llvm-6502/utils/TableGen/DAGISelMatcherOpt.cpp
Chris Lattner cfe2eab744 introduce a new SwitchTypeMatcher node (which is analogous to
SwitchOpcodeMatcher) and have DAGISelMatcherOpt form it.  This
speeds up selection, particularly for X86 which has lots of 
variants of instructions with only type differences.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97645 91177308-0d34-0410-b5e6-96231b3b80d8
2010-03-03 06:28:15 +00:00

436 lines
16 KiB
C++

//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the DAG Matcher optimizer.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "isel-opt"
#include "DAGISelMatcher.h"
#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
/// into single compound nodes like RecordChild.
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
const CodeGenDAGPatterns &CGP) {
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// If we have a scope node, walk down all of the children.
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
OwningPtr<Matcher> Child(Scope->takeChild(i));
ContractNodes(Child, CGP);
Scope->resetChild(i, Child.take());
}
return;
}
// If we found a movechild node with a node that comes in a 'foochild' form,
// transform it.
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
Matcher *New = 0;
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
RM->getResultNo());
if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
if (New) {
// Insert the new node.
New->setNext(MatcherPtr.take());
MatcherPtr.reset(New);
// Remove the old one.
MC->setNext(MC->getNext()->takeNext());
return ContractNodes(MatcherPtr, CGP);
}
}
// Zap movechild -> moveparent.
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
if (MoveParentMatcher *MP =
dyn_cast<MoveParentMatcher>(MC->getNext())) {
MatcherPtr.reset(MP->takeNext());
return ContractNodes(MatcherPtr, CGP);
}
// Turn EmitNode->MarkFlagResults->CompleteMatch into
// MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
// MorphNodeTo formation. This is safe because MarkFlagResults never refers
// to the root of the pattern.
if (isa<EmitNodeMatcher>(N) && isa<MarkFlagResultsMatcher>(N->getNext()) &&
isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
// Unlink the two nodes from the list.
Matcher *EmitNode = MatcherPtr.take();
Matcher *MFR = EmitNode->takeNext();
Matcher *Tail = MFR->takeNext();
// Relink them.
MatcherPtr.reset(MFR);
MFR->setNext(EmitNode);
EmitNode->setNext(Tail);
return ContractNodes(MatcherPtr, CGP);
}
// Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
if (CompleteMatchMatcher *CM =
dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
// We can only use MorphNodeTo if the result values match up.
unsigned RootResultFirst = EN->getFirstResultSlot();
bool ResultsMatch = true;
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
if (CM->getResult(i) != RootResultFirst+i)
ResultsMatch = false;
// If the selected node defines a subset of the flag/chain results, we
// can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
// matched pattern has a chain but the root node doesn't.
const PatternToMatch &Pattern = CM->getPattern();
if (!EN->hasChain() &&
Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
ResultsMatch = false;
// If the matched node has a flag and the output root doesn't, we can't
// use MorphNodeTo.
//
// NOTE: Strictly speaking, we don't have to check for the flag here
// because the code in the pattern generator doesn't handle it right. We
// do it anyway for thoroughness.
if (!EN->hasOutFlag() &&
Pattern.getSrcPattern()->NodeHasProperty(SDNPOutFlag, CGP))
ResultsMatch = false;
// If the root result node defines more results than the source root node
// *and* has a chain or flag input, then we can't match it because it
// would end up replacing the extra result with the chain/flag.
#if 0
if ((EN->hasFlag() || EN->hasChain()) &&
EN->getNumNonChainFlagVTs() > ... need to get no results reliably ...)
ResultMatch = false;
#endif
if (ResultsMatch) {
const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
VTs.data(), VTs.size(),
Operands.data(),Operands.size(),
EN->hasChain(), EN->hasInFlag(),
EN->hasOutFlag(),
EN->hasMemRefs(),
EN->getNumFixedArityOperands(),
Pattern));
return;
}
// FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
// variants.
