llvm-6502/lib/CodeGen/SelectionDAG/LegalizeDAGTypes.cpp
2007-10-20 22:57:56 +00:00

1890 lines
73 KiB
C++

//===-- LegalizeDAGTypes.cpp - Implement SelectionDAG::LegalizeTypes ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeTypes method. It transforms
// an arbitrary well-formed SelectionDAG to only consist of legal types.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "legalize-types"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
/// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and
/// hacks on it until the target machine can handle it. This involves
/// eliminating value sizes the machine cannot handle (promoting small sizes to
/// large sizes or splitting up large values into small values) as well as
/// eliminating operations the machine cannot handle.
///
/// This code also does a small amount of optimization and recognition of idioms
/// as part of its processing. For example, if a target does not support a
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
/// will attempt merge setcc and brc instructions into brcc's.
///
namespace {
class VISIBILITY_HIDDEN DAGTypeLegalizer {
TargetLowering &TLI;
SelectionDAG &DAG;
// NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information
// about the state of the node. The enum has all the values.
enum NodeIDFlags {
/// ReadyToProcess - All operands have been processed, so this node is ready
/// to be handled.
ReadyToProcess = 0,
/// NewNode - This is a new node that was created in the process of
/// legalizing some other node.
NewNode = -1,
/// Processed - This is a node that has already been processed.
Processed = -2
// 1+ - This is a node which has this many unlegalized operands.
};
enum LegalizeAction {
Legal, // The target natively supports this type.
Promote, // This type should be executed in a larger type.
Expand // This type should be split into two types of half the size.
};
/// ValueTypeActions - This is a bitvector that contains two bits for each
/// simple value type, where the two bits correspond to the LegalizeAction
/// enum. This can be queried with "getTypeAction(VT)".
TargetLowering::ValueTypeActionImpl ValueTypeActions;
/// getTypeAction - Return how we should legalize values of this type, either
/// it is already legal or we need to expand it into multiple registers of
/// smaller integer type, or we need to promote it to a larger type.
LegalizeAction getTypeAction(MVT::ValueType VT) const {
return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
}
/// isTypeLegal - Return true if this type is legal on this target.
///
bool isTypeLegal(MVT::ValueType VT) const {
return getTypeAction(VT) == Legal;
}
SDOperand getIntPtrConstant(uint64_t Val) {
return DAG.getConstant(Val, TLI.getPointerTy());
}
/// PromotedNodes - For nodes that are below legal width, and that have more
/// than one use, this map indicates what promoted value to use.
DenseMap<SDOperand, SDOperand> PromotedNodes;
/// ExpandedNodes - For nodes that need to be expanded this map indicates
/// which operands are the expanded version of the input.
DenseMap<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes;
/// Worklist - This defines a worklist of nodes to process. In order to be
/// pushed onto this worklist, all operands of a node must have already been
/// processed.
SmallVector<SDNode*, 128> Worklist;
public:
DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag),
ValueTypeActions(TLI.getValueTypeActions()) {
assert(MVT::LAST_VALUETYPE <= 32 &&
"Too many value types for ValueTypeActions to hold!");
}
void run();
private:
void MarkNewNodes(SDNode *N);
void ReplaceLegalValueWith(SDOperand From, SDOperand To);
SDOperand GetPromotedOp(SDOperand Op) {
Op = PromotedNodes[Op];
assert(Op.Val && "Operand wasn't promoted?");
return Op;
}
void SetPromotedOp(SDOperand Op, SDOperand Result);
/// GetPromotedZExtOp - Get a promoted operand and zero extend it to the final
/// size.
SDOperand GetPromotedZExtOp(SDOperand Op) {
MVT::ValueType OldVT = Op.getValueType();
Op = GetPromotedOp(Op);
return DAG.getZeroExtendInReg(Op, OldVT);
}
void GetExpandedOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi);
void SetExpandedOp(SDOperand Op, SDOperand Lo, SDOperand Hi);
// Common routines.
SDOperand CreateStackStoreLoad(SDOperand Op, MVT::ValueType DestVT);
SDOperand HandleMemIntrinsic(SDNode *N);
// Result Promotion.
void PromoteResult(SDNode *N, unsigned ResNo);
SDOperand PromoteResult_UNDEF(SDNode *N);
SDOperand PromoteResult_Constant(SDNode *N);
SDOperand PromoteResult_TRUNCATE(SDNode *N);
SDOperand PromoteResult_INT_EXTEND(SDNode *N);
SDOperand PromoteResult_FP_ROUND(SDNode *N);
SDOperand PromoteResult_FP_TO_XINT(SDNode *N);
SDOperand PromoteResult_SETCC(SDNode *N);
SDOperand PromoteResult_LOAD(LoadSDNode *N);
SDOperand PromoteResult_SimpleIntBinOp(SDNode *N);
SDOperand PromoteResult_SHL(SDNode *N);
SDOperand PromoteResult_SRA(SDNode *N);
SDOperand PromoteResult_SRL(SDNode *N);
SDOperand PromoteResult_SELECT (SDNode *N);
SDOperand PromoteResult_SELECT_CC(SDNode *N);
// Result Expansion.
void ExpandResult(SDNode *N, unsigned ResNo);
void ExpandResult_UNDEF (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_Constant (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_BUILD_PAIR (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ANY_EXTEND (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ZERO_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SIGN_EXTEND(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_BIT_CONVERT(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_LOAD (LoadSDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_Logical (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_BSWAP (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ADDSUB (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ADDSUBC (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_ADDSUBE (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SELECT (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_SELECT_CC (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_MUL (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandResult_Shift (SDNode *N, SDOperand &Lo, SDOperand &Hi);
void ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDOperand &Lo, SDOperand &Hi);
bool ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi);
// Operand Promotion.
