llvm-6502/lib/Support/Unix/Memory.inc
Bill Schmidt d063a326b2 [PowerPC] Improve consistency in use of __ppc__, __powerpc__, etc.
Both GCC and LLVM will implicitly define __ppc__ and __powerpc__ for
all PowerPC targets, whether 32- or 64-bit.  They will both implicitly
define __ppc64__ and __powerpc64__ for 64-bit PowerPC targets, and not
for 32-bit targets.  We cannot be sure that all other possible
compilers used to compile Clang/LLVM define both __ppc__ and
__powerpc__, for example, so it is best to check for both when relying
on either inside the Clang/LLVM code base.

This patch makes sure we always check for both variants.  In addition,
it fixes one unnecessary check in lib/Target/PowerPC/PPCJITInfo.cpp.
(At least one of __ppc__ and __powerpc__ should always be defined when
compiling for a PowerPC target, no matter which compiler is used, so
testing for them is unnecessary.)

There are some places in the compiler that check for other variants,
like __POWERPC__ and _POWER, and I have left those in place.  There is
no need to add them elsewhere.  This seems to be in Apple-specific
code, and I won't take a chance on breaking it.

There is no intended change in behavior; thus, no test cases are
added.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187248 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-26 21:39:15 +00:00

361 lines
11 KiB
C++

//===- Unix/Memory.cpp - Generic UNIX System Configuration ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some functions for various memory management utilities.
//
//===----------------------------------------------------------------------===//
#include "Unix.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Process.h"
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#ifdef __APPLE__
#include <mach/mach.h>
#endif
#if defined(__mips__)
# if defined(__OpenBSD__)
# include <mips64/sysarch.h>
# else
# include <sys/cachectl.h>
# endif
#endif
#ifdef __APPLE__
extern "C" void sys_icache_invalidate(const void *Addr, size_t len);
#else
extern "C" void __clear_cache(void *, void*);
#endif
namespace {
int getPosixProtectionFlags(unsigned Flags) {
switch (Flags) {
case llvm::sys::Memory::MF_READ:
return PROT_READ;
case llvm::sys::Memory::MF_WRITE:
return PROT_WRITE;
case llvm::sys::Memory::MF_READ|llvm::sys::Memory::MF_WRITE:
return PROT_READ | PROT_WRITE;
case llvm::sys::Memory::MF_READ|llvm::sys::Memory::MF_EXEC:
return PROT_READ | PROT_EXEC;
case llvm::sys::Memory::MF_READ |
llvm::sys::Memory::MF_WRITE |
llvm::sys::Memory::MF_EXEC:
return PROT_READ | PROT_WRITE | PROT_EXEC;
case llvm::sys::Memory::MF_EXEC:
#if defined(__FreeBSD__)
// On PowerPC, having an executable page that has no read permission
// can have unintended consequences. The function InvalidateInstruction-
// Cache uses instructions dcbf and icbi, both of which are treated by
// the processor as loads. If the page has no read permissions,
// executing these instructions will result in a segmentation fault.
// Somehow, this problem is not present on Linux, but it does happen
// on FreeBSD.
return PROT_READ | PROT_EXEC;
#else
return PROT_EXEC;
#endif
default:
llvm_unreachable("Illegal memory protection flag specified!");
}
// Provide a default return value as required by some compilers.
return PROT_NONE;
}
} // namespace
namespace llvm {
namespace sys {
MemoryBlock
Memory::allocateMappedMemory(size_t NumBytes,
const MemoryBlock *const NearBlock,
unsigned PFlags,
error_code &EC) {
EC = error_code::success();
if (NumBytes == 0)
return MemoryBlock();
static const size_t PageSize = process::get_self()->page_size();
const size_t NumPages = (NumBytes+PageSize-1)/PageSize;
int fd = -1;
