llvm-6502/include/llvm/Analysis/DataStructure/DSSupport.h
Chris Lattner efffdc9408 As much as I hate to say it, the whole setNode interface for DSNodeHandles
is HOPELESSLY broken.  The problem is that the embedded getNode call can
change the offset of the node handle in unpredictable ways.

As it turns out, all of the clients of this method really want to set
both the node and the offset, thus it is more efficient (and less buggy)
to just do both of them in one method call.  This fixes some obscure bugs
handling non-forwarded node handles.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14660 91177308-0d34-0410-b5e6-96231b3b80d8
2004-07-07 06:12:52 +00:00

314 lines
11 KiB
C++

//===- DSSupport.h - Support for datastructure graphs -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Support for graph nodes, call sites, and types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DSSUPPORT_H
#define LLVM_ANALYSIS_DSSUPPORT_H
#include <functional>
#include "Support/hash_set"
#include "llvm/Support/CallSite.h"
namespace llvm {
class Function;
class CallInst;
class Value;
class GlobalValue;
class Type;
class DSNode; // Each node in the graph
class DSGraph; // A graph for a function
class ReachabilityCloner;
namespace DS { // FIXME: After the paper, this should get cleaned up
enum { PointerShift = 2, // 64bit ptrs = 3, 32 bit ptrs = 2
PointerSize = 1 << PointerShift
};
/// isPointerType - Return true if this first class type is big enough to hold
/// a pointer.
///
bool isPointerType(const Type *Ty);
};
//===----------------------------------------------------------------------===//
/// DSNodeHandle - Implement a "handle" to a data structure node that takes care
/// of all of the add/un'refing of the node to prevent the backpointers in the
/// graph from getting out of date. This class represents a "pointer" in the
/// graph, whose destination is an indexed offset into a node.
///
/// Note: some functions that are marked as inline in DSNodeHandle are actually
/// defined in DSNode.h because they need knowledge of DSNode operation. Putting
/// them in a CPP file wouldn't help making them inlined and keeping DSNode and
/// DSNodeHandle (and friends) in one file complicates things.
///
class DSNodeHandle {
mutable DSNode *N;
mutable unsigned Offset;
void operator==(const DSNode *N); // DISALLOW, use to promote N to nodehandle
public:
// Allow construction, destruction, and assignment...
DSNodeHandle(DSNode *n = 0, unsigned offs = 0) : N(0), Offset(0) {
setTo(n, offs);
}
DSNodeHandle(const DSNodeHandle &H) : N(0), Offset(0) {
DSNode *NN = H.getNode();
setTo(NN, H.Offset); // Must read offset AFTER the getNode()
}
~DSNodeHandle() { setTo(0, 0); }
DSNodeHandle &operator=(const DSNodeHandle &H) {
if (&H == this) return *this; // Don't set offset to 0 if self assigning.
DSNode *NN = H.getNode(); // Call getNode() before .Offset
setTo(NN, H.Offset);
return *this;
}
bool operator<(const DSNodeHandle &H) const { // Allow sorting
return getNode() < H.getNode() || (N == H.N && Offset < H.Offset);
}
bool operator>(const DSNodeHandle &H) const { return H < *this; }
bool operator==(const DSNodeHandle &H) const { // Allow comparison
// getNode can change the offset, so we must call getNode() first.
return getNode() == H.getNode() && Offset == H.Offset;
}
bool operator!=(const DSNodeHandle &H) const { return !operator==(H); }
inline void swap(DSNodeHandle &NH) {
std::swap(Offset, NH.Offset);
std::swap(N, NH.N);
}
/// isNull - Check to see if getNode() == 0, without going through the trouble
/// of checking to see if we are forwarding...