bool PromoteOperand(SDNode *N, unsigned OperandNo);
SDOperand PromoteOperand_ANY_EXTEND(SDNode *N);
SDOperand PromoteOperand_ZERO_EXTEND(SDNode *N);
SDOperand PromoteOperand_SIGN_EXTEND(SDNode *N);
SDOperand PromoteOperand_TRUNCATE(SDNode *N);
SDOperand PromoteOperand_FP_EXTEND(SDNode *N);
SDOperand PromoteOperand_FP_ROUND(SDNode *N);
SDOperand PromoteOperand_INT_TO_FP(SDNode *N);
SDOperand PromoteOperand_SELECT(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_BRCOND(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_BR_CC(SDNode *N, unsigned OpNo);
SDOperand PromoteOperand_STORE(StoreSDNode *N, unsigned OpNo);
void PromoteSetCCOperands(SDOperand &LHS,SDOperand &RHS, ISD::CondCode Code);
// Operand Expansion.
bool ExpandOperand(SDNode *N, unsigned OperandNo);
SDOperand ExpandOperand_TRUNCATE(SDNode *N);
SDOperand ExpandOperand_BIT_CONVERT(SDNode *N);
SDOperand ExpandOperand_UINT_TO_FP(SDOperand Source, MVT::ValueType DestTy);
SDOperand ExpandOperand_SINT_TO_FP(SDOperand Source, MVT::ValueType DestTy);
SDOperand ExpandOperand_EXTRACT_ELEMENT(SDNode *N);
SDOperand ExpandOperand_SETCC(SDNode *N);
SDOperand ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo);
void ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
ISD::CondCode &CCCode);
};
} // end anonymous namespace
/// run - This is the main entry point for the type legalizer. This does a
/// top-down traversal of the dag, legalizing types as it goes.
void DAGTypeLegalizer::run() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted, and tracking any
// changes of the root.
HandleSDNode Dummy(DAG.getRoot());
// The root of the dag may dangle to deleted nodes until the type legalizer is
// done. Set it to null to avoid confusion.
DAG.setRoot(SDOperand());
// Walk all nodes in the graph, assigning them a NodeID of 'ReadyToProcess'
// (and remembering them) if they are leaves and assigning 'NewNode' if
// non-leaves.
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNumOperands() == 0) {
I->setNodeId(ReadyToProcess);
Worklist.push_back(I);
} else {
I->setNodeId(NewNode);
}
}
// Now that we have a set of nodes to process, handle them all.
while (!Worklist.empty()) {
SDNode *N = Worklist.back();
Worklist.pop_back();
assert(N->getNodeId() == ReadyToProcess &&
"Node should be ready if on worklist!");
// Scan the values produced by the node, checking to see if any result
// types are illegal.
unsigned i = 0;
unsigned NumResults = N->getNumValues();
do {
LegalizeAction Action = getTypeAction(N->getValueType(i));
if (Action == Promote) {
PromoteResult(N, i);
goto NodeDone;
} else if (Action == Expand) {
ExpandResult(N, i);
goto NodeDone;
} else {
assert(Action == Legal && "Unknown action!");
}
} while (++i < NumResults);
// Scan the operand list for the node, handling any nodes with operands that
// are illegal.
{
unsigned NumOperands = N->getNumOperands();
bool NeedsRevisit = false;
for (i = 0; i != NumOperands; ++i) {
LegalizeAction Action = getTypeAction(N->getOperand(i).getValueType());
if (Action == Promote) {
NeedsRevisit = PromoteOperand(N, i);
break;
} else if (Action == Expand) {
NeedsRevisit = ExpandOperand(N, i);
break;
} else {
assert(Action == Legal && "Unknown action!");
}
}
// If the node needs revisiting, don't add all users to the worklist etc.
if (NeedsRevisit)
continue;
if (i == NumOperands)
DEBUG(cerr << "Legally typed node: "; N->dump(&DAG); cerr << "\n");
}
NodeDone:
// If we reach here, the node was processed, potentially creating new nodes.
// Mark it as processed and add its users to the worklist as appropriate.
N->setNodeId(Processed);
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI) {
SDNode *User = *UI;
int NodeID = User->getNodeId();
assert(NodeID != ReadyToProcess && NodeID != Processed &&
"Invalid node id for user of unprocessed node!");
// This node has two options: it can either be a new node or its Node ID
// may be a count of the number of operands it has that are not ready.
if (NodeID > 0) {
User->setNodeId(NodeID-1);
// If this was the last use it was waiting on, add it to the ready list.
if (NodeID-1 == ReadyToProcess)
Worklist.push_back(User);
continue;
}
// Otherwise, this node is new: this is the first operand of it that
// became ready. Its new NodeID is the number of operands it has minus 1
// (as this node is now processed).
assert(NodeID == NewNode && "Unknown node ID!");
User->setNodeId(User->getNumOperands()-1);
// If the node only has a single operand, it is now ready.
if (User->getNumOperands() == 1)
Worklist.push_back(User);
}
}
// If the root changed (e.g. it was a dead load, update the root).
DAG.setRoot(Dummy.getValue());
//DAG.viewGraph();
// Remove dead nodes. This is important to do for cleanliness but also before
// the checking loop below. Implicit folding by the DAG.getNode operators can
// cause unreachable nodes to be around with their flags set to new.
