llvm-6502/lib/Target/X86/MCTargetDesc/X86MCTargetDesc.cpp

545 lines
18 KiB
C++

//===-- X86MCTargetDesc.cpp - X86 Target Descriptions ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides X86 specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "X86MCTargetDesc.h"
#include "X86MCAsmInfo.h"
#include "InstPrinter/X86ATTInstPrinter.h"
#include "InstPrinter/X86IntelInstPrinter.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_REGINFO_MC_DESC
#include "X86GenRegisterInfo.inc"
#define GET_INSTRINFO_MC_DESC
#include "X86GenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "X86GenSubtargetInfo.inc"
#if _MSC_VER
#include <intrin.h>
#endif
using namespace llvm;
std::string X86_MC::ParseX86Triple(StringRef TT) {
Triple TheTriple(TT);
std::string FS;
if (TheTriple.getArch() == Triple::x86_64)
FS = "+64bit-mode";
else
FS = "-64bit-mode";
return FS;
}
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#else
return true;
#endif
#else
return true;
#endif
}
/// GetCpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
/// 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
bool X86_MC::GetCpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX,
unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
#if defined(__GNUC__)
// gcc desn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value),
"c" (subleaf));
return false;
#elif defined(_MSC_VER)
// __cpuidex was added in MSVC++ 9.0 SP1
#if (_MSC_VER > 1500) || (_MSC_VER == 1500 && _MSC_FULL_VER >= 150030729)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
return false;
#else
return true;
#endif
#else
return true;
#endif
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value),
"c" (subleaf));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
mov ecx,subleaf
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#else
return true;
#endif
#else
return true;
#endif
}
void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
unsigned &Model) {
Family = (EAX >> 8) & 0xf; // Bits 8 - 11
Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (Family == 6 || Family == 0xf) {
if (Family == 0xf)
// Examine extended family ID if family ID is F.
Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
Triple TheTriple(TT);
if (TheTriple.getArch() == Triple::x86_64)
return DWARFFlavour::X86_64;
if (TheTriple.isOSDarwin())
return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
if (TheTriple.getOS() == Triple::MinGW32 ||
TheTriple.getOS() == Triple::Cygwin)
// Unsupported by now, just quick fallback
return DWARFFlavour::X86_32_Generic;
return DWARFFlavour::X86_32_Generic;
}
/// getX86RegNum - This function maps LLVM register identifiers to their X86
/// specific numbering, which is used in various places encoding instructions.
unsigned X86_MC::getX86RegNum(unsigned RegNo) {
switch(RegNo) {
case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
return N86::ESP;
case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
return N86::EBP;
case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
return N86::ESI;
case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
return N86::EDI;
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
return N86::EAX;
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
return N86::ECX;
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
return N86::EDX;
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
return N86::EBX;
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
return N86::ESP;
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
return N86::EBP;
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
return N86::ESI;
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
return N86::EDI;
case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
return RegNo-X86::ST0;
case X86::XMM0: case X86::XMM8:
case X86::YMM0: case X86::YMM8: case X86::MM0:
return 0;
case X86::XMM1: case X86::XMM9:
case X86::YMM1: case X86::YMM9: case X86::MM1:
return 1;
case X86::XMM2: case X86::XMM10:
case X86::YMM2: case X86::YMM10: case X86::MM2:
return 2;
case X86::XMM3: case X86::XMM11:
case X86::YMM3: case X86::YMM11: case X86::MM3:
return 3;
case X86::XMM4: case X86::XMM12:
case X86::YMM4: case X86::YMM12: case X86::MM4:
return 4;
case X86::XMM5: case X86::XMM13:
case X86::YMM5: case X86::YMM13: case X86::MM5:
return 5;
case X86::XMM6: case X86::XMM14:
case X86::YMM6: case X86::YMM14: case X86::MM6:
return 6;
case X86::XMM7: case X86::XMM15:
case X86::YMM7: case X86::YMM15: case X86::MM7:
return 7;
case X86::ES: return 0;
case X86::CS: return 1;
case X86::SS: return 2;
case X86::DS: return 3;
case X86::FS: return 4;
case X86::GS: return 5;
case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
case X86::CR2: case X86::CR10: case X86::DR2: return 2;
case X86::CR3: case X86::CR11: case X86::DR3: return 3;
case X86::CR4: case X86::CR12: case X86::DR4: return 4;
case X86::CR5: case X86::CR13: case X86::DR5: return 5;
case X86::CR6: case X86::CR14: case X86::DR6: return 6;
case X86::CR7: case X86::CR15: case X86::DR7: return 7;
// Pseudo index registers are equivalent to a "none"
// scaled index (See Intel Manual 2A, table 2-3)
case X86::EIZ:
case X86::RIZ:
return 4;
default:
assert((int(RegNo) > 0) && "Unknown physical register!");
return 0;
}
}
void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
// FIXME: TableGen these.
for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
int SEH = X86_MC::getX86RegNum(Reg);
switch (Reg) {
case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B:
case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B:
case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
SEH += 8;
break;
}
MRI->mapLLVMRegToSEHReg(Reg, SEH);
}
}
MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
StringRef FS) {
std::string ArchFS = X86_MC::ParseX86Triple(TT);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = ArchFS + "," + FS.str();
else
ArchFS = FS;
}
std::string CPUName = CPU;
if (CPUName.empty()) {
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
|| defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
CPUName = sys::getHostCPUName();
#else
CPUName = "generic";
#endif
}
MCSubtargetInfo *X = new MCSubtargetInfo();
InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
return X;
}
static MCInstrInfo *createX86MCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitX86MCInstrInfo(X);
return X;
}
static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
Triple TheTriple(TT);
unsigned RA = (TheTriple.getArch() == Triple::x86_64)
? X86::RIP // Should have dwarf #16.
