llvm-6502/lib/CodeGen/RegisterPressure.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

851 lines
31 KiB
C++

//===-- RegisterPressure.cpp - Dynamic Register Pressure ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the RegisterPressure class which can be used to track
// MachineInstr level register pressure.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
/// Increase register pressure for each set impacted by this register class.
static void increaseSetPressure(std::vector<unsigned> &CurrSetPressure,
std::vector<unsigned> &MaxSetPressure,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
for (const int *PSet = TRI->getRegClassPressureSets(RC);
*PSet != -1; ++PSet) {
CurrSetPressure[*PSet] += Weight;
if (&CurrSetPressure != &MaxSetPressure
&& CurrSetPressure[*PSet] > MaxSetPressure[*PSet]) {
MaxSetPressure[*PSet] = CurrSetPressure[*PSet];
}
}
}
/// Decrease register pressure for each set impacted by this register class.
static void decreaseSetPressure(std::vector<unsigned> &CurrSetPressure,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
for (const int *PSet = TRI->getRegClassPressureSets(RC);
*PSet != -1; ++PSet) {
assert(CurrSetPressure[*PSet] >= Weight && "register pressure underflow");
CurrSetPressure[*PSet] -= Weight;
}
}
/// Directly increase pressure only within this RegisterPressure result.
void RegisterPressure::increase(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
increaseSetPressure(MaxSetPressure, MaxSetPressure, RC, TRI);
}
/// Directly decrease pressure only within this RegisterPressure result.
void RegisterPressure::decrease(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
decreaseSetPressure(MaxSetPressure, RC, TRI);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void RegisterPressure::dump(const TargetRegisterInfo *TRI) const {
dbgs() << "Live In: ";
for (unsigned i = 0, e = LiveInRegs.size(); i < e; ++i)
dbgs() << PrintReg(LiveInRegs[i], TRI) << " ";
dbgs() << '\n';
dbgs() << "Live Out: ";
for (unsigned i = 0, e = LiveOutRegs.size(); i < e; ++i)
dbgs() << PrintReg(LiveOutRegs[i], TRI) << " ";
dbgs() << '\n';
for (unsigned i = 0, e = MaxSetPressure.size(); i < e; ++i) {
if (MaxSetPressure[i] != 0)
dbgs() << TRI->getRegPressureSetName(i) << "=" << MaxSetPressure[i]
<< '\n';
}
}
#endif
/// Increase the current pressure as impacted by these physical registers and
/// bump the high water mark if needed.
void RegPressureTracker::increasePhysRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
increaseSetPressure(CurrSetPressure, P.MaxSetPressure,
TRI->getMinimalPhysRegClass(Regs[I]), TRI);
}
/// Simply decrease the current pressure as impacted by these physcial
/// registers.
void RegPressureTracker::decreasePhysRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
decreaseSetPressure(CurrSetPressure, TRI->getMinimalPhysRegClass(Regs[I]),
TRI);
}
/// Increase the current pressure as impacted by these virtual registers and
/// bump the high water mark if needed.
void RegPressureTracker::increaseVirtRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
increaseSetPressure(CurrSetPressure, P.MaxSetPressure,
MRI->getRegClass(Regs[I]), TRI);
}
/// Simply decrease the current pressure as impacted by these virtual registers.
void RegPressureTracker::decreaseVirtRegPressure(ArrayRef<unsigned> Regs) {
for (unsigned I = 0, E = Regs.size(); I != E; ++I)
decreaseSetPressure(CurrSetPressure, MRI->getRegClass(Regs[I]), TRI);
}
/// Clear the result so it can be used for another round of pressure tracking.
void IntervalPressure::reset() {
TopIdx = BottomIdx = SlotIndex();
MaxSetPressure.clear();
LiveInRegs.clear();
LiveOutRegs.clear();
}
/// Clear the result so it can be used for another round of pressure tracking.
void RegionPressure::reset() {
TopPos = BottomPos = MachineBasicBlock::const_iterator();
MaxSetPressure.clear();
LiveInRegs.clear();
LiveOutRegs.clear();
}
/// If the current top is not less than or equal to the next index, open it.