DAG.RemoveDeadNodes();
// In a debug build, scan all the nodes to make sure we found them all. This
// ensures that there are no cycles and that everything got processed.
#ifndef NDEBUG
for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
E = DAG.allnodes_end(); I != E; ++I) {
if (I->getNodeId() == Processed)
continue;
cerr << "Unprocessed node: ";
I->dump(&DAG); cerr << "\n";
if (I->getNodeId() == NewNode)
cerr << "New node not 'noticed'?\n";
else if (I->getNodeId() > 0)
cerr << "Operand not processed?\n";
else if (I->getNodeId() == ReadyToProcess)
cerr << "Not added to worklist?\n";
abort();
}
#endif
}
/// MarkNewNodes - The specified node is the root of a subtree of potentially
/// new nodes. Add the correct NodeId to mark it.
void DAGTypeLegalizer::MarkNewNodes(SDNode *N) {
// If this was an existing node that is already done, we're done.
if (N->getNodeId() != NewNode)
return;
// Okay, we know that this node is new. Recursively walk all of its operands
// to see if they are new also. The depth of this walk is bounded by the size
// of the new tree that was constructed (usually 2-3 nodes), so we don't worry
// about revisiting of nodes.
//
// As we walk the operands, keep track of the number of nodes that are
// processed. If non-zero, this will become the new nodeid of this node.
unsigned NumProcessed = 0;
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
int OpId = N->getOperand(i).Val->getNodeId();
if (OpId == NewNode)
MarkNewNodes(N->getOperand(i).Val);
else if (OpId == Processed)
++NumProcessed;
}
N->setNodeId(N->getNumOperands()-NumProcessed);
if (N->getNodeId() == ReadyToProcess)
Worklist.push_back(N);
}
/// ReplaceLegalValueWith - The specified value with a legal type was legalized
/// to the specified other value. If they are different, update the DAG and
/// NodeIDs replacing any uses of From to use To instead.
void DAGTypeLegalizer::ReplaceLegalValueWith(SDOperand From, SDOperand To) {
if (From == To) return;
// If expansion produced new nodes, make sure they are properly marked.
if (To.Val->getNodeId() == NewNode)
MarkNewNodes(To.Val);
// Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging.
DAG.ReplaceAllUsesOfValueWith(From, To);
// Since we just made an unstructured update to the DAG, which could wreak
// general havoc on anything that once used N and now uses Res, walk all users
// of the result, updating their flags.
for (SDNode::use_iterator I = To.Val->use_begin(), E = To.Val->use_end();
I != E; ++I) {
SDNode *User = *I;
// If the node isn't already processed or in the worklist, mark it as new,
// then use MarkNewNodes to recompute its ID.
int NodeId = User->getNodeId();
if (NodeId != ReadyToProcess && NodeId != Processed) {
User->setNodeId(NewNode);
MarkNewNodes(User);
}
}
}
void DAGTypeLegalizer::SetPromotedOp(SDOperand Op, SDOperand Result) {
if (Result.Val->getNodeId() == NewNode)
MarkNewNodes(Result.Val);
SDOperand &OpEntry = PromotedNodes[Op];
assert(OpEntry.Val == 0 && "Node is already promoted!");
OpEntry = Result;
}
void DAGTypeLegalizer::GetExpandedOp(SDOperand Op, SDOperand &Lo,
SDOperand &Hi) {
std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
assert(Entry.first.Val && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
}
void DAGTypeLegalizer::SetExpandedOp(SDOperand Op, SDOperand Lo,
SDOperand Hi) {
// Remember that this is the result of the node.
std::pair<SDOperand, SDOperand> &Entry = ExpandedNodes[Op];
assert(Entry.first.Val == 0 && "Node already expanded");
Entry.first = Lo;
Entry.second = Hi;
// Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
if (Lo.Val->getNodeId() == NewNode)
MarkNewNodes(Lo.Val);
if (Hi.Val->getNodeId() == NewNode)
MarkNewNodes(Hi.Val);
}
SDOperand DAGTypeLegalizer::CreateStackStoreLoad(SDOperand Op,
MVT::ValueType DestVT) {
// Create the stack frame object.
SDOperand FIPtr = DAG.CreateStackTemporary(DestVT);
// Emit a store to the stack slot.
SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op, FIPtr, NULL, 0);
// Result is a load from the stack slot.
return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0);
}
/// HandleMemIntrinsic - This handles memcpy/memset/memmove with invalid
/// operands. This promotes or expands the operands as required.
SDOperand DAGTypeLegalizer::HandleMemIntrinsic(SDNode *N) {
// The chain and pointer [operands #0 and #1] are always valid types.
SDOperand Chain = N->getOperand(0);
SDOperand Ptr = N->getOperand(1);
SDOperand Op2 = N->getOperand(2);
// Op #2 is either a value (memset) or a pointer. Promote it if required.
switch (getTypeAction(Op2.getValueType())) {
default: assert(0 && "Unknown action for pointer/value operand");
case Legal: break;
case Promote: Op2 = GetPromotedOp(Op2); break;
}
// The length could have any action required.
SDOperand Length = N->getOperand(3);
switch (getTypeAction(Length.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: Length = GetPromotedZExtOp(Length); break;
case Expand:
SDOperand Dummy; // discard the high part.
