mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
c038a78335
topologies, it is quite possible for a leaf node to have huge multiplicity, for example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x raised to a vast power (the multiplicity, or weight, of x). This patch fixes the computation of weights by correctly computing them no matter how big they are, rather than just overflowing and getting a wrong value. It turns out that the weight for a value never needs more bits to represent than the value itself, so it is enough to represent weights as APInts of the same bitwidth and do the right overflow-avoiding dance steps when computing weights. As a side-effect it reduces the number of multiplies needed in some cases of large powers. While there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree static, pushing the rank computation out into users. This is progress towards fixing PR13021. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158358 91177308-0d34-0410-b5e6-96231b3b80d8
437 lines
16 KiB
C++
437 lines
16 KiB
C++
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Instruction class for the VMCore library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/LeakDetector.h"
|
|
using namespace llvm;
|
|
|
|
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
|
|
Instruction *InsertBefore)
|
|
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
|
|
// Make sure that we get added to a basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
|
|
// If requested, insert this instruction into a basic block...
|
|
if (InsertBefore) {
|
|
assert(InsertBefore->getParent() &&
|
|
"Instruction to insert before is not in a basic block!");
|
|
InsertBefore->getParent()->getInstList().insert(InsertBefore, this);
|
|
}
|
|
}
|
|
|
|
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
|
|
BasicBlock *InsertAtEnd)
|
|
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(0) {
|
|
// Make sure that we get added to a basicblock
|
|
LeakDetector::addGarbageObject(this);
|
|
|
|
// append this instruction into the basic block
|
|
assert(InsertAtEnd && "Basic block to append to may not be NULL!");
|
|
InsertAtEnd->getInstList().push_back(this);
|
|
}
|
|
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
Instruction::~Instruction() {
|
|
assert(Parent == 0 && "Instruction still linked in the program!");
|
|
if (hasMetadataHashEntry())
|
|
clearMetadataHashEntries();
|
|
}
|
|
|
|
|
|
void Instruction::setParent(BasicBlock *P) {
|
|
if (getParent()) {
|
|
if (!P) LeakDetector::addGarbageObject(this);
|
|
} else {
|
|
if (P) LeakDetector::removeGarbageObject(this);
|
|
}
|
|
|
|
Parent = P;
|
|
}
|
|
|
|
void Instruction::removeFromParent() {
|
|
getParent()->getInstList().remove(this);
|
|
}
|
|
|
|
void Instruction::eraseFromParent() {
|
|
getParent()->getInstList().erase(this);
|
|
}
|
|
|
|
/// insertBefore - Insert an unlinked instructions into a basic block
|
|
/// immediately before the specified instruction.
|
|
void Instruction::insertBefore(Instruction *InsertPos) {
|
|
InsertPos->getParent()->getInstList().insert(InsertPos, this);
|
|
}
|
|
|
|
/// insertAfter - Insert an unlinked instructions into a basic block
|
|
/// immediately after the specified instruction.
|
|
void Instruction::insertAfter(Instruction *InsertPos) {
|
|
InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
|
|
}
|
|
|
|
/// moveBefore - Unlink this instruction from its current basic block and
|
|
/// insert it into the basic block that MovePos lives in, right before
|
|
/// MovePos.
|
|
void Instruction::moveBefore(Instruction *MovePos) {
|
|
MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
|
|
this);
|
|
}
|
|
|
|
|
|
const char *Instruction::getOpcodeName(unsigned OpCode) {
|
|
switch (OpCode) {
|
|
// Terminators
|
|
case Ret: return "ret";
|
|
case Br: return "br";
|
|
case Switch: return "switch";
|
|
case IndirectBr: return "indirectbr";
|
|
case Invoke: return "invoke";
|
|
case Resume: return "resume";
|
|
case Unreachable: return "unreachable";
|
|
|
|
// Standard binary operators...