/// We happen to need the SlotIndex for the next top for pressure update.
void IntervalPressure::openTop(SlotIndex NextTop) {
if (TopIdx <= NextTop)
return;
TopIdx = SlotIndex();
LiveInRegs.clear();
}
/// If the current top is the previous instruction (before receding), open it.
void RegionPressure::openTop(MachineBasicBlock::const_iterator PrevTop) {
if (TopPos != PrevTop)
return;
TopPos = MachineBasicBlock::const_iterator();
LiveInRegs.clear();
}
/// If the current bottom is not greater than the previous index, open it.
void IntervalPressure::openBottom(SlotIndex PrevBottom) {
if (BottomIdx > PrevBottom)
return;
BottomIdx = SlotIndex();
LiveInRegs.clear();
}
/// If the current bottom is the previous instr (before advancing), open it.
void RegionPressure::openBottom(MachineBasicBlock::const_iterator PrevBottom) {
if (BottomPos != PrevBottom)
return;
BottomPos = MachineBasicBlock::const_iterator();
LiveInRegs.clear();
}
/// Setup the RegPressureTracker.
///
/// TODO: Add support for pressure without LiveIntervals.
void RegPressureTracker::init(const MachineFunction *mf,
const RegisterClassInfo *rci,
const LiveIntervals *lis,
const MachineBasicBlock *mbb,
MachineBasicBlock::const_iterator pos)
{
MF = mf;
TRI = MF->getTarget().getRegisterInfo();
RCI = rci;
MRI = &MF->getRegInfo();
MBB = mbb;
if (RequireIntervals) {
assert(lis && "IntervalPressure requires LiveIntervals");
LIS = lis;
}
CurrPos = pos;
CurrSetPressure.assign(TRI->getNumRegPressureSets(), 0);
if (RequireIntervals)
static_cast<IntervalPressure&>(P).reset();
else
static_cast<RegionPressure&>(P).reset();
P.MaxSetPressure = CurrSetPressure;
LivePhysRegs.clear();
LivePhysRegs.setUniverse(TRI->getNumRegs());
LiveVirtRegs.clear();
LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
}
/// Does this pressure result have a valid top position and live ins.
bool RegPressureTracker::isTopClosed() const {
if (RequireIntervals)
return static_cast<IntervalPressure&>(P).TopIdx.isValid();
return (static_cast<RegionPressure&>(P).TopPos ==
MachineBasicBlock::const_iterator());
}
/// Does this pressure result have a valid bottom position and live outs.
bool RegPressureTracker::isBottomClosed() const {
if (RequireIntervals)
return static_cast<IntervalPressure&>(P).BottomIdx.isValid();
return (static_cast<RegionPressure&>(P).BottomPos ==
MachineBasicBlock::const_iterator());
}
SlotIndex RegPressureTracker::getCurrSlot() const {
MachineBasicBlock::const_iterator IdxPos = CurrPos;
while (IdxPos != MBB->end() && IdxPos->isDebugValue())
++IdxPos;
if (IdxPos == MBB->end())
return LIS->getMBBEndIdx(MBB);
return LIS->getInstructionIndex(IdxPos).getRegSlot();
}
/// Set the boundary for the top of the region and summarize live ins.