GetExpandedOp(Length, Length, Dummy);
break;
}
SDOperand Align = N->getOperand(4);
switch (getTypeAction(Align.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: Align = GetPromotedZExtOp(Align); break;
}
SDOperand AlwaysInline = N->getOperand(5);
switch (getTypeAction(AlwaysInline.getValueType())) {
default: assert(0 && "Unknown action for memop operand");
case Legal: break;
case Promote: AlwaysInline = GetPromotedZExtOp(AlwaysInline); break;
}
SDOperand Ops[] = { Chain, Ptr, Op2, Length, Align, AlwaysInline };
return DAG.UpdateNodeOperands(SDOperand(N, 0), Ops, 6);
}
//===----------------------------------------------------------------------===//
// Result Promotion
//===----------------------------------------------------------------------===//
/// PromoteResult - This method is called when a result of a node is found to be
/// in need of promotion to a larger type. At this point, the node may also
/// have invalid operands or may have other results that need expansion, we just
/// know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Promote node result: "; N->dump(&DAG); cerr << "\n");
SDOperand Result = SDOperand();
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "PromoteResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to promote this operator!");
abort();
case ISD::UNDEF: Result = PromoteResult_UNDEF(N); break;
case ISD::Constant: Result = PromoteResult_Constant(N); break;
case ISD::TRUNCATE: Result = PromoteResult_TRUNCATE(N); break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: Result = PromoteResult_INT_EXTEND(N); break;
case ISD::FP_ROUND: Result = PromoteResult_FP_ROUND(N); break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Result = PromoteResult_FP_TO_XINT(N); break;
case ISD::SETCC: Result = PromoteResult_SETCC(N); break;
case ISD::LOAD: Result = PromoteResult_LOAD(cast<LoadSDNode>(N)); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL: Result = PromoteResult_SimpleIntBinOp(N); break;
case ISD::SHL: Result = PromoteResult_SHL(N); break;
case ISD::SRA: Result = PromoteResult_SRA(N); break;
case ISD::SRL: Result = PromoteResult_SRL(N); break;
case ISD::SELECT: Result = PromoteResult_SELECT(N); break;
case ISD::SELECT_CC: Result = PromoteResult_SELECT_CC(N); break;
}
// If Result is null, the sub-method took care of registering the result.
if (Result.Val)
SetPromotedOp(SDOperand(N, ResNo), Result);
}
SDOperand DAGTypeLegalizer::PromoteResult_UNDEF(SDNode *N) {
return DAG.getNode(ISD::UNDEF, TLI.getTypeToTransformTo(N->getValueType(0)));
}
SDOperand DAGTypeLegalizer::PromoteResult_Constant(SDNode *N) {
MVT::ValueType VT = N->getValueType(0);
// Zero extend things like i1, sign extend everything else. It shouldn't
// matter in theory which one we pick, but this tends to give better code?
unsigned Opc = VT != MVT::i1 ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDOperand Result = DAG.getNode(Opc, TLI.getTypeToTransformTo(VT),
SDOperand(N, 0));
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
return Result;
}
SDOperand DAGTypeLegalizer::PromoteResult_TRUNCATE(SDNode *N) {
SDOperand Res;
switch (getTypeAction(N->getOperand(0).getValueType())) {
default: assert(0 && "Unknown type action!");
case Legal:
case Expand:
Res = N->getOperand(0);
break;
case Promote:
Res = GetPromotedOp(N->getOperand(0));
break;
}
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
assert(MVT::getSizeInBits(Res.getValueType()) >= MVT::getSizeInBits(NVT) &&
"Truncation doesn't make sense!");
if (Res.getValueType() == NVT)
return Res;
// Truncate to NVT instead of VT
return DAG.getNode(ISD::TRUNCATE, NVT, Res);
}
SDOperand DAGTypeLegalizer::PromoteResult_INT_EXTEND(SDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
if (getTypeAction(N->getOperand(0).getValueType()) == Promote) {
SDOperand Res = GetPromotedOp(N->getOperand(0));
assert(MVT::getSizeInBits(Res.getValueType()) <= MVT::getSizeInBits(NVT) &&
"Extension doesn't make sense!");
// If the result and operand types are the same after promotion, simplify
// to an in-register extension.
if (NVT == Res.getValueType()) {
// The high bits are not guaranteed to be anything. Insert an extend.
if (N->getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res,
DAG.getValueType(N->getOperand(0).getValueType()));
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getZeroExtendInReg(Res, N->getOperand(0).getValueType());
assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
return Res;
}
}
// Otherwise, just extend the original operand all the way to the larger type.
return DAG.getNode(N->getOpcode(), NVT, N->getOperand(0));
}
SDOperand DAGTypeLegalizer::PromoteResult_FP_ROUND(SDNode *N) {
// NOTE: Assumes input is legal.
return DAG.getNode(ISD::FP_ROUND_INREG, N->getOperand(0).getValueType(),
N->getOperand(0), DAG.getValueType(N->getValueType(0)));
}
SDOperand DAGTypeLegalizer::PromoteResult_FP_TO_XINT(SDNode *N) {
SDOperand Op = N->getOperand(0);
// If the operand needed to be promoted, do so now.
if (getTypeAction(Op.getValueType()) == Promote)
// The input result is prerounded, so we don't have to do anything special.