}
ContractNodes(N->getNextPtr(), CGP);
// If we have a CheckType/CheckChildType/Record node followed by a
// CheckOpcode, invert the two nodes. We prefer to do structural checks
// before type checks, as this opens opportunities for factoring on targets
// like X86 where many operations are valid on multiple types.
if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
isa<RecordMatcher>(N)) &&
isa<CheckOpcodeMatcher>(N->getNext())) {
// Unlink the two nodes from the list.
Matcher *CheckType = MatcherPtr.take();
Matcher *CheckOpcode = CheckType->takeNext();
Matcher *Tail = CheckOpcode->takeNext();
// Relink them.
MatcherPtr.reset(CheckOpcode);
CheckOpcode->setNext(CheckType);
CheckType->setNext(Tail);
return ContractNodes(MatcherPtr, CGP);
}
}
/// SinkPatternPredicates - Pattern predicates can be checked at any level of
/// the matching tree. The generator dumps them at the top level of the pattern
/// though, which prevents factoring from being able to see past them. This
/// optimization sinks them as far down into the pattern as possible.
///
/// Conceptually, we'd like to sink these predicates all the way to the last
/// matcher predicate in the series. However, it turns out that some
/// ComplexPatterns have side effects on the graph, so we really don't want to
/// run a the complex pattern if the pattern predicate will fail. For this
/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
///
static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
// Recursively scan for a PatternPredicate.
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// Walk down all members of a scope node.
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
OwningPtr<Matcher> Child(Scope->takeChild(i));
SinkPatternPredicates(Child);
Scope->resetChild(i, Child.take());
}
return;
}
// If this node isn't a CheckPatternPredicateMatcher we keep scanning until
// we find one.
CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
if (CPPM == 0)
return SinkPatternPredicates(N->getNextPtr());
// Ok, we found one, lets try to sink it. Check if we can sink it past the
// next node in the chain. If not, we won't be able to change anything and
// might as well bail.
if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
return;
// Okay, we know we can sink it past at least one node. Unlink it from the
// chain and scan for the new insertion point.
MatcherPtr.take(); // Don't delete CPPM.
MatcherPtr.reset(CPPM->takeNext());
N = MatcherPtr.get();
while (N->getNext()->isSafeToReorderWithPatternPredicate())
N = N->getNext();
// At this point, we want to insert CPPM after N.
CPPM->setNext(N->takeNext());
N->setNext(CPPM);
}
/// FactorNodes - Turn matches like this:
/// Scope
/// OPC_CheckType i32
/// ABC
/// OPC_CheckType i32
/// XYZ
/// into:
/// OPC_CheckType i32
/// Scope
/// ABC
/// XYZ
///
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// If this is not a push node, just scan for one.
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
if (Scope == 0)
return FactorNodes(N->getNextPtr());
// Okay, pull together the children of the scope node into a vector so we can
// inspect it more easily. While we're at it, bucket them up by the hash
// code of their first predicate.
SmallVector<Matcher*, 32> OptionsToMatch;
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
// Factor the subexpression.
OwningPtr<Matcher> Child(Scope->takeChild(i));
FactorNodes(Child);
if (Matcher *N = Child.take())
OptionsToMatch.push_back(N);
}
SmallVector<Matcher*, 32> NewOptionsToMatch;
// Loop over options to match, merging neighboring patterns with identical
// starting nodes into a shared matcher.
for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
// Find the set of matchers that start with this node.
Matcher *Optn = OptionsToMatch[OptionIdx++];
if (OptionIdx == e) {
NewOptionsToMatch.push_back(Optn);
continue;
}
// See if the next option starts with the same matcher. If the two
// neighbors *do* start with the same matcher, we can factor the matcher out
// of at least these two patterns. See what the maximal set we can merge
// together is.
SmallVector<Matcher*, 8> EqualMatchers;
EqualMatchers.push_back(Optn);
// Factor all of the known-equal matchers after this one into the same
// group.
while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
// If we found a non-equal matcher, see if it is contradictory with the
// current node. If so, we know that the ordering relation between the
// current sets of nodes and this node don't matter. Look past it to see if
// we can merge anything else into this matching group.
unsigned Scan = OptionIdx;
while (1) {
while (Scan != e && Optn->isContradictory(OptionsToMatch[Scan]))
++Scan;
// Ok, we found something that isn't known to be contradictory. If it is
// equal, we can merge it into the set of nodes to factor, if not, we have
// to cease factoring.
if (Scan == e || !Optn->isEqual(OptionsToMatch[Scan])) break;
// If is equal after all, add the option to EqualMatchers and remove it
// from OptionsToMatch.