#ifdef NEED_DEV_ZERO_FOR_MMAP
static int zero_fd = open("/dev/zero", O_RDWR);
if (zero_fd == -1) {
EC = error_code(errno, system_category());
return MemoryBlock();
}
fd = zero_fd;
#endif
int MMFlags = MAP_PRIVATE |
#ifdef HAVE_MMAP_ANONYMOUS
MAP_ANONYMOUS
#else
MAP_ANON
#endif
; // Ends statement above
int Protect = getPosixProtectionFlags(PFlags);
// Use any near hint and the page size to set a page-aligned starting address
uintptr_t Start = NearBlock ? reinterpret_cast<uintptr_t>(NearBlock->base()) +
NearBlock->size() : 0;
if (Start && Start % PageSize)
Start += PageSize - Start % PageSize;
void *Addr = ::mmap(reinterpret_cast<void*>(Start), PageSize*NumPages,
Protect, MMFlags, fd, 0);
if (Addr == MAP_FAILED) {
if (NearBlock) //Try again without a near hint
return allocateMappedMemory(NumBytes, 0, PFlags, EC);
EC = error_code(errno, system_category());
return MemoryBlock();
}
MemoryBlock Result;
Result.Address = Addr;
Result.Size = NumPages*PageSize;
if (PFlags & MF_EXEC)
Memory::InvalidateInstructionCache(Result.Address, Result.Size);
return Result;
}
error_code
Memory::releaseMappedMemory(MemoryBlock &M) {
if (M.Address == 0 || M.Size == 0)
return error_code::success();
if (0 != ::munmap(M.Address, M.Size))
return error_code(errno, system_category());
M.Address = 0;
M.Size = 0;
return error_code::success();
}
error_code
Memory::protectMappedMemory(const MemoryBlock &M, unsigned Flags) {
if (M.Address == 0 || M.Size == 0)
return error_code::success();
if (!Flags)
return error_code(EINVAL, generic_category());
int Protect = getPosixProtectionFlags(Flags);
int Result = ::mprotect(M.Address, M.Size, Protect);
if (Result != 0)
return error_code(errno, system_category());
if (Flags & MF_EXEC)
Memory::InvalidateInstructionCache(M.Address, M.Size);
return error_code::success();
}
/// AllocateRWX - Allocate a slab of memory with read/write/execute
/// permissions. This is typically used for JIT applications where we want
/// to emit code to the memory then jump to it. Getting this type of memory
/// is very OS specific.
///
MemoryBlock
Memory::AllocateRWX(size_t NumBytes, const MemoryBlock* NearBlock,
std::string *ErrMsg) {
if (NumBytes == 0) return MemoryBlock();
size_t PageSize = process::get_self()->page_size();
size_t NumPages = (NumBytes+PageSize-1)/PageSize;
int fd = -1;
#ifdef NEED_DEV_ZERO_FOR_MMAP
static int zero_fd = open("/dev/zero", O_RDWR);
if (zero_fd == -1) {
MakeErrMsg(ErrMsg, "Can't open /dev/zero device");
return MemoryBlock();
}
fd = zero_fd;
#endif
int flags = MAP_PRIVATE |
#ifdef HAVE_MMAP_ANONYMOUS
MAP_ANONYMOUS
#else
MAP_ANON
#endif
;
void* start = NearBlock ? (unsigned char*)NearBlock->base() +
NearBlock->size() : 0;
#if defined(__APPLE__) && defined(__arm__)
void *pa = ::mmap(start, PageSize*NumPages, PROT_READ|PROT_EXEC,
flags, fd, 0);
#else
void *pa = ::mmap(start, PageSize*NumPages, PROT_READ|PROT_WRITE|PROT_EXEC,
flags, fd, 0);
#endif
if (pa == MAP_FAILED) {
if (NearBlock) //Try again without a near hint
return AllocateRWX(NumBytes, 0);
MakeErrMsg(ErrMsg, "Can't allocate RWX Memory");
return MemoryBlock();
}
#if defined(__APPLE__) && defined(__arm__)
kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)pa,
(vm_size_t)(PageSize*NumPages), 0,
VM_PROT_READ | VM_PROT_EXECUTE | VM_PROT_COPY);
if (KERN_SUCCESS != kr) {
MakeErrMsg(ErrMsg, "vm_protect max RX failed");
return MemoryBlock();
}
kr = vm_protect(mach_task_self(), (vm_address_t)pa,
(vm_size_t)(PageSize*NumPages), 0,
VM_PROT_READ | VM_PROT_WRITE);
if (KERN_SUCCESS != kr) {
MakeErrMsg(ErrMsg, "vm_protect RW failed");
return MemoryBlock();
}
#endif
MemoryBlock result;
result.Address = pa;
result.Size = NumPages*PageSize;