Op = GetPromotedOp(Op);
unsigned NewOpc = N->getOpcode();
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
// If we're promoting a UINT to a larger size, check to see if the new node
// will be legal. If it isn't, check to see if FP_TO_SINT is legal, since
// we can use that instead. This allows us to generate better code for
// FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not
// legal, such as PowerPC.
if (N->getOpcode() == ISD::FP_TO_UINT) {
if (!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
(TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) ||
TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom))
NewOpc = ISD::FP_TO_SINT;
}
return DAG.getNode(NewOpc, NVT, Op);
}
SDOperand DAGTypeLegalizer::PromoteResult_SETCC(SDNode *N) {
assert(isTypeLegal(TLI.getSetCCResultTy()) && "SetCC type is not legal??");
return DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), N->getOperand(0),
N->getOperand(1), N->getOperand(2));
}
SDOperand DAGTypeLegalizer::PromoteResult_LOAD(LoadSDNode *N) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
ISD::LoadExtType ExtType =
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
SDOperand Res = DAG.getExtLoad(ExtType, NVT, N->getChain(), N->getBasePtr(),
N->getSrcValue(), N->getSrcValueOffset(),
N->getLoadedVT(), N->isVolatile(),
N->getAlignment());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceLegalValueWith(SDOperand(N, 1), Res.getValue(1));
return Res;
}
SDOperand DAGTypeLegalizer::PromoteResult_SimpleIntBinOp(SDNode *N) {
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
SDOperand LHS = GetPromotedOp(N->getOperand(0));
SDOperand RHS = GetPromotedOp(N->getOperand(1));
return DAG.getNode(N->getOpcode(), LHS.getValueType(), LHS, RHS);
}
SDOperand DAGTypeLegalizer::PromoteResult_SHL(SDNode *N) {
return DAG.getNode(ISD::SHL, TLI.getTypeToTransformTo(N->getValueType(0)),
GetPromotedOp(N->getOperand(0)), N->getOperand(1));
}
SDOperand DAGTypeLegalizer::PromoteResult_SRA(SDNode *N) {
// The input value must be properly sign extended.
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
SDOperand Res = GetPromotedOp(N->getOperand(0));
Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Res, DAG.getValueType(VT));
return DAG.getNode(ISD::SRA, NVT, Res, N->getOperand(1));
}
SDOperand DAGTypeLegalizer::PromoteResult_SRL(SDNode *N) {
// The input value must be properly zero extended.
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
SDOperand Res = GetPromotedZExtOp(N->getOperand(0));
return DAG.getNode(ISD::SRL, NVT, Res, N->getOperand(1));
}
SDOperand DAGTypeLegalizer::PromoteResult_SELECT(SDNode *N) {
SDOperand LHS = GetPromotedOp(N->getOperand(1));
SDOperand RHS = GetPromotedOp(N->getOperand(2));
return DAG.getNode(ISD::SELECT, LHS.getValueType(), N->getOperand(0),LHS,RHS);
}
SDOperand DAGTypeLegalizer::PromoteResult_SELECT_CC(SDNode *N) {
SDOperand LHS = GetPromotedOp(N->getOperand(2));
SDOperand RHS = GetPromotedOp(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
//===----------------------------------------------------------------------===//
// Result Expansion
//===----------------------------------------------------------------------===//
/// ExpandResult - This method is called when the specified result of the
/// specified node is found to need expansion. At this point, the node may also
/// have invalid operands or may have other results that need promotion, we just
/// know that (at least) one result needs expansion.
void DAGTypeLegalizer::ExpandResult(SDNode *N, unsigned ResNo) {
DEBUG(cerr << "Expand node result: "; N->dump(&DAG); cerr << "\n");
SDOperand Lo, Hi;
Lo = Hi = SDOperand();
// If this is a single-result node, see if the target wants to custom expand
// it.
if (N->getNumValues() == 1 &&
TLI.getOperationAction(N->getOpcode(),
N->getValueType(0)) == TargetLowering::Custom) {
// If the target wants to, allow it to lower this itself.
std::pair<SDOperand,SDOperand> P = TLI.ExpandOperationResult(N, DAG);
if (P.first.Val) {
Lo = P.first;
Hi = P.second;
return;
}
}
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandResult #" << ResNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator!");
abort();
case ISD::UNDEF: ExpandResult_UNDEF(N, Lo, Hi); break;
case ISD::Constant: ExpandResult_Constant(N, Lo, Hi); break;
case ISD::BUILD_PAIR: ExpandResult_BUILD_PAIR(N, Lo, Hi); break;
case ISD::ANY_EXTEND: ExpandResult_ANY_EXTEND(N, Lo, Hi); break;
case ISD::ZERO_EXTEND: ExpandResult_ZERO_EXTEND(N, Lo, Hi); break;
case ISD::SIGN_EXTEND: ExpandResult_SIGN_EXTEND(N, Lo, Hi); break;
case ISD::BIT_CONVERT: ExpandResult_BIT_CONVERT(N, Lo, Hi); break;
case ISD::SIGN_EXTEND_INREG: ExpandResult_SIGN_EXTEND_INREG(N, Lo, Hi); break;
case ISD::LOAD: ExpandResult_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: ExpandResult_Logical(N, Lo, Hi); break;
case ISD::BSWAP: ExpandResult_BSWAP(N, Lo, Hi); break;
case ISD::ADD:
case ISD::SUB: ExpandResult_ADDSUB(N, Lo, Hi); break;
case ISD::ADDC:
case ISD::SUBC: ExpandResult_ADDSUBC(N, Lo, Hi); break;
case ISD::ADDE:
case ISD::SUBE: ExpandResult_ADDSUBE(N, Lo, Hi); break;
case ISD::SELECT: ExpandResult_SELECT(N, Lo, Hi); break;
case ISD::SELECT_CC: ExpandResult_SELECT_CC(N, Lo, Hi); break;
case ISD::MUL: ExpandResult_MUL(N, Lo, Hi); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: ExpandResult_Shift(N, Lo, Hi); break;
}
// If Lo/Hi is null, the sub-method took care of registering results etc.