|
|
case Add: return "add";
|
|
case FAdd: return "fadd";
|
|
case Sub: return "sub";
|
|
case FSub: return "fsub";
|
|
case Mul: return "mul";
|
|
case FMul: return "fmul";
|
|
case UDiv: return "udiv";
|
|
case SDiv: return "sdiv";
|
|
case FDiv: return "fdiv";
|
|
case URem: return "urem";
|
|
case SRem: return "srem";
|
|
case FRem: return "frem";
|
|
|
|
// Logical operators...
|
|
case And: return "and";
|
|
case Or : return "or";
|
|
case Xor: return "xor";
|
|
|
|
// Memory instructions...
|
|
case Alloca: return "alloca";
|
|
case Load: return "load";
|
|
case Store: return "store";
|
|
case AtomicCmpXchg: return "cmpxchg";
|
|
case AtomicRMW: return "atomicrmw";
|
|
case Fence: return "fence";
|
|
case GetElementPtr: return "getelementptr";
|
|
|
|
// Convert instructions...
|
|
case Trunc: return "trunc";
|
|
case ZExt: return "zext";
|
|
case SExt: return "sext";
|
|
case FPTrunc: return "fptrunc";
|
|
case FPExt: return "fpext";
|
|
case FPToUI: return "fptoui";
|
|
case FPToSI: return "fptosi";
|
|
case UIToFP: return "uitofp";
|
|
case SIToFP: return "sitofp";
|
|
case IntToPtr: return "inttoptr";
|
|
case PtrToInt: return "ptrtoint";
|
|
case BitCast: return "bitcast";
|
|
|
|
// Other instructions...
|
|
case ICmp: return "icmp";
|
|
case FCmp: return "fcmp";
|
|
case PHI: return "phi";
|
|
case Select: return "select";
|
|
case Call: return "call";
|
|
case Shl: return "shl";
|
|
case LShr: return "lshr";
|
|
case AShr: return "ashr";
|
|
case VAArg: return "va_arg";
|
|
case ExtractElement: return "extractelement";
|
|
case InsertElement: return "insertelement";
|
|
case ShuffleVector: return "shufflevector";
|
|
case ExtractValue: return "extractvalue";
|
|
case InsertValue: return "insertvalue";
|
|
case LandingPad: return "landingpad";
|
|
|
|
default: return "<Invalid operator> ";
|
|
}
|
|
}
|
|
|
|
/// isIdenticalTo - Return true if the specified instruction is exactly
|
|
/// identical to the current one. This means that all operands match and any
|
|
/// extra information (e.g. load is volatile) agree.
|
|
bool Instruction::isIdenticalTo(const Instruction *I) const {
|
|
return isIdenticalToWhenDefined(I) &&
|
|
SubclassOptionalData == I->SubclassOptionalData;
|
|
}
|
|
|
|
/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
|
|
/// ignores the SubclassOptionalData flags, which specify conditions
|
|
/// under which the instruction's result is undefined.
|
|
bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
|
|
if (getOpcode() != I->getOpcode() ||
|
|
getNumOperands() != I->getNumOperands() ||
|
|
getType() != I->getType())
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same.
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (getOperand(i) != I->getOperand(i))
|
|
return false;
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(this))
|
|
return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
|
|
LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
|
|
LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
|
|
LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(this))
|
|
return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
|
|
SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
|
|
SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
|
|
SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(this))
|
|
return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(this))
|
|
return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
|
|
CI->getAttributes() == cast<CallInst>(I)->getAttributes();
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
|
|
CI->getAttributes() == cast<InvokeInst>(I)->getAttributes();
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
|
|
return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
|
|
return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
|
|
if (const FenceInst *FI = dyn_cast<FenceInst>(this))
|
|
return FI->getOrdering() == cast<FenceInst>(FI)->getOrdering() &&
|
|
FI->getSynchScope() == cast<FenceInst>(FI)->getSynchScope();
|
|
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
|
|
return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
|
|
CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
|
|
CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
|
|
return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
|
|
RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
|
|
RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
|
|
RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
|
|
if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
|
|
const PHINode *otherPHI = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = thisPHI->getNumOperands(); i != e; ++i) {
|
|
if (thisPHI->getIncomingBlock(i) != otherPHI->getIncomingBlock(i))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// isSameOperationAs
|
|
// This should be kept in sync with isEquivalentOperation in
|
|
// lib/Transforms/IPO/MergeFunctions.cpp.