: X86::EIP; // Should have dwarf #8.
MCRegisterInfo *X = new MCRegisterInfo();
InitX86MCRegisterInfo(X, RA,
X86_MC::getDwarfRegFlavour(TT, false),
X86_MC::getDwarfRegFlavour(TT, true));
X86_MC::InitLLVM2SEHRegisterMapping(X);
return X;
}
static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
Triple TheTriple(TT);
bool is64Bit = TheTriple.getArch() == Triple::x86_64;
MCAsmInfo *MAI;
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
if (is64Bit)
MAI = new X86_64MCAsmInfoDarwin(TheTriple);
else
MAI = new X86MCAsmInfoDarwin(TheTriple);
} else if (TheTriple.getOS() == Triple::Win32) {
MAI = new X86MCAsmInfoMicrosoft(TheTriple);
} else if (TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin) {
MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
} else {
MAI = new X86ELFMCAsmInfo(TheTriple);
}
// Initialize initial frame state.
// Calculate amount of bytes used for return address storing
int stackGrowth = is64Bit ? -8 : -4;
// Initial state of the frame pointer is esp+stackGrowth.
MachineLocation Dst(MachineLocation::VirtualFP);
MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
MAI->addInitialFrameState(0, Dst, Src);
// Add return address to move list
MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
MAI->addInitialFrameState(0, CSDst, CSSrc);
return MAI;
}
static MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
Triple T(TT);
bool is64Bit = T.getArch() == Triple::x86_64;
if (RM == Reloc::Default) {
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (T.isOSDarwin()) {
if (is64Bit)
RM = Reloc::PIC_;
else
RM = Reloc::DynamicNoPIC;
} else if (T.isOSWindows() && is64Bit)
RM = Reloc::PIC_;
else
RM = Reloc::Static;
}
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (RM == Reloc::DynamicNoPIC) {
if (is64Bit)
RM = Reloc::PIC_;
else if (!T.isOSDarwin())
RM = Reloc::Static;
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
RM = Reloc::PIC_;
// For static codegen, if we're not already set, use Small codegen.
if (CM == CodeModel::Default)
CM = CodeModel::Small;
else if (CM == CodeModel::JITDefault)
// 64-bit JIT places everything in the same buffer except external funcs.
CM = is64Bit ? CodeModel::Large : CodeModel::Small;
X->InitMCCodeGenInfo(RM, CM, OL);
return X;
}
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
MCContext &Ctx, MCAsmBackend &MAB,
raw_ostream &_OS,
MCCodeEmitter *_Emitter,
bool RelaxAll,
bool NoExecStack) {
Triple TheTriple(TT);
if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
return createMachOStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll);
if (TheTriple.isOSWindows())
return createWinCOFFStreamer(Ctx, MAB, *_Emitter, _OS, RelaxAll);
return createELFStreamer(Ctx, MAB, _OS, _Emitter, RelaxAll, NoExecStack);
}
static MCInstPrinter *createX86MCInstPrinter(const Target &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI) {
if (SyntaxVariant == 0)
return new X86ATTInstPrinter(MAI, MII, MRI);
if (SyntaxVariant == 1)
return new X86IntelInstPrinter(MAI, MII, MRI);
return 0;
}
static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
return new MCInstrAnalysis(Info);
}
// Force static initialization.
extern "C" void LLVMInitializeX86TargetMC() {
// Register the MC asm info.
RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
// Register the MC codegen info.
RegisterMCCodeGenInfoFn C(TheX86_32Target, createX86MCCodeGenInfo);
RegisterMCCodeGenInfoFn D(TheX86_64Target, createX86MCCodeGenInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
X86_MC::createX86MCSubtargetInfo);
TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
X86_MC::createX86MCSubtargetInfo);
// Register the MC instruction analyzer.
TargetRegistry::RegisterMCInstrAnalysis(TheX86_32Target,
createX86MCInstrAnalysis);
TargetRegistry::RegisterMCInstrAnalysis(TheX86_64Target,
createX86MCInstrAnalysis);
// Register the code emitter.
TargetRegistry::RegisterMCCodeEmitter(TheX86_32Target,
createX86MCCodeEmitter);
TargetRegistry::RegisterMCCodeEmitter(TheX86_64Target,
createX86MCCodeEmitter);
// Register the asm backend.
TargetRegistry::RegisterMCAsmBackend(TheX86_32Target,
createX86_32AsmBackend);
TargetRegistry::RegisterMCAsmBackend(TheX86_64Target,
createX86_64AsmBackend);
// Register the object streamer.
TargetRegistry::RegisterMCObjectStreamer(TheX86_32Target,
createMCStreamer);
TargetRegistry::RegisterMCObjectStreamer(TheX86_64Target,
createMCStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(TheX86_32Target,
createX86MCInstPrinter);
TargetRegistry::RegisterMCInstPrinter(TheX86_64Target,
createX86MCInstPrinter);
}