///
bool isNull() const { return N == 0; }
// Allow explicit conversion to DSNode...
inline DSNode *getNode() const; // Defined inline in DSNode.h
unsigned getOffset() const { return Offset; }
void setOffset(unsigned O) {
//assert((!N || Offset < N->Size || (N->Size == 0 && Offset == 0) ||
// !N->ForwardNH.isNull()) && "Node handle offset out of range!");
//assert((!N || O < N->Size || (N->Size == 0 && O == 0) ||
// !N->ForwardNH.isNull()) && "Node handle offset out of range!");
Offset = O;
}
inline void setTo(DSNode *N, unsigned O) const; // Defined inline in DSNode.h
void addEdgeTo(unsigned LinkNo, const DSNodeHandle &N);
void addEdgeTo(const DSNodeHandle &N) { addEdgeTo(0, N); }
/// mergeWith - Merge the logical node pointed to by 'this' with the node
/// pointed to by 'N'.
///
void mergeWith(const DSNodeHandle &N) const;
/// hasLink - Return true if there is a link at the specified offset...
///
inline bool hasLink(unsigned Num) const;
/// getLink - Treat this current node pointer as a pointer to a structure of
/// some sort. This method will return the pointer a mem[this+Num]
///
inline const DSNodeHandle &getLink(unsigned Num) const;
inline DSNodeHandle &getLink(unsigned Num);
inline void setLink(unsigned Num, const DSNodeHandle &NH);
private:
DSNode *HandleForwarding() const;
};
} // End llvm namespace
namespace std {
template<>
inline void swap<llvm::DSNodeHandle>(llvm::DSNodeHandle &NH1, llvm::DSNodeHandle &NH2) { NH1.swap(NH2); }
}
namespace llvm {
//===----------------------------------------------------------------------===//
/// DSCallSite - Representation of a call site via its call instruction,
/// the DSNode handle for the callee function (or function pointer), and
/// the DSNode handles for the function arguments.
///
class DSCallSite {
CallSite Site; // Actual call site
Function *CalleeF; // The function called (direct call)
DSNodeHandle CalleeN; // The function node called (indirect call)
DSNodeHandle RetVal; // Returned value
std::vector<DSNodeHandle> CallArgs;// The pointer arguments
static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
const hash_map<const DSNode*, DSNode*> &NodeMap) {
if (DSNode *N = Src.getNode()) {
hash_map<const DSNode*, DSNode*>::const_iterator I = NodeMap.find(N);
assert(I != NodeMap.end() && "Node not in mapping!");
NH.setTo(I->second, Src.getOffset());
}
}
static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
const hash_map<const DSNode*, DSNodeHandle> &NodeMap) {
if (DSNode *N = Src.getNode()) {
hash_map<const DSNode*, DSNodeHandle>::const_iterator I = NodeMap.find(N);
assert(I != NodeMap.end() && "Node not in mapping!");
DSNode *NN = I->second.getNode(); // Call getNode before getOffset()
NH.setTo(NN, Src.getOffset()+I->second.getOffset());
}
}
static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
ReachabilityCloner &RC);
DSCallSite(); // DO NOT IMPLEMENT
public:
/// Constructor. Note - This ctor destroys the argument vector passed in. On
/// exit, the argument vector is empty.
///
DSCallSite(CallSite CS, const DSNodeHandle &rv, DSNode *Callee,
std::vector<DSNodeHandle> &Args)
: Site(CS), CalleeF(0), CalleeN(Callee), RetVal(rv) {
assert(Callee && "Null callee node specified for call site!");
Args.swap(CallArgs);
}
DSCallSite(CallSite CS, const DSNodeHandle &rv, Function *Callee,
std::vector<DSNodeHandle> &Args)
: Site(CS), CalleeF(Callee), RetVal(rv) {
assert(Callee && "Null callee function specified for call site!");
Args.swap(CallArgs);
}
DSCallSite(const DSCallSite &DSCS) // Simple copy ctor
: Site(DSCS.Site), CalleeF(DSCS.CalleeF), CalleeN(DSCS.CalleeN),
RetVal(DSCS.RetVal), CallArgs(DSCS.CallArgs) {}
/// Mapping copy constructor - This constructor takes a preexisting call site
/// to copy plus a map that specifies how the links should be transformed.