|
|
bool Instruction::isSameOperationAs(const Instruction *I) const {
|
|
if (getOpcode() != I->getOpcode() ||
|
|
getNumOperands() != I->getNumOperands() ||
|
|
getType() != I->getType())
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (getOperand(i)->getType() != I->getOperand(i)->getType())
|
|
return false;
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(this))
|
|
return LI->isVolatile() == cast<LoadInst>(I)->isVolatile() &&
|
|
LI->getAlignment() == cast<LoadInst>(I)->getAlignment() &&
|
|
LI->getOrdering() == cast<LoadInst>(I)->getOrdering() &&
|
|
LI->getSynchScope() == cast<LoadInst>(I)->getSynchScope();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(this))
|
|
return SI->isVolatile() == cast<StoreInst>(I)->isVolatile() &&
|
|
SI->getAlignment() == cast<StoreInst>(I)->getAlignment() &&
|
|
SI->getOrdering() == cast<StoreInst>(I)->getOrdering() &&
|
|
SI->getSynchScope() == cast<StoreInst>(I)->getSynchScope();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(this))
|
|
return CI->getPredicate() == cast<CmpInst>(I)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(this))
|
|
return CI->isTailCall() == cast<CallInst>(I)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I)->getCallingConv() &&
|
|
CI->getAttributes() == cast<CallInst>(I)->getAttributes();
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(this))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I)->getCallingConv() &&
|
|
CI->getAttributes() ==
|
|
cast<InvokeInst>(I)->getAttributes();
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(this))
|
|
return IVI->getIndices() == cast<InsertValueInst>(I)->getIndices();
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(this))
|
|
return EVI->getIndices() == cast<ExtractValueInst>(I)->getIndices();
|
|
if (const FenceInst *FI = dyn_cast<FenceInst>(this))
|
|
return FI->getOrdering() == cast<FenceInst>(I)->getOrdering() &&
|
|
FI->getSynchScope() == cast<FenceInst>(I)->getSynchScope();
|
|
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(this))
|
|
return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I)->isVolatile() &&
|
|
CXI->getOrdering() == cast<AtomicCmpXchgInst>(I)->getOrdering() &&
|
|
CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I)->getSynchScope();
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(this))
|
|
return RMWI->getOperation() == cast<AtomicRMWInst>(I)->getOperation() &&
|
|
RMWI->isVolatile() == cast<AtomicRMWInst>(I)->isVolatile() &&
|
|
RMWI->getOrdering() == cast<AtomicRMWInst>(I)->getOrdering() &&
|
|
RMWI->getSynchScope() == cast<AtomicRMWInst>(I)->getSynchScope();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
|
|
/// specified block. Note that PHI nodes are considered to evaluate their
|
|
/// operands in the corresponding predecessor block.
|
|
bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
|
|
for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
|
|
// PHI nodes uses values in the corresponding predecessor block. For other
|
|
// instructions, just check to see whether the parent of the use matches up.
|
|
const User *U = *UI;
|
|
const PHINode *PN = dyn_cast<PHINode>(U);
|
|
if (PN == 0) {
|
|
if (cast<Instruction>(U)->getParent() != BB)
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
if (PN->getIncomingBlock(UI) != BB)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// mayReadFromMemory - Return true if this instruction may read memory.
|
|
///
|
|
bool Instruction::mayReadFromMemory() const {
|
|
switch (getOpcode()) {
|
|
default: return false;
|
|
case Instruction::VAArg:
|
|
case Instruction::Load:
|
|
case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
|
|
case Instruction::AtomicCmpXchg:
|
|
case Instruction::AtomicRMW:
|
|
return true;
|
|
case Instruction::Call:
|
|
return !cast<CallInst>(this)->doesNotAccessMemory();
|
|
case Instruction::Invoke:
|
|
return !cast<InvokeInst>(this)->doesNotAccessMemory();
|
|
case Instruction::Store:
|
|
return !cast<StoreInst>(this)->isUnordered();
|
|
}
|
|
}
|
|
|
|
/// mayWriteToMemory - Return true if this instruction may modify memory.