void RegPressureTracker::closeTop() {
if (RequireIntervals)
static_cast<IntervalPressure&>(P).TopIdx = getCurrSlot();
else
static_cast<RegionPressure&>(P).TopPos = CurrPos;
assert(P.LiveInRegs.empty() && "inconsistent max pressure result");
P.LiveInRegs.reserve(LivePhysRegs.size() + LiveVirtRegs.size());
P.LiveInRegs.append(LivePhysRegs.begin(), LivePhysRegs.end());
for (SparseSet<unsigned>::const_iterator I =
LiveVirtRegs.begin(), E = LiveVirtRegs.end(); I != E; ++I)
P.LiveInRegs.push_back(*I);
std::sort(P.LiveInRegs.begin(), P.LiveInRegs.end());
P.LiveInRegs.erase(std::unique(P.LiveInRegs.begin(), P.LiveInRegs.end()),
P.LiveInRegs.end());
}
/// Set the boundary for the bottom of the region and summarize live outs.
void RegPressureTracker::closeBottom() {
if (RequireIntervals)
static_cast<IntervalPressure&>(P).BottomIdx = getCurrSlot();
else
static_cast<RegionPressure&>(P).BottomPos = CurrPos;
assert(P.LiveOutRegs.empty() && "inconsistent max pressure result");
P.LiveOutRegs.reserve(LivePhysRegs.size() + LiveVirtRegs.size());
P.LiveOutRegs.append(LivePhysRegs.begin(), LivePhysRegs.end());
for (SparseSet<unsigned>::const_iterator I =
LiveVirtRegs.begin(), E = LiveVirtRegs.end(); I != E; ++I)
P.LiveOutRegs.push_back(*I);
std::sort(P.LiveOutRegs.begin(), P.LiveOutRegs.end());
P.LiveOutRegs.erase(std::unique(P.LiveOutRegs.begin(), P.LiveOutRegs.end()),
P.LiveOutRegs.end());
}
/// Finalize the region boundaries and record live ins and live outs.
void RegPressureTracker::closeRegion() {
if (!isTopClosed() && !isBottomClosed()) {
assert(LivePhysRegs.empty() && LiveVirtRegs.empty() &&
"no region boundary");
return;
}
if (!isBottomClosed())
closeBottom();
else if (!isTopClosed())
closeTop();
// If both top and bottom are closed, do nothing.
}
/// Return true if Reg aliases a register in Regs SparseSet.
static bool hasRegAlias(unsigned Reg, SparseSet<unsigned> &Regs,
const TargetRegisterInfo *TRI) {
assert(!TargetRegisterInfo::isVirtualRegister(Reg) && "only for physregs");
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
if (Regs.count(*AI))
return true;
return false;
}
/// Return true if Reg aliases a register in unsorted Regs SmallVector.
/// This is only valid for physical registers.
static SmallVectorImpl<unsigned>::iterator
findRegAlias(unsigned Reg, SmallVectorImpl<unsigned> &Regs,
const TargetRegisterInfo *TRI) {
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
SmallVectorImpl<unsigned>::iterator I =
std::find(Regs.begin(), Regs.end(), *AI);
if (I != Regs.end())
return I;
}
return Regs.end();
}
/// Return true if Reg can be inserted into Regs SmallVector. For virtual
/// register, do a linear search. For physical registers check for aliases.
static SmallVectorImpl<unsigned>::iterator
findReg(unsigned Reg, bool isVReg, SmallVectorImpl<unsigned> &Regs,
const TargetRegisterInfo *TRI) {
if(isVReg)
return std::find(Regs.begin(), Regs.end(), Reg);
return findRegAlias(Reg, Regs, TRI);
}
/// Collect this instruction's unique uses and defs into SmallVectors for
/// processing defs and uses in order.
template<bool isVReg>
struct RegisterOperands {
SmallVector<unsigned, 8> Uses;
SmallVector<unsigned, 8> Defs;
SmallVector<unsigned, 8> DeadDefs;
/// Push this operand's register onto the correct vector.