if (Lo.Val)
SetExpandedOp(SDOperand(N, ResNo), Lo, Hi);
}
void DAGTypeLegalizer::ExpandResult_UNDEF(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
Lo = Hi = DAG.getNode(ISD::UNDEF, NVT);
}
void DAGTypeLegalizer::ExpandResult_Constant(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
uint64_t Cst = cast<ConstantSDNode>(N)->getValue();
Lo = DAG.getConstant(Cst, NVT);
Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
}
void DAGTypeLegalizer::ExpandResult_BUILD_PAIR(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Return the operands.
Lo = N->getOperand(0);
Hi = N->getOperand(1);
}
void DAGTypeLegalizer::ExpandResult_ANY_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
// The low part is any extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, N->getOperand(0));
Hi = DAG.getNode(ISD::UNDEF, NVT); // The high part is undefined.
}
void DAGTypeLegalizer::ExpandResult_ZERO_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
// The low part is zero extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, N->getOperand(0));
Hi = DAG.getConstant(0, NVT); // The high part is just a zero.
}
void DAGTypeLegalizer::ExpandResult_SIGN_EXTEND(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
// The low part is sign extension of the input (which degenerates to a copy).
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, N->getOperand(0));
// The high part is obtained by SRA'ing all but one of the bits of low part.
unsigned LoSize = MVT::getSizeInBits(NVT);
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
}
void DAGTypeLegalizer::ExpandResult_BIT_CONVERT(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Lower the bit-convert to a store/load from the stack, then expand the load.
SDOperand Op = CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
ExpandResult_LOAD(cast<LoadSDNode>(Op.Val), Lo, Hi);
}
void DAGTypeLegalizer::
ExpandResult_SIGN_EXTEND_INREG(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
GetExpandedOp(N->getOperand(0), Lo, Hi);
// sext_inreg the low part if needed.
Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, Lo.getValueType(), Lo,
N->getOperand(1));
// The high part gets the sign extension from the lo-part. This handles
// things like sextinreg V:i64 from i8.
Hi = DAG.getNode(ISD::SRA, Hi.getValueType(), Lo,
DAG.getConstant(MVT::getSizeInBits(Hi.getValueType())-1,
TLI.getShiftAmountTy()));
}
void DAGTypeLegalizer::ExpandResult_LOAD(LoadSDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
SDOperand Ch = N->getChain(); // Legalize the chain.
SDOperand Ptr = N->getBasePtr(); // Legalize the pointer.
ISD::LoadExtType ExtType = N->getExtensionType();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
if (ExtType == ISD::NON_EXTLOAD) {
Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset,
isVolatile, Alignment);
// Increment the pointer to the other half.
unsigned IncrementSize = MVT::getSizeInBits(Lo.getValueType())/8;
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
Hi = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
isVolatile, std::max(Alignment, IncrementSize));
// Build a factor node to remember that this load is independent of the
// other one.
Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1),
Hi.getValue(1));
// Handle endianness of the load.
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
} else {
MVT::ValueType EVT = N->getLoadedVT();
if (EVT == NVT)
Lo = DAG.getLoad(NVT, Ch, Ptr, N->getSrcValue(),
SVOffset, isVolatile, Alignment);
else
Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, N->getSrcValue(),
SVOffset, EVT, isVolatile,
Alignment);
// Remember the chain.
Ch = Lo.getValue(1);
if (ExtType == ISD::SEXTLOAD) {
// The high part is obtained by SRA'ing all but one of the bits of the
// lo part.
unsigned LoSize = MVT::getSizeInBits(Lo.getValueType());
Hi = DAG.getNode(ISD::SRA, NVT, Lo,
DAG.getConstant(LoSize-1, TLI.getShiftAmountTy()));
} else if (ExtType == ISD::ZEXTLOAD) {
// The high part is just a zero.
Hi = DAG.getConstant(0, NVT);
} else {
assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
// The high part is undefined.
Hi = DAG.getNode(ISD::UNDEF, NVT);
}
}
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceLegalValueWith(SDOperand(N, 1), Ch);
}
void DAGTypeLegalizer::ExpandResult_Logical(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(0), LL, LH);
GetExpandedOp(N->getOperand(1), RL, RH);
Lo = DAG.getNode(N->getOpcode(), LL.getValueType(), LL, RL);
Hi = DAG.getNode(N->getOpcode(), LL.getValueType(), LH, RH);
}
void DAGTypeLegalizer::ExpandResult_BSWAP(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
GetExpandedOp(N->getOperand(0), Hi, Lo); // Note swapped operands.
