llvm-6502/lib/MC/MCAssembler.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

984 lines
32 KiB
C++

//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "assembler"
#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
STATISTIC(evaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
: Assembler(Asm), LastValidFragment()
{
// Compute the section layout order. Virtual sections must go last.
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
if (!it->getSection().isVirtualSection())
SectionOrder.push_back(&*it);
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
if (it->getSection().isVirtualSection())
SectionOrder.push_back(&*it);
}
bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
const MCSectionData &SD = *F->getParent();
const MCFragment *LastValid = LastValidFragment.lookup(&SD);
if (!LastValid)
return false;
assert(LastValid->getParent() == F->getParent());
return F->getLayoutOrder() <= LastValid->getLayoutOrder();
}
void MCAsmLayout::Invalidate(MCFragment *F) {
// If this fragment wasn't already up-to-date, we don't need to do anything.
if (!isFragmentUpToDate(F))
return;
// Otherwise, reset the last valid fragment to this fragment.
const MCSectionData &SD = *F->getParent();
LastValidFragment[&SD] = F;
}
void MCAsmLayout::EnsureValid(const MCFragment *F) const {
MCSectionData &SD = *F->getParent();
MCFragment *Cur = LastValidFragment[&SD];
if (!Cur)
Cur = &*SD.begin();
else
Cur = Cur->getNextNode();
// Advance the layout position until the fragment is up-to-date.
while (!isFragmentUpToDate(F)) {
const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
Cur = Cur->getNextNode();
}
}
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
EnsureValid(F);
assert(F->Offset != ~UINT64_C(0) && "Address not set!");
return F->Offset;
}
uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
const MCSymbol &S = SD->getSymbol();
// If this is a variable, then recursively evaluate now.
if (S.isVariable()) {
MCValue Target;
if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
report_fatal_error("unable to evaluate offset for variable '" +
S.getName() + "'");
// Verify that any used symbols are defined.
if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
report_fatal_error("unable to evaluate offset to undefined symbol '" +
Target.getSymA()->getSymbol().getName() + "'");
if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
report_fatal_error("unable to evaluate offset to undefined symbol '" +
Target.getSymB()->getSymbol().getName() + "'");
uint64_t Offset = Target.getConstant();
if (Target.getSymA())
Offset += getSymbolOffset(&Assembler.getSymbolData(
Target.getSymA()->getSymbol()));
if (Target.getSymB())
Offset -= getSymbolOffset(&Assembler.getSymbolData(
Target.getSymB()->getSymbol()));
return Offset;
}
assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
return getFragmentOffset(SD->getFragment()) + SD->getOffset();
}
uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
// The size is the last fragment's end offset.
const MCFragment &F = SD->getFragmentList().back();
return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
}
uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
// Virtual sections have no file size.
if (SD->getSection().isVirtualSection())
return 0;
// Otherwise, the file size is the same as the address space size.
return getSectionAddressSize(SD);
}
/* *** */
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}
MCFragment::~MCFragment() {
}
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
: Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
{
if (Parent)
Parent->getFragmentList().push_back(this);
}
/* *** */
MCSectionData::MCSectionData() : Section(0) {}
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(&_Section),
Ordinal(~UINT32_C(0)),
Alignment(1),
HasInstructions(false)
{
if (A)
A->getSectionList().push_back(this);
}
/* *** */
MCSymbolData::MCSymbolData() : Symbol(0) {}
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
uint64_t _Offset, MCAssembler *A)
: Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
IsExternal(false), IsPrivateExtern(false),
CommonSize(0), SymbolSize(0), CommonAlign(0),
Flags(0), Index(0)
{
if (A)
A->getSymbolList().push_back(this);
}
/* *** */
MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
raw_ostream &OS_)
: Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
OS(OS_), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false) {
}
MCAssembler::~MCAssembler() {
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
// Non-temporary labels should always be visible to the linker.
if (!Symbol.isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
// Otherwise, check if the section requires symbols even for temporary labels.
return getBackend().doesSectionRequireSymbols(Symbol.getSection());
}
const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(SD->getSymbol()))
return SD;
// Absolute and undefined symbols have no defining atom.
if (!SD->getFragment())
return 0;
// Non-linker visible symbols in sections which can't be atomized have no
// defining atom.
if (!getBackend().isSectionAtomizable(
SD->getFragment()->getParent()->getSection()))
return 0;
// Otherwise, return the atom for the containing fragment.