void collect(const MachineOperand &MO, const TargetRegisterInfo *TRI) {
if (MO.readsReg()) {
if (findReg(MO.getReg(), isVReg, Uses, TRI) == Uses.end())
Uses.push_back(MO.getReg());
}
if (MO.isDef()) {
if (MO.isDead()) {
if (findReg(MO.getReg(), isVReg, DeadDefs, TRI) == DeadDefs.end())
DeadDefs.push_back(MO.getReg());
}
else if (findReg(MO.getReg(), isVReg, Defs, TRI) == Defs.end())
Defs.push_back(MO.getReg());
}
}
};
typedef RegisterOperands<false> PhysRegOperands;
typedef RegisterOperands<true> VirtRegOperands;
/// Collect physical and virtual register operands.
static void collectOperands(const MachineInstr *MI,
PhysRegOperands &PhysRegOpers,
VirtRegOperands &VirtRegOpers,
const TargetRegisterInfo *TRI,
const MachineRegisterInfo *MRI) {
for(ConstMIBundleOperands OperI(MI); OperI.isValid(); ++OperI) {
const MachineOperand &MO = *OperI;
if (!MO.isReg() || !MO.getReg())
continue;
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
VirtRegOpers.collect(MO, TRI);
else if (MRI->isAllocatable(MO.getReg()))
PhysRegOpers.collect(MO, TRI);
}
// Remove redundant physreg dead defs.
for (unsigned i = PhysRegOpers.DeadDefs.size(); i > 0; --i) {
unsigned Reg = PhysRegOpers.DeadDefs[i-1];
if (findRegAlias(Reg, PhysRegOpers.Defs, TRI) != PhysRegOpers.Defs.end())
PhysRegOpers.DeadDefs.erase(&PhysRegOpers.DeadDefs[i-1]);
}
}
/// Force liveness of registers.
void RegPressureTracker::addLiveRegs(ArrayRef<unsigned> Regs) {
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
if (TargetRegisterInfo::isVirtualRegister(Regs[i])) {
if (LiveVirtRegs.insert(Regs[i]).second)
increaseVirtRegPressure(Regs[i]);
}
else {
if (!hasRegAlias(Regs[i], LivePhysRegs, TRI)) {
LivePhysRegs.insert(Regs[i]);
increasePhysRegPressure(Regs[i]);
}
}
}
}
/// Add PhysReg to the live in set and increase max pressure.
void RegPressureTracker::discoverPhysLiveIn(unsigned Reg) {
assert(!LivePhysRegs.count(Reg) && "avoid bumping max pressure twice");
if (findRegAlias(Reg, P.LiveInRegs, TRI) != P.LiveInRegs.end())
return;
// At live in discovery, unconditionally increase the high water mark.
P.LiveInRegs.push_back(Reg);
P.increase(TRI->getMinimalPhysRegClass(Reg), TRI);
}
/// Add PhysReg to the live out set and increase max pressure.
void RegPressureTracker::discoverPhysLiveOut(unsigned Reg) {
assert(!LivePhysRegs.count(Reg) && "avoid bumping max pressure twice");
if (findRegAlias(Reg, P.LiveOutRegs, TRI) != P.LiveOutRegs.end())
return;
// At live out discovery, unconditionally increase the high water mark.
P.LiveOutRegs.push_back(Reg);
P.increase(TRI->getMinimalPhysRegClass(Reg), TRI);
}
/// Add VirtReg to the live in set and increase max pressure.
void RegPressureTracker::discoverVirtLiveIn(unsigned Reg) {
assert(!LiveVirtRegs.count(Reg) && "avoid bumping max pressure twice");
if (std::find(P.LiveInRegs.begin(), P.LiveInRegs.end(), Reg) !=
P.LiveInRegs.end())
return;
// At live in discovery, unconditionally increase the high water mark.
P.LiveInRegs.push_back(Reg);
P.increase(MRI->getRegClass(Reg), TRI);
}
/// Add VirtReg to the live out set and increase max pressure.
void RegPressureTracker::discoverVirtLiveOut(unsigned Reg) {
assert(!LiveVirtRegs.count(Reg) && "avoid bumping max pressure twice");
if (std::find(P.LiveOutRegs.begin(), P.LiveOutRegs.end(), Reg) !=
P.LiveOutRegs.end())
return;
// At live out discovery, unconditionally increase the high water mark.
