typeid
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(Val);
Elements.push_back(Ty);
if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
}
Val = StructType::get(Elements);
break;
}
case Type::PointerTyID: {
unsigned ElTyp;
if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val);
const Type *ElementType = getType(ElTyp);
if (ElementType == 0) return failure(Val);
Val = PointerType::get(ElementType);
break;
}
default:
cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize"
<< " primitive Type " << PrimType << "\n";
return failure(Val);
}
return Val;
}
// refineAbstractType - The callback method is invoked when one of the
// elements of TypeValues becomes more concrete...
//
void BytecodeParser::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
TypeValuesListTy::iterator I = find(MethodTypeValues.begin(),
MethodTypeValues.end(), OldType);
if (I == MethodTypeValues.end()) {
I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType);
assert(I != ModuleTypeValues.end() &&
"Can't refine a type I don't know about!");
}
*I = NewType; // Update to point to new, more refined type.
}
// parseTypeConstants - We have to use this wierd code to handle recursive
// types. We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
// this ugly problem, we pesimistically insert an opaque type for each type we
// are about to read. This means that forward references will resolve to
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf,
TypeValuesListTy &Tab,
unsigned NumEntries) {
assert(Tab.size() == 0 && "I think table should always be empty here!"
"This should simplify later code");
// Record the base, starting level that we will begin with.
unsigned BaseLevel = Tab.size();
// Insert a bunch of opaque types to be resolved later...
for (unsigned i = 0; i < NumEntries; i++)
Tab.push_back(PATypeHandle<Type>(OpaqueType::get(), this));
// Loop through reading all of the types. Forward types will make use of the
// opaque types just inserted.
//
for (unsigned i = 0; i < NumEntries; i++) {
const Type *NewTy = parseTypeConstant(Buf, EndBuf);
if (NewTy == 0) return failure(true);
BCR_TRACE(4, "Read Type Constant: '" << NewTy << "'\n");
// Don't insertValue the new type... instead we want to replace the opaque
// type with the new concrete value...
//
// Refine the abstract type to the new type. This causes all uses of the
// abstract type to use the newty. This also will cause the opaque type
// to be deleted...
//
cast<DerivedType>(Tab[i+BaseLevel].get())->refineAbstractTypeTo(NewTy);
// This should have replace the old opaque type with the new type in the
// value table...
assert(Tab[i+BaseLevel] == NewTy && "refineAbstractType didn't work!");
}
BCR_TRACE(5, "Resulting types:\n");
for (unsigned i = 0; i < NumEntries; i++) {
BCR_TRACE(5, cast<Type>(Tab[i+BaseLevel]) << "\n");
}
return false;
}
bool BytecodeParser::parseConstPoolValue(const uchar *&Buf,
const uchar *EndBuf,
const Type *Ty, ConstPoolVal *&V) {
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: {
unsigned Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (Val != 0 && Val != 1) return failure(true);
V = ConstPoolBool::get(Val == 1);
break;
}
case Type::UByteTyID: // Unsigned integer types...
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (!ConstPoolUInt::isValueValidForType(Ty, Val)) return failure(true);
V = ConstPoolUInt::get(Ty, Val);
break;
}
case Type::ULongTyID: {
uint64_t Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
V = ConstPoolUInt::get(Ty, Val);
break;
}
case Type::SByteTyID: // Unsigned integer types...
case Type::ShortTyID:
case Type::IntTyID: {
int Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (!ConstPoolSInt::isValueValidForType(Ty, Val)) return failure(true);
V = ConstPoolSInt::get(Ty, Val);
break;
}
case Type::LongTyID: {
int64_t Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
V = ConstPoolSInt::get(Ty, Val);
break;
}
case Type::FloatTyID: {
float F;
if (input_data(Buf, EndBuf, &F, &F+1)) return failure(true);
V = ConstPoolFP::get(Ty, F);
break;
}
case Type::DoubleTyID: {
double Val;
if (input_data(Buf, EndBuf, &Val, &Val+1)) return failure(true);
V = ConstPoolFP::get(Ty, Val);
break;
}
case Type::TypeTyID:
assert(0 && "Type constants should be handled seperately!!!");
abort();
case Type::ArrayTyID: {
const ArrayType *AT = (const ArrayType*)Ty;
unsigned NumElements;
if (AT->isSized()) // Sized array, # elements stored in type!
NumElements = (unsigned)AT->getNumElements();
else // Unsized array, # elements stored in stream!
if (read_vbr(Buf, EndBuf, NumElements)) return failure(true);
vector<ConstPoolVal *> Elements;
while (NumElements--) { // Read all of the elements of the constant.
unsigned Slot;
if (read_vbr(Buf, EndBuf, Slot)) return failure(true);
Value *V = getValue(AT->getElementType(), Slot, false);
if (!V || !V->isConstant()) return failure(true);
Elements.push_back((ConstPoolVal*)V);
}
V = ConstPoolArray::get(AT, Elements);
break;
}
case Type::StructTyID: {
const StructType *ST = Ty->castStructType();
const StructType::ElementTypes &ET = ST->getElementTypes();
vector<ConstPoolVal *> Elements;
for (unsigned i = 0; i < ET.size(); ++i) {
unsigned Slot;
if (read_vbr(Buf, EndBuf, Slot)) return failure(true);
Value *V = getValue(ET[i], Slot, false);
if (!V || !V->isConstant())
return failure(true);
Elements.push_back((ConstPoolVal*)V);
}
V = ConstPoolStruct::get(ST, Elements);
break;
}
case Type::PointerTyID: {
const PointerType *PT = Ty->castPointerType();
unsigned SubClass;
if (read_vbr(Buf, EndBuf, SubClass)) return failure(true);
if (SubClass != 0) return failure(true);
V = ConstPoolPointer::getNullPointer(PT);
break;
}
default:
cerr << __FILE__ << ":" << __LINE__
<< ": Don't know how to deserialize constant value of type '"
<< Ty->getName() << "'\n";
return failure(true);
}
return false;
}
bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf,
ValueTable &Tab,
TypeValuesListTy &TypeTab) {
while (Buf < EndBuf) {
unsigned NumEntries, Typ;
if (read_vbr(Buf, EndBuf, NumEntries) ||
read_vbr(Buf, EndBuf, Typ)) return failure(true);
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(true);
BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n");
if (Typ == Type::TypeTyID) {
if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true;
} else {
for (unsigned i = 0; i < NumEntries; i++) {
ConstPoolVal *I;
if (parseConstPoolValue(Buf, EndBuf, Ty, I)) return failure(true);
BCR_TRACE(4, "Read Constant: '" << I << "'\n");
insertValue(I, Tab);
}
}
}
if (Buf > EndBuf) return failure(true);
return false;
}