EqualMatchers.push_back(OptionsToMatch[Scan]);
OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
--e;
}
if (Scan != e &&
// Don't print it's obvious nothing extra could be merged anyway.
Scan+1 != e) {
DEBUG(errs() << "Couldn't merge this:\n";
Optn->print(errs(), 4);
errs() << "into this:\n";
OptionsToMatch[Scan]->print(errs(), 4);
if (Scan+1 != e)
OptionsToMatch[Scan+1]->printOne(errs());
if (Scan+2 < e)
OptionsToMatch[Scan+2]->printOne(errs());
errs() << "\n");
}
// If we only found one option starting with this matcher, no factoring is
// possible.
if (EqualMatchers.size() == 1) {
NewOptionsToMatch.push_back(EqualMatchers[0]);
continue;
}
// Factor these checks by pulling the first node off each entry and
// discarding it. Take the first one off the first entry to reuse.
Matcher *Shared = Optn;
Optn = Optn->takeNext();
EqualMatchers[0] = Optn;
// Remove and delete the first node from the other matchers we're factoring.
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
Matcher *Tmp = EqualMatchers[i]->takeNext();
delete EqualMatchers[i];
EqualMatchers[i] = Tmp;
}
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
// Recursively factor the newly created node.
FactorNodes(Shared->getNextPtr());
NewOptionsToMatch.push_back(Shared);
}
// If we're down to a single pattern to match, then we don't need this scope
// anymore.
if (NewOptionsToMatch.size() == 1) {
MatcherPtr.reset(NewOptionsToMatch[0]);
return;
}
if (NewOptionsToMatch.empty()) {
MatcherPtr.reset(0);
return;
}
// If our factoring failed (didn't achieve anything) see if we can simplify in
// other ways.
// Check to see if all of the leading entries are now opcode checks. If so,
// we can convert this Scope to be a OpcodeSwitch instead.
bool AllOpcodeChecks = true, AllTypeChecks = true;
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
if (!isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
#if 0
if (i > 3 && AllOpcodeChecks) {
errs() << "FAILING OPC #" << i << "\n";
NewOptionsToMatch[i]->dump();
}
#endif
AllOpcodeChecks = false;
}
if (!isa<CheckTypeMatcher>(NewOptionsToMatch[i]) ||
// iPTR checks could alias any other case without us knowing, don't
// bother with them.
cast<CheckTypeMatcher>(NewOptionsToMatch[i])->getType() == MVT::iPTR) {
#if 0
if (i > 3 && AllTypeChecks) {
errs() << "FAILING TYPE #" << i << "\n";
NewOptionsToMatch[i]->dump();
}
#endif
AllTypeChecks = false;
}
}
// TODO: Can also do CheckChildNType.
// If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
if (AllOpcodeChecks) {
StringSet<> Opcodes;
SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
"Duplicate opcodes not factored?");
Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
}
MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
return;
}
// If all the options are CheckType's, we can form the SwitchType, woot.
if (AllTypeChecks) {
DenseSet<unsigned> Types;
SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
CheckTypeMatcher *CTM = cast<CheckTypeMatcher>(NewOptionsToMatch[i]);
assert(Types.insert(CTM->getType()).second &&
"Duplicate types not factored?");
Cases.push_back(std::make_pair(CTM->getType(), CTM->getNext()));
}
MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
return;
}
// Reassemble the Scope node with the adjusted children.
Scope->setNumChildren(NewOptionsToMatch.size());
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
Scope->resetChild(i, NewOptionsToMatch[i]);
}
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
const CodeGenDAGPatterns &CGP) {
OwningPtr<Matcher> MatcherPtr(TheMatcher);
ContractNodes(MatcherPtr, CGP);
SinkPatternPredicates(MatcherPtr);
FactorNodes(MatcherPtr);
return MatcherPtr.take();
}