P.LiveOutRegs.push_back(Reg);
P.increase(MRI->getRegClass(Reg), TRI);
}
/// Recede across the previous instruction.
bool RegPressureTracker::recede() {
// Check for the top of the analyzable region.
if (CurrPos == MBB->begin()) {
closeRegion();
return false;
}
if (!isBottomClosed())
closeBottom();
// Open the top of the region using block iterators.
if (!RequireIntervals && isTopClosed())
static_cast<RegionPressure&>(P).openTop(CurrPos);
// Find the previous instruction.
do
--CurrPos;
while (CurrPos != MBB->begin() && CurrPos->isDebugValue());
if (CurrPos->isDebugValue()) {
closeRegion();
return false;
}
SlotIndex SlotIdx;
if (RequireIntervals)
SlotIdx = LIS->getInstructionIndex(CurrPos).getRegSlot();
// Open the top of the region using slot indexes.
if (RequireIntervals && isTopClosed())
static_cast<IntervalPressure&>(P).openTop(SlotIdx);
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(CurrPos, PhysRegOpers, VirtRegOpers, TRI, MRI);
// Boost pressure for all dead defs together.
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
// Kill liveness at live defs.
// TODO: consider earlyclobbers?
for (unsigned i = 0, e = PhysRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Defs[i];
if (LivePhysRegs.erase(Reg))
decreasePhysRegPressure(Reg);
else
discoverPhysLiveOut(Reg);
}
for (unsigned i = 0, e = VirtRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Defs[i];
if (LiveVirtRegs.erase(Reg))
decreaseVirtRegPressure(Reg);
else
discoverVirtLiveOut(Reg);
}
// Generate liveness for uses.
for (unsigned i = 0, e = PhysRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Uses[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI)) {
increasePhysRegPressure(Reg);
LivePhysRegs.insert(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
if (!LiveVirtRegs.count(Reg)) {
// Adjust liveouts if LiveIntervals are available.
if (RequireIntervals) {
const LiveInterval *LI = &LIS->getInterval(Reg);
if (!LI->killedAt(SlotIdx))
discoverVirtLiveOut(Reg);
}
increaseVirtRegPressure(Reg);
LiveVirtRegs.insert(Reg);
}
}
return true;
}
/// Advance across the current instruction.
bool RegPressureTracker::advance() {
// Check for the bottom of the analyzable region.
if (CurrPos == MBB->end()) {
closeRegion();
return false;
}
if (!isTopClosed())
closeTop();
SlotIndex SlotIdx;
if (RequireIntervals)
SlotIdx = getCurrSlot();
// Open the bottom of the region using slot indexes.
if (isBottomClosed()) {
if (RequireIntervals)
static_cast<IntervalPressure&>(P).openBottom(SlotIdx);
else
static_cast<RegionPressure&>(P).openBottom(CurrPos);
}
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(CurrPos, PhysRegOpers, VirtRegOpers, TRI, MRI);
// Kill liveness at last uses.
for (unsigned i = 0, e = PhysRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Uses[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI))
discoverPhysLiveIn(Reg);
else {
// Allocatable physregs are always single-use before regalloc.
decreasePhysRegPressure(Reg);
LivePhysRegs.erase(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
if (RequireIntervals) {
const LiveInterval *LI = &LIS->getInterval(Reg);
if (LI->killedAt(SlotIdx)) {
if (LiveVirtRegs.erase(Reg))
decreaseVirtRegPressure(Reg);
else
discoverVirtLiveIn(Reg);
}
}
else if (!LiveVirtRegs.count(Reg)) {
discoverVirtLiveIn(Reg);
increaseVirtRegPressure(Reg);
}
}
// Generate liveness for defs.
for (unsigned i = 0, e = PhysRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Defs[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI)) {
increasePhysRegPressure(Reg);
LivePhysRegs.insert(Reg);
}
}
for (unsigned i = 0, e = VirtRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Defs[i];
if (LiveVirtRegs.insert(Reg).second)
increaseVirtRegPressure(Reg);
}
// Boost pressure for all dead defs together.