/// This is useful when moving a call site from one graph to another.
///
template<typename MapTy>
DSCallSite(const DSCallSite &FromCall, MapTy &NodeMap) {
Site = FromCall.Site;
InitNH(RetVal, FromCall.RetVal, NodeMap);
InitNH(CalleeN, FromCall.CalleeN, NodeMap);
CalleeF = FromCall.CalleeF;
CallArgs.resize(FromCall.CallArgs.size());
for (unsigned i = 0, e = FromCall.CallArgs.size(); i != e; ++i)
InitNH(CallArgs[i], FromCall.CallArgs[i], NodeMap);
}
const DSCallSite &operator=(const DSCallSite &RHS) {
Site = RHS.Site;
CalleeF = RHS.CalleeF;
CalleeN = RHS.CalleeN;
RetVal = RHS.RetVal;
CallArgs = RHS.CallArgs;
return *this;
}
/// isDirectCall - Return true if this call site is a direct call of the
/// function specified by getCalleeFunc. If not, it is an indirect call to
/// the node specified by getCalleeNode.
///
bool isDirectCall() const { return CalleeF != 0; }
bool isIndirectCall() const { return !isDirectCall(); }
// Accessor functions...
Function &getCaller() const;
CallSite getCallSite() const { return Site; }
DSNodeHandle &getRetVal() { return RetVal; }
const DSNodeHandle &getRetVal() const { return RetVal; }
DSNode *getCalleeNode() const {
assert(!CalleeF && CalleeN.getNode()); return CalleeN.getNode();
}
Function *getCalleeFunc() const {
assert(!CalleeN.getNode() && CalleeF); return CalleeF;
}
unsigned getNumPtrArgs() const { return CallArgs.size(); }
DSNodeHandle &getPtrArg(unsigned i) {
assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!");
return CallArgs[i];
}
const DSNodeHandle &getPtrArg(unsigned i) const {
assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!");
return CallArgs[i];
}
void swap(DSCallSite &CS) {
if (this != &CS) {
std::swap(Site, CS.Site);
std::swap(RetVal, CS.RetVal);
std::swap(CalleeN, CS.CalleeN);
std::swap(CalleeF, CS.CalleeF);
std::swap(CallArgs, CS.CallArgs);
}
}
/// mergeWith - Merge the return value and parameters of the these two call
/// sites.
///
void mergeWith(DSCallSite &CS) {
getRetVal().mergeWith(CS.getRetVal());
unsigned MinArgs = getNumPtrArgs();
if (CS.getNumPtrArgs() < MinArgs) MinArgs = CS.getNumPtrArgs();
for (unsigned a = 0; a != MinArgs; ++a)
getPtrArg(a).mergeWith(CS.getPtrArg(a));
}
/// markReachableNodes - This method recursively traverses the specified
/// DSNodes, marking any nodes which are reachable. All reachable nodes it
/// adds to the set, which allows it to only traverse visited nodes once.
///
void markReachableNodes(hash_set<DSNode*> &Nodes);
bool operator<(const DSCallSite &CS) const {
if (isDirectCall()) { // This must sort by callee first!
if (CS.isIndirectCall()) return true;
if (CalleeF < CS.CalleeF) return true;
if (CalleeF > CS.CalleeF) return false;
} else {
if (CS.isDirectCall()) return false;
if (CalleeN < CS.CalleeN) return true;
if (CalleeN > CS.CalleeN) return false;
}
if (RetVal < CS.RetVal) return true;
if (RetVal > CS.RetVal) return false;
return CallArgs < CS.CallArgs;
}
bool operator==(const DSCallSite &CS) const {
return CalleeF == CS.CalleeF && CalleeN == CS.CalleeN &&
RetVal == CS.RetVal && CallArgs == CS.CallArgs;
}
};
} // End llvm namespace
namespace std {
template<>
inline void swap<llvm::DSCallSite>(llvm::DSCallSite &CS1,
llvm::DSCallSite &CS2) { CS1.swap(CS2); }
}
#endif