return SD->getFragment()->getAtom();
}
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::evaluateFixup;
if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
bool IsPCRel = Backend.getFixupKindInfo(
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved;
if (IsPCRel) {
if (Target.getSymB()) {
IsResolved = false;
} else if (!Target.getSymA()) {
IsResolved = false;
} else {
const MCSymbolRefExpr *A = Target.getSymA();
const MCSymbol &SA = A->getSymbol();
if (A->getKind() != MCSymbolRefExpr::VK_None ||
SA.AliasedSymbol().isUndefined()) {
IsResolved = false;
} else {
const MCSymbolData &DataA = getSymbolData(SA);
IsResolved =
getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
*DF, false, true);
}
}
} else {
IsResolved = Target.isAbsolute();
}
Value = Target.getConstant();
if (const MCSymbolRefExpr *A = Target.getSymA()) {
const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
if (Sym.isDefined())
Value += Layout.getSymbolOffset(&getSymbolData(Sym));
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
if (Sym.isDefined())
Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
}
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
assert((ShouldAlignPC ? IsPCRel : true) &&
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
if (IsPCRel) {
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
// A number of ARM fixups in Thumb mode require that the effective PC
// address be determined as the 32-bit aligned version of the actual offset.
if (ShouldAlignPC) Offset &= ~0x3;
Value -= Offset;
}
// Let the backend adjust the fixup value if necessary, including whether
// we need a relocation.
Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
IsResolved);
return IsResolved;
}
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const {
switch (F.getKind()) {
case MCFragment::FT_Data:
return cast<MCDataFragment>(F).getContents().size();
case MCFragment::FT_Fill:
return cast<MCFillFragment>(F).getSize();
case MCFragment::FT_Inst:
return cast<MCInstFragment>(F).getInstSize();
case MCFragment::FT_LEB:
return cast<MCLEBFragment>(F).getContents().size();
case MCFragment::FT_Align: {
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
unsigned Offset = Layout.getFragmentOffset(&AF);
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
// If we are padding with nops, force the padding to be larger than the
// minimum nop size.
if (Size > 0 && AF.hasEmitNops()) {
while (Size % getBackend().getMinimumNopSize())
Size += AF.getAlignment();
}
if (Size > AF.getMaxBytesToEmit())
return 0;
return Size;
}
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
int64_t TargetLocation;
if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
int64_t Size = TargetLocation - FragmentOffset;
if (Size < 0 || Size >= 0x40000000)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "')");
return Size;
}
case MCFragment::FT_Dwarf:
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
case MCFragment::FT_DwarfFrame:
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
}
llvm_unreachable("invalid fragment kind");
}
void MCAsmLayout::LayoutFragment(MCFragment *F) {
MCFragment *Prev = F->getPrevNode();
// We should never try to recompute something which is up-to-date.
assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
// We should never try to compute the fragment layout if it's predecessor
// isn't up-to-date.
assert((!Prev || isFragmentUpToDate(Prev)) &&
"Attempt to compute fragment before it's predecessor!");
++stats::FragmentLayouts;
// Compute fragment offset and size.
uint64_t Offset = 0;
if (Prev)
Offset += Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
F->Offset = Offset;
LastValidFragment[F->getParent()] = F;
}
/// WriteFragmentData - Write the \p F data to the output file.
static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F) {
MCObjectWriter *OW = &Asm.getWriter();
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
uint64_t Count = FragmentSize / AF.getValueSize();
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.hasEmitNops()) {
if (!Asm.getBackend().writeNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->Write8 (uint8_t (AF.getValue())); break;
case 2: OW->Write16(uint16_t(AF.getValue())); break;
case 4: OW->Write32(uint32_t(AF.getValue())); break;
case 8: OW->Write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data: {
MCDataFragment &DF = cast<MCDataFragment>(F);
assert(FragmentSize == DF.getContents().size() && "Invalid size!");
OW->WriteBytes(DF.getContents().str());
break;
}
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
switch (FF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->Write8 (uint8_t (FF.getValue())); break;
case 2: OW->Write16(uint16_t(FF.getValue())); break;
case 4: OW->Write32(uint32_t(FF.getValue())); break;
case 8: OW->Write64(uint64_t(FF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Inst: {
MCInstFragment &IF = cast<MCInstFragment>(F);
OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size()));
break;
}
case MCFragment::FT_LEB: {
MCLEBFragment &LF = cast<MCLEBFragment>(F);
OW->WriteBytes(LF.getContents().str());
break;
}
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->Write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
OW->WriteBytes(OF.getContents().str());
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
OW->WriteBytes(CF.getContents().str());
break;
}
}
assert(OW->getStream().tell() - Start == FragmentSize);
}
void MCAssembler::writeSectionData(const MCSectionData *SD,
const MCAsmLayout &Layout) const {
// Ignore virtual sections.
if (SD->getSection().isVirtualSection()) {
assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
// Check that contents are only things legal inside a virtual section.