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
// Find the next instruction.
do
++CurrPos;
while (CurrPos != MBB->end() && CurrPos->isDebugValue());
return true;
}
/// Find the max change in excess pressure across all sets.
static void computeExcessPressureDelta(ArrayRef<unsigned> OldPressureVec,
ArrayRef<unsigned> NewPressureVec,
RegPressureDelta &Delta,
const TargetRegisterInfo *TRI) {
int ExcessUnits = 0;
unsigned PSetID = ~0U;
for (unsigned i = 0, e = OldPressureVec.size(); i < e; ++i) {
unsigned POld = OldPressureVec[i];
unsigned PNew = NewPressureVec[i];
int PDiff = (int)PNew - (int)POld;
if (!PDiff) // No change in this set in the common case.
continue;
// Only consider change beyond the limit.
unsigned Limit = TRI->getRegPressureSetLimit(i);
if (Limit > POld) {
if (Limit > PNew)
PDiff = 0; // Under the limit
else
PDiff = PNew - Limit; // Just exceeded limit.
}
else if (Limit > PNew)
PDiff = Limit - POld; // Just obeyed limit.
if (std::abs(PDiff) > std::abs(ExcessUnits)) {
ExcessUnits = PDiff;
PSetID = i;
}
}
Delta.Excess.PSetID = PSetID;
Delta.Excess.UnitIncrease = ExcessUnits;
}
/// Find the max change in max pressure that either surpasses a critical PSet
/// limit or exceeds the current MaxPressureLimit.
///
/// FIXME: comparing each element of the old and new MaxPressure vectors here is
/// silly. It's done now to demonstrate the concept but will go away with a
/// RegPressureTracker API change to work with pressure differences.
static void computeMaxPressureDelta(ArrayRef<unsigned> OldMaxPressureVec,
ArrayRef<unsigned> NewMaxPressureVec,
ArrayRef<PressureElement> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit,
RegPressureDelta &Delta) {
Delta.CriticalMax = PressureElement();
Delta.CurrentMax = PressureElement();
unsigned CritIdx = 0, CritEnd = CriticalPSets.size();
for (unsigned i = 0, e = OldMaxPressureVec.size(); i < e; ++i) {
unsigned POld = OldMaxPressureVec[i];
unsigned PNew = NewMaxPressureVec[i];
if (PNew == POld) // No change in this set in the common case.
continue;
while (CritIdx != CritEnd && CriticalPSets[CritIdx].PSetID < i)
++CritIdx;
if (CritIdx != CritEnd && CriticalPSets[CritIdx].PSetID == i) {
int PDiff = (int)PNew - (int)CriticalPSets[CritIdx].UnitIncrease;
if (PDiff > Delta.CriticalMax.UnitIncrease) {
Delta.CriticalMax.PSetID = i;
Delta.CriticalMax.UnitIncrease = PDiff;
}
}
// Find the greatest increase above MaxPressureLimit.
// (Ignores negative MDiff).
int MDiff = (int)PNew - (int)MaxPressureLimit[i];
if (MDiff > Delta.CurrentMax.UnitIncrease) {
Delta.CurrentMax.PSetID = i;
Delta.CurrentMax.UnitIncrease = PNew;
}
}
}
/// Record the upward impact of a single instruction on current register
/// pressure. Unlike the advance/recede pressure tracking interface, this does
/// not discover live in/outs.