Lo = DAG.getNode(ISD::BSWAP, Lo.getValueType(), Lo);
Hi = DAG.getNode(ISD::BSWAP, Hi.getValueType(), Hi);
}
void DAGTypeLegalizer::ExpandResult_SELECT(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(1), LL, LH);
GetExpandedOp(N->getOperand(2), RL, RH);
Lo = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LL, RL);
assert(N->getOperand(0).getValueType() != MVT::f32 &&
"FIXME: softfp shouldn't use expand!");
Hi = DAG.getNode(ISD::SELECT, LL.getValueType(), N->getOperand(0), LH, RH);
}
void DAGTypeLegalizer::ExpandResult_SELECT_CC(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(2), LL, LH);
GetExpandedOp(N->getOperand(3), RL, RH);
Lo = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0),
N->getOperand(1), LL, RL, N->getOperand(4));
assert(N->getOperand(0).getValueType() != MVT::f32 &&
"FIXME: softfp shouldn't use expand!");
Hi = DAG.getNode(ISD::SELECT_CC, LL.getValueType(), N->getOperand(0),
N->getOperand(1), LH, RH, N->getOperand(4));
}
void DAGTypeLegalizer::ExpandResult_ADDSUB(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
GetExpandedOp(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADD) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
}
void DAGTypeLegalizer::ExpandResult_ADDSUBC(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
GetExpandedOp(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[2] = { LHSL, RHSL };
SDOperand HiOps[3] = { LHSH, RHSH };
if (N->getOpcode() == ISD::ADDC) {
Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3);
} else {
Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3);
}
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceLegalValueWith(SDOperand(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandResult_ADDSUBE(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
// Expand the subcomponents.
SDOperand LHSL, LHSH, RHSL, RHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
GetExpandedOp(N->getOperand(1), RHSL, RHSH);
SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag);
SDOperand LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
SDOperand HiOps[3] = { LHSH, RHSH };
Lo = DAG.getNode(N->getOpcode(), VTList, LoOps, 3);
HiOps[2] = Lo.getValue(1);
Hi = DAG.getNode(N->getOpcode(), VTList, HiOps, 3);
// Legalized the flag result - switch anything that used the old flag to
// use the new one.
ReplaceLegalValueWith(SDOperand(N, 1), Hi.getValue(1));
}
void DAGTypeLegalizer::ExpandResult_MUL(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType VT = N->getValueType(0);
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT);
bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT);
bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT);
bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT);
if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
SDOperand LL, LH, RL, RH;
GetExpandedOp(N->getOperand(0), LL, LH);
GetExpandedOp(N->getOperand(1), RL, RH);
unsigned BitSize = MVT::getSizeInBits(RH.getValueType());
unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
// FIXME: generalize this to handle other bit sizes
if (LHSSB == 32 && RHSSB == 32 &&
DAG.MaskedValueIsZero(N->getOperand(0), 0xFFFFFFFF00000000ULL) &&
DAG.MaskedValueIsZero(N->getOperand(1), 0xFFFFFFFF00000000ULL)) {
// The inputs are both zero-extended.
if (HasUMUL_LOHI) {
// We can emit a umul_lohi.
Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDOperand(Lo.Val, 1);
return;
}
if (HasMULHU) {
// We can emit a mulhu+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL);
return;
}
}
if (LHSSB > BitSize && RHSSB > BitSize) {
// The input values are both sign-extended.
if (HasSMUL_LOHI) {
// We can emit a smul_lohi.
Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL);
Hi = SDOperand(Lo.Val, 1);
return;
}
if (HasMULHS) {
// We can emit a mulhs+mul.
Lo = DAG.getNode(ISD::MUL, NVT, LL, RL);
Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL);
return;
}
}
if (HasUMUL_LOHI) {
// Lo,Hi = umul LHS, RHS.
SDOperand UMulLOHI = DAG.getNode(ISD::UMUL_LOHI,
DAG.getVTList(NVT, NVT), LL, RL);
Lo = UMulLOHI;
Hi = UMulLOHI.getValue(1);
RH = DAG.getNode(ISD::MUL, NVT, LL, RH);
LH = DAG.getNode(ISD::MUL, NVT, LH, RL);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH);
Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH);
return;
}
}
abort();
#if 0 // FIXME!
// If nothing else, we can make a libcall.
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::MUL_I64), N,
false/*sign irrelevant*/, Hi);
#endif
}
void DAGTypeLegalizer::ExpandResult_Shift(SDNode *N,
SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType VT = N->getValueType(0);
// If we can emit an efficient shift operation, do so now. Check to see if
// the RHS is a constant.
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return ExpandShiftByConstant(N, CN->getValue(), Lo, Hi);
// If we can determine that the high bit of the shift is zero or one, even if
// the low bits are variable, emit this shift in an optimized form.
if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
return;
// If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
unsigned PartsOpc;
if (N->getOpcode() == ISD::SHL)
PartsOpc = ISD::SHL_PARTS;
else if (N->getOpcode() == ISD::SRL)
PartsOpc = ISD::SRL_PARTS;
else {
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
PartsOpc = ISD::SRA_PARTS;
}
// Next check to see if the target supports this SHL_PARTS operation or if it
// will custom expand it.
MVT::ValueType NVT = TLI.getTypeToTransformTo(VT);
TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
Action == TargetLowering::Custom) {
// Expand the subcomponents.
SDOperand LHSL, LHSH;
GetExpandedOp(N->getOperand(0), LHSL, LHSH);
SDOperand Ops[] = { LHSL, LHSH, N->getOperand(1) };
MVT::ValueType VT = LHSL.getValueType();
Lo = DAG.getNode(PartsOpc, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3);
Hi = Lo.getValue(1);
return;
}
abort();
#if 0 // FIXME!