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it) {
switch (it->getKind()) {
default: llvm_unreachable("Invalid fragment in virtual section!");
case MCFragment::FT_Data: {
// Check that we aren't trying to write a non-zero contents (or fixups)
// into a virtual section. This is to support clients which use standard
// directives to fill the contents of virtual sections.
MCDataFragment &DF = cast<MCDataFragment>(*it);
assert(DF.fixup_begin() == DF.fixup_end() &&
"Cannot have fixups in virtual section!");
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
assert(DF.getContents()[i] == 0 &&
"Invalid data value for virtual section!");
break;
}
case MCFragment::FT_Align:
// Check that we aren't trying to write a non-zero value into a virtual
// section.
assert((!cast<MCAlignFragment>(it)->getValueSize() ||
!cast<MCAlignFragment>(it)->getValue()) &&
"Invalid align in virtual section!");
break;
case MCFragment::FT_Fill:
assert(!cast<MCFillFragment>(it)->getValueSize() &&
"Invalid fill in virtual section!");
break;
}
}
return;
}
uint64_t Start = getWriter().getStream().tell();
(void)Start;
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it)
WriteFragmentData(*this, Layout, *it);
assert(getWriter().getStream().tell() - Start ==
Layout.getSectionAddressSize(SD));
}
uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
MCFragment &F,
const MCFixup &Fixup) {
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
}
return FixedValue;
}
void MCAssembler::Finish() {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Create the layout object.
MCAsmLayout Layout(*this);
// Create dummy fragments and assign section ordinals.
unsigned SectionIndex = 0;
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
// Create dummy fragments to eliminate any empty sections, this simplifies
// layout.
if (it->getFragmentList().empty())
new MCDataFragment(it);
it->setOrdinal(SectionIndex++);
}
// Assign layout order indices to sections and fragments.
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
MCSectionData *SD = Layout.getSectionOrder()[i];
SD->setLayoutOrder(i);
unsigned FragmentIndex = 0;
for (MCSectionData::iterator it2 = SD->begin(),
ie2 = SD->end(); it2 != ie2; ++it2)
it2->setLayoutOrder(FragmentIndex++);
}
// Layout until everything fits.
while (layoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
finishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
uint64_t StartOffset = OS.tell();
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
getWriter().ExecutePostLayoutBinding(*this, Layout);
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
if (DF) {
for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
MCFixup &Fixup = *it3;
uint64_t FixedValue = handleFixup(Layout, *DF, Fixup);
getBackend().applyFixup(Fixup, DF->getContents().data(),
DF->getContents().size(), FixedValue);
}
}
MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
if (IF) {
for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(),
ie3 = IF->fixup_end(); it3 != ie3; ++it3) {
MCFixup &Fixup = *it3;
uint64_t FixedValue = handleFixup(Layout, *IF, Fixup);
getBackend().applyFixup(Fixup, IF->getCode().data(),
IF->getCode().size(), FixedValue);
}
}
}
}
// Write the object file.
getWriter().WriteObject(*this, Layout);
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
const MCInstFragment *DF,
const MCAsmLayout &Layout) const {
if (getRelaxAll())
return true;
// If we cannot resolve the fixup value, it requires relaxation.
MCValue Target;
uint64_t Value;
if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
return true;
return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
}
bool MCAssembler::fragmentNeedsRelaxation(const MCInstFragment *IF,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().mayNeedRelaxation(IF->getInst()))
return false;
for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
ie = IF->fixup_end(); it != ie; ++it)
if (fixupNeedsRelaxation(*it, IF, Layout))
return true;
return false;
}
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
MCInstFragment &IF) {
if (!fragmentNeedsRelaxation(&IF, Layout))
return false;
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().relaxInstruction(IF.getInst(), Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
VecOS.flush();
// Update the instruction fragment.
IF.setInst(Relaxed);
IF.getCode() = Code;
IF.getFixups().clear();
// FIXME: Eliminate copy.
for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
IF.getFixups().push_back(Fixups[i]);
return true;
}
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
int64_t Value = 0;
uint64_t OldSize = LF.getContents().size();
bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
(void)IsAbs;
assert(IsAbs);
SmallString<8> &Data = LF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
if (LF.isSigned())
encodeSLEB128(Value, OSE);
else
encodeULEB128(Value, OSE);
OSE.flush();
return OldSize != LF.getContents().size();
}
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
(void)IsAbs;
assert(IsAbs);
int64_t LineDelta;
LineDelta = DF.getLineDelta();
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
OSE.flush();
return OldSize != Data.size();
}
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF) {
int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
(void)IsAbs;
assert(IsAbs);
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
OSE.flush();
return OldSize != Data.size();
}
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout,
MCSectionData &SD) {
MCFragment *FirstInvalidFragment = NULL;
// Scan for fragments that need relaxation.
for (MCSectionData::iterator it2 = SD.begin(),
ie2 = SD.end(); it2 != ie2; ++it2) {
// Check if this is an fragment that needs relaxation.