///
/// This is intended for speculative queries. It leaves pressure inconsistent
/// with the current position, so must be restored by the caller.
void RegPressureTracker::bumpUpwardPressure(const MachineInstr *MI) {
// Account for register pressure similar to RegPressureTracker::recede().
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(MI, PhysRegOpers, VirtRegOpers, TRI, MRI);
// Boost max pressure for all dead defs together.
// Since CurrSetPressure and MaxSetPressure
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
// Kill liveness at live defs.
for (unsigned i = 0, e = PhysRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Defs[i];
if (!findReg(Reg, false, PhysRegOpers.Uses, TRI))
decreasePhysRegPressure(PhysRegOpers.Defs);
}
for (unsigned i = 0, e = VirtRegOpers.Defs.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Defs[i];
if (!findReg(Reg, true, VirtRegOpers.Uses, TRI))
decreaseVirtRegPressure(VirtRegOpers.Defs);
}
// Generate liveness for uses.
for (unsigned i = 0, e = PhysRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = PhysRegOpers.Uses[i];
if (!hasRegAlias(Reg, LivePhysRegs, TRI))
increasePhysRegPressure(Reg);
}
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
if (!LiveVirtRegs.count(Reg))
increaseVirtRegPressure(Reg);
}
}
/// Consider the pressure increase caused by traversing this instruction
/// bottom-up. Find the pressure set with the most change beyond its pressure
/// limit based on the tracker's current pressure, and return the change in
/// number of register units of that pressure set introduced by this
/// instruction.
///
/// This assumes that the current LiveOut set is sufficient.
///
/// FIXME: This is expensive for an on-the-fly query. We need to cache the
/// result per-SUnit with enough information to adjust for the current
/// scheduling position. But this works as a proof of concept.
void RegPressureTracker::
getMaxUpwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta,
ArrayRef<PressureElement> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit) {
// Snapshot Pressure.
// FIXME: The snapshot heap space should persist. But I'm planning to
// summarize the pressure effect so we don't need to snapshot at all.
std::vector<unsigned> SavedPressure = CurrSetPressure;
std::vector<unsigned> SavedMaxPressure = P.MaxSetPressure;
bumpUpwardPressure(MI);
computeExcessPressureDelta(SavedPressure, CurrSetPressure, Delta, TRI);
computeMaxPressureDelta(SavedMaxPressure, P.MaxSetPressure, CriticalPSets,
MaxPressureLimit, Delta);
assert(Delta.CriticalMax.UnitIncrease >= 0 &&
Delta.CurrentMax.UnitIncrease >= 0 && "cannot decrease max pressure");
// Restore the tracker's state.
P.MaxSetPressure.swap(SavedMaxPressure);
CurrSetPressure.swap(SavedPressure);
}
/// Helper to find a vreg use between two indices [PriorUseIdx, NextUseIdx).
static bool findUseBetween(unsigned Reg,
SlotIndex PriorUseIdx, SlotIndex NextUseIdx,
const MachineRegisterInfo *MRI,
const LiveIntervals *LIS) {
for (MachineRegisterInfo::use_nodbg_iterator
UI = MRI->use_nodbg_begin(Reg), UE = MRI->use_nodbg_end();
UI != UE; UI.skipInstruction()) {
const MachineInstr* MI = &*UI;
SlotIndex InstSlot = LIS->getInstructionIndex(MI).getRegSlot();
if (InstSlot >= PriorUseIdx && InstSlot < NextUseIdx)
return true;
}
return false;
}
/// Record the downward impact of a single instruction on current register
/// pressure. Unlike the advance/recede pressure tracking interface, this does
/// not discover live in/outs.
///
/// This is intended for speculative queries. It leaves pressure inconsistent
/// with the current position, so must be restored by the caller.
void RegPressureTracker::bumpDownwardPressure(const MachineInstr *MI) {
// Account for register pressure similar to RegPressureTracker::recede().