return result;
}
bool Memory::ReleaseRWX(MemoryBlock &M, std::string *ErrMsg) {
if (M.Address == 0 || M.Size == 0) return false;
if (0 != ::munmap(M.Address, M.Size))
return MakeErrMsg(ErrMsg, "Can't release RWX Memory");
return false;
}
bool Memory::setWritable (MemoryBlock &M, std::string *ErrMsg) {
#if defined(__APPLE__) && defined(__arm__)
if (M.Address == 0 || M.Size == 0) return false;
Memory::InvalidateInstructionCache(M.Address, M.Size);
kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)M.Address,
(vm_size_t)M.Size, 0, VM_PROT_READ | VM_PROT_WRITE);
return KERN_SUCCESS == kr;
#else
return true;
#endif
}
bool Memory::setExecutable (MemoryBlock &M, std::string *ErrMsg) {
#if defined(__APPLE__) && defined(__arm__)
if (M.Address == 0 || M.Size == 0) return false;
Memory::InvalidateInstructionCache(M.Address, M.Size);
kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)M.Address,
(vm_size_t)M.Size, 0, VM_PROT_READ | VM_PROT_EXECUTE | VM_PROT_COPY);
return KERN_SUCCESS == kr;
#elif defined(__arm__) || defined(__aarch64__)
Memory::InvalidateInstructionCache(M.Address, M.Size);
return true;
#else
return true;
#endif
}
bool Memory::setRangeWritable(const void *Addr, size_t Size) {
#if defined(__APPLE__) && defined(__arm__)
kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)Addr,
(vm_size_t)Size, 0,
VM_PROT_READ | VM_PROT_WRITE);
return KERN_SUCCESS == kr;
#else
return true;
#endif
}
bool Memory::setRangeExecutable(const void *Addr, size_t Size) {
#if defined(__APPLE__) && defined(__arm__)
kern_return_t kr = vm_protect(mach_task_self(), (vm_address_t)Addr,
(vm_size_t)Size, 0,
VM_PROT_READ | VM_PROT_EXECUTE | VM_PROT_COPY);
return KERN_SUCCESS == kr;
#else
return true;
#endif
}
/// InvalidateInstructionCache - Before the JIT can run a block of code
/// that has been emitted it must invalidate the instruction cache on some
/// platforms.
void Memory::InvalidateInstructionCache(const void *Addr,
size_t Len) {
// icache invalidation for PPC and ARM.
#if defined(__APPLE__)
# if (defined(__POWERPC__) || defined (__ppc__) || defined (__powerpc__) \
defined(_POWER) || defined(_ARCH_PPC)) || defined(__arm__)
sys_icache_invalidate(const_cast<void *>(Addr), Len);
# endif
#else
# if (defined(__POWERPC__) || defined (__ppc__) || defined (__powerpc__) || \
defined(_POWER) || defined(_ARCH_PPC)) && defined(__GNUC__)
const size_t LineSize = 32;
const intptr_t Mask = ~(LineSize - 1);
const intptr_t StartLine = ((intptr_t) Addr) & Mask;
const intptr_t EndLine = ((intptr_t) Addr + Len + LineSize - 1) & Mask;
for (intptr_t Line = StartLine; Line < EndLine; Line += LineSize)
asm volatile("dcbf 0, %0" : : "r"(Line));
asm volatile("sync");
for (intptr_t Line = StartLine; Line < EndLine; Line += LineSize)
asm volatile("icbi 0, %0" : : "r"(Line));
asm volatile("isync");
# elif (defined(__arm__) || defined(__aarch64__)) && defined(__GNUC__)
// FIXME: Can we safely always call this for __GNUC__ everywhere?
const char *Start = static_cast<const char *>(Addr);
const char *End = Start + Len;
__clear_cache(const_cast<char *>(Start), const_cast<char *>(End));
# elif defined(__mips__)
const char *Start = static_cast<const char *>(Addr);
# if defined(ANDROID)
// The declaration of "cacheflush" in Android bionic:
// extern int cacheflush(long start, long end, long flags);
const char *End = Start + Len;
long LStart = reinterpret_cast<long>(const_cast<char *>(Start));
long LEnd = reinterpret_cast<long>(const_cast<char *>(End));
cacheflush(LStart, LEnd, BCACHE);
# else
cacheflush(const_cast<char *>(Start), Len, BCACHE);
# endif
# endif
#endif // end apple
ValgrindDiscardTranslations(Addr, Len);
}
} // namespace sys
} // namespace llvm