bool relaxedFrag = false;
switch(it2->getKind()) {
default:
break;
case MCFragment::FT_Inst:
relaxedFrag = relaxInstruction(Layout, *cast<MCInstFragment>(it2));
break;
case MCFragment::FT_Dwarf:
relaxedFrag = relaxDwarfLineAddr(Layout,
*cast<MCDwarfLineAddrFragment>(it2));
break;
case MCFragment::FT_DwarfFrame:
relaxedFrag =
relaxDwarfCallFrameFragment(Layout,
*cast<MCDwarfCallFrameFragment>(it2));
break;
case MCFragment::FT_LEB:
relaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(it2));
break;
}
// Update the layout, and remember that we relaxed.
if (relaxedFrag && !FirstInvalidFragment)
FirstInvalidFragment = it2;
}
if (FirstInvalidFragment) {
Layout.Invalidate(FirstInvalidFragment);
return true;
}
return false;
}
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
while(layoutSectionOnce(Layout, SD))
WasRelaxed = true;
}
return WasRelaxed;
}
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
// The layout is done. Mark every fragment as valid.
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
}
}
// Debugging methods
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
OS << "<MCFixup" << " Offset:" << AF.getOffset()
<< " Value:" << *AF.getValue()
<< " Kind:" << AF.getKind() << ">";
return OS;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MCFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<";
switch (getKind()) {
case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
case MCFragment::FT_Data: OS << "MCDataFragment"; break;
case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
case MCFragment::FT_Inst: OS << "MCInstFragment"; break;
case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
}
OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
<< " Offset:" << Offset << ">";
switch (getKind()) {
case MCFragment::FT_Align: {
const MCAlignFragment *AF = cast<MCAlignFragment>(this);
if (AF->hasEmitNops())
OS << " (emit nops)";
OS << "\n ";
OS << " Alignment:" << AF->getAlignment()
<< " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
<< " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
break;
}
case MCFragment::FT_Data: {
const MCDataFragment *DF = cast<MCDataFragment>(this);
OS << "\n ";
OS << " Contents:[";
const SmallVectorImpl<char> &Contents = DF->getContents();
for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
if (i) OS << ",";
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
}
OS << "] (" << Contents.size() << " bytes)";
if (!DF->getFixups().empty()) {
OS << ",\n ";
OS << " Fixups:[";
for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
ie = DF->fixup_end(); it != ie; ++it) {
if (it != DF->fixup_begin()) OS << ",\n ";
OS << *it;
}
OS << "]";
}
break;
}
case MCFragment::FT_Fill: {
const MCFillFragment *FF = cast<MCFillFragment>(this);
OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
<< " Size:" << FF->getSize();
break;
}
case MCFragment::FT_Inst: {
const MCInstFragment *IF = cast<MCInstFragment>(this);
OS << "\n ";
OS << " Inst:";
IF->getInst().dump_pretty(OS);
break;
}
case MCFragment::FT_Org: {
const MCOrgFragment *OF = cast<MCOrgFragment>(this);
OS << "\n ";
OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
OS << "\n ";
OS << " AddrDelta:" << OF->getAddrDelta()
<< " LineDelta:" << OF->getLineDelta();
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
OS << "\n ";
OS << " AddrDelta:" << CF->getAddrDelta();
break;
}
case MCFragment::FT_LEB: {
const MCLEBFragment *LF = cast<MCLEBFragment>(this);
OS << "\n ";
OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
break;
}
}
OS << ">";
}
void MCSectionData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSectionData";
OS << " Alignment:" << getAlignment() << " Fragments:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "]>";
}
void MCSymbolData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSymbolData Symbol:" << getSymbol()
<< " Fragment:" << getFragment() << " Offset:" << getOffset()
<< " Flags:" << getFlags() << " Index:" << getIndex();
if (isCommon())
OS << " (common, size:" << getCommonSize()
<< " align: " << getCommonAlignment() << ")";
if (isExternal())
OS << " (external)";
if (isPrivateExtern())
OS << " (private extern)";
OS << ">";
}
void MCAssembler::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAssembler\n";
OS << " Sections:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "],\n";
OS << " Symbols:[";
for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
if (it != symbol_begin()) OS << ",\n ";
it->dump();
}
OS << "]>\n";
}
#endif
// anchors for MC*Fragment vtables
void MCDataFragment::anchor() { }
void MCInstFragment::anchor() { }
void MCAlignFragment::anchor() { }
void MCFillFragment::anchor() { }
void MCOrgFragment::anchor() { }
void MCLEBFragment::anchor() { }
void MCDwarfLineAddrFragment::anchor() { }
void MCDwarfCallFrameFragment::anchor() { }