PhysRegOperands PhysRegOpers;
VirtRegOperands VirtRegOpers;
collectOperands(MI, PhysRegOpers, VirtRegOpers, TRI, MRI);
// Kill liveness at last uses. Assume allocatable physregs are single-use
// rather than checking LiveIntervals.
decreasePhysRegPressure(PhysRegOpers.Uses);
if (RequireIntervals) {
SlotIndex SlotIdx = LIS->getInstructionIndex(MI).getRegSlot();
for (unsigned i = 0, e = VirtRegOpers.Uses.size(); i < e; ++i) {
unsigned Reg = VirtRegOpers.Uses[i];
const LiveInterval *LI = &LIS->getInterval(Reg);
// FIXME: allow the caller to pass in the list of vreg uses that remain to
// be bottom-scheduled to avoid searching uses at each query.
SlotIndex CurrIdx = getCurrSlot();
if (LI->killedAt(SlotIdx)
&& !findUseBetween(Reg, CurrIdx, SlotIdx, MRI, LIS)) {
decreaseVirtRegPressure(Reg);
}
}
}
// Generate liveness for defs.
increasePhysRegPressure(PhysRegOpers.Defs);
increaseVirtRegPressure(VirtRegOpers.Defs);
// Boost pressure for all dead defs together.
increasePhysRegPressure(PhysRegOpers.DeadDefs);
increaseVirtRegPressure(VirtRegOpers.DeadDefs);
decreasePhysRegPressure(PhysRegOpers.DeadDefs);
decreaseVirtRegPressure(VirtRegOpers.DeadDefs);
}
/// Consider the pressure increase caused by traversing this instruction
/// top-down. Find the register class with the most change in its pressure limit
/// based on the tracker's current pressure, and return the number of excess
/// register units of that pressure set introduced by this instruction.
///
/// This assumes that the current LiveIn set is sufficient.
void RegPressureTracker::
getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta,
ArrayRef<PressureElement> CriticalPSets,
ArrayRef<unsigned> MaxPressureLimit) {
// Snapshot Pressure.
std::vector<unsigned> SavedPressure = CurrSetPressure;
std::vector<unsigned> SavedMaxPressure = P.MaxSetPressure;
bumpDownwardPressure(MI);
computeExcessPressureDelta(SavedPressure, CurrSetPressure, Delta, TRI);
computeMaxPressureDelta(SavedMaxPressure, P.MaxSetPressure, CriticalPSets,
MaxPressureLimit, Delta);
assert(Delta.CriticalMax.UnitIncrease >= 0 &&
Delta.CurrentMax.UnitIncrease >= 0 && "cannot decrease max pressure");
// Restore the tracker's state.
P.MaxSetPressure.swap(SavedMaxPressure);
CurrSetPressure.swap(SavedPressure);
}
/// Get the pressure of each PSet after traversing this instruction bottom-up.
void RegPressureTracker::
getUpwardPressure(const MachineInstr *MI,
std::vector<unsigned> &PressureResult,
std::vector<unsigned> &MaxPressureResult) {
// Snapshot pressure.
PressureResult = CurrSetPressure;
MaxPressureResult = P.MaxSetPressure;
bumpUpwardPressure(MI);
// Current pressure becomes the result. Restore current pressure.
P.MaxSetPressure.swap(MaxPressureResult);
CurrSetPressure.swap(PressureResult);
}
/// Get the pressure of each PSet after traversing this instruction top-down.
void RegPressureTracker::
getDownwardPressure(const MachineInstr *MI,
std::vector<unsigned> &PressureResult,
std::vector<unsigned> &MaxPressureResult) {
// Snapshot pressure.
PressureResult = CurrSetPressure;
MaxPressureResult = P.MaxSetPressure;
bumpDownwardPressure(MI);
// Current pressure becomes the result. Restore current pressure.
P.MaxSetPressure.swap(MaxPressureResult);
CurrSetPressure.swap(PressureResult);
}