|
|
///
|
|
bool Instruction::mayWriteToMemory() const {
|
|
switch (getOpcode()) {
|
|
default: return false;
|
|
case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
|
|
case Instruction::Store:
|
|
case Instruction::VAArg:
|
|
case Instruction::AtomicCmpXchg:
|
|
case Instruction::AtomicRMW:
|
|
return true;
|
|
case Instruction::Call:
|
|
return !cast<CallInst>(this)->onlyReadsMemory();
|
|
case Instruction::Invoke:
|
|
return !cast<InvokeInst>(this)->onlyReadsMemory();
|
|
case Instruction::Load:
|
|
return !cast<LoadInst>(this)->isUnordered();
|
|
}
|
|
}
|
|
|
|
/// mayThrow - Return true if this instruction may throw an exception.
|
|
///
|
|
bool Instruction::mayThrow() const {
|
|
if (const CallInst *CI = dyn_cast<CallInst>(this))
|
|
return !CI->doesNotThrow();
|
|
return isa<ResumeInst>(this);
|
|
}
|
|
|
|
/// isAssociative - Return true if the instruction is associative:
|
|
///
|
|
/// Associative operators satisfy: x op (y op z) === (x op y) op z
|
|
///
|
|
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
|
|
///
|
|
bool Instruction::isAssociative(unsigned Opcode) {
|
|
return Opcode == And || Opcode == Or || Opcode == Xor ||
|
|
Opcode == Add || Opcode == Mul;
|
|
}
|
|
|
|
/// isCommutative - Return true if the instruction is commutative:
|
|
///
|
|
/// Commutative operators satisfy: (x op y) === (y op x)
|
|
///
|
|
/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
|
|
/// applied to any type.
|
|
///
|
|
bool Instruction::isCommutative(unsigned op) {
|
|
switch (op) {
|
|
case Add:
|
|
case FAdd:
|
|
case Mul:
|
|
case FMul:
|
|
case And:
|
|
case Or:
|
|
case Xor:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isIdempotent - Return true if the instruction is idempotent:
|
|
///
|
|
/// Idempotent operators satisfy: x op x === x
|
|
///
|
|
/// In LLVM, the And and Or operators are idempotent.
|
|
///
|
|
bool Instruction::isIdempotent(unsigned Opcode) {
|
|
return Opcode == And || Opcode == Or;
|
|
}
|
|
|
|
/// isNilpotent - Return true if the instruction is nilpotent:
|
|
///
|
|
/// Nilpotent operators satisfy: x op x === Id,
|
|
///
|
|
/// where Id is the identity for the operator, i.e. a constant such that
|
|
/// x op Id === x and Id op x === x for all x.
|
|
///
|
|
/// In LLVM, the Xor operator is nilpotent.
|
|
///
|
|
bool Instruction::isNilpotent(unsigned Opcode) {
|
|
return Opcode == Xor;
|
|
}
|
|
|
|
Instruction *Instruction::clone() const {
|
|
Instruction *New = clone_impl();
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
if (!hasMetadata())
|
|
return New;
|
|
|
|
// Otherwise, enumerate and copy over metadata from the old instruction to the
|
|
// new one.
|
|
SmallVector<std::pair<unsigned, MDNode*>, 4> TheMDs;
|
|
getAllMetadataOtherThanDebugLoc(TheMDs);
|
|
for (unsigned i = 0, e = TheMDs.size(); i != e; ++i)
|
|
New->setMetadata(TheMDs[i].first, TheMDs[i].second);
|
|
|
|
New->setDebugLoc(getDebugLoc());
|
|
return New;
|
|
}
|