// Otherwise, emit a libcall.
unsigned RuntimeCode = ; // SRL -> SRL_I64 etc.
bool Signed = ;
Lo = ExpandLibCall(TLI.getLibcallName(RTLIB::SRL_I64), N,
false/*lshr is unsigned*/, Hi);
#endif
}
/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
/// and the shift amount is a constant 'Amt'. Expand the operation.
void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
SDOperand &Lo, SDOperand &Hi) {
// Expand the incoming operand to be shifted, so that we have its parts
SDOperand InL, InH;
GetExpandedOp(N->getOperand(0), InL, InH);
MVT::ValueType NVT = InL.getValueType();
unsigned VTBits = MVT::getSizeInBits(N->getValueType(0));
unsigned NVTBits = MVT::getSizeInBits(NVT);
MVT::ValueType ShTy = N->getOperand(1).getValueType();
if (N->getOpcode() == ISD::SHL) {
if (Amt > VTBits) {
Lo = Hi = DAG.getConstant(0, NVT);
} else if (Amt > NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt-NVTBits,ShTy));
} else if (Amt == NVTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = InL;
} else {
Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Amt, ShTy));
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(NVTBits-Amt, ShTy)));
}
return;
}
if (N->getOpcode() == ISD::SRL) {
if (Amt > VTBits) {
Lo = DAG.getConstant(0, NVT);
Hi = DAG.getConstant(0, NVT);
} else if (Amt > NVTBits) {
Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
Hi = DAG.getConstant(0, NVT);
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getConstant(0, NVT);
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(NVTBits-Amt, ShTy)));
Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Amt, ShTy));
}
return;
}
assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
if (Amt > VTBits) {
Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Amt > NVTBits) {
Lo = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(Amt-NVTBits, ShTy));
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else if (Amt == NVTBits) {
Lo = InH;
Hi = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
} else {
Lo = DAG.getNode(ISD::OR, NVT,
DAG.getNode(ISD::SRL, NVT, InL,
DAG.getConstant(Amt, ShTy)),
DAG.getNode(ISD::SHL, NVT, InH,
DAG.getConstant(NVTBits-Amt, ShTy)));
Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Amt, ShTy));
}
}
/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
/// this shift based on knowledge of the high bit of the shift amount. If we
/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
/// shift amount.
bool DAGTypeLegalizer::
ExpandShiftWithKnownAmountBit(SDNode *N, SDOperand &Lo, SDOperand &Hi) {
MVT::ValueType NVT = TLI.getTypeToTransformTo(N->getValueType(0));
unsigned NVTBits = MVT::getSizeInBits(NVT);
uint64_t HighBitMask = NVTBits, KnownZero, KnownOne;
DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
// If we don't know anything about the high bit, exit.
if (((KnownZero|KnownOne) & HighBitMask) == 0)
return false;
// Get the incoming operand to be shifted.
SDOperand InL, InH;
GetExpandedOp(N->getOperand(0), InL, InH);
SDOperand Amt = N->getOperand(1);
// If we know that the high bit of the shift amount is one, then we can do
// this as a couple of simple shifts.
if (KnownOne & HighBitMask) {
// Mask out the high bit, which we know is set.
Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt,
DAG.getConstant(NVTBits-1, Amt.getValueType()));
switch (N->getOpcode()) {
default: assert(0 && "Unknown shift");
case ISD::SHL:
Lo = DAG.getConstant(0, NVT); // Low part is zero.
Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part.
return true;
case ISD::SRL:
Hi = DAG.getConstant(0, NVT); // Hi part is zero.
Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part.
return true;
case ISD::SRA:
Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part.
DAG.getConstant(NVTBits-1, Amt.getValueType()));
Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part.
return true;
}
}
// If we know that the high bit of the shift amount is zero, then we can do
// this as a couple of simple shifts.
assert((KnownZero & HighBitMask) && "Bad mask computation above");
// Compute 32-amt.
SDOperand Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(),
DAG.getConstant(NVTBits, Amt.getValueType()),
Amt);
unsigned Op1, Op2;
switch (N->getOpcode()) {
default: assert(0 && "Unknown shift");
case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
case ISD::SRL:
case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
}
Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
Hi = DAG.getNode(ISD::OR, NVT,
DAG.getNode(Op1, NVT, InH, Amt),
DAG.getNode(Op2, NVT, InL, Amt2));
return true;
}
//===----------------------------------------------------------------------===//
// Operand Promotion
//===----------------------------------------------------------------------===//
/// PromoteOperand - This method is called when the specified operand of the
/// specified node is found to need promotion. At this point, all of the result
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Promote node operand: "; N->dump(&DAG); cerr << "\n");
SDOperand Res;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "PromoteOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to promote this operator's operand!");
abort();
case ISD::ANY_EXTEND: Res = PromoteOperand_ANY_EXTEND(N); break;
case ISD::ZERO_EXTEND: Res = PromoteOperand_ZERO_EXTEND(N); break;
case ISD::SIGN_EXTEND: Res = PromoteOperand_SIGN_EXTEND(N); break;
case ISD::TRUNCATE: Res = PromoteOperand_TRUNCATE(N); break;
case ISD::FP_EXTEND: Res = PromoteOperand_FP_EXTEND(N); break;
case ISD::FP_ROUND: Res = PromoteOperand_FP_ROUND(N); break;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteOperand_INT_TO_FP(N); break;
case ISD::SELECT: Res = PromoteOperand_SELECT(N, OpNo); break;
case ISD::BRCOND: Res = PromoteOperand_BRCOND(N, OpNo); break;
case ISD::BR_CC: Res = PromoteOperand_BR_CC(N, OpNo); break;
case ISD::STORE: Res = PromoteOperand_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::MEMSET:
case ISD::MEMCPY:
case ISD::MEMMOVE: Res = HandleMemIntrinsic(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
N->setNodeId(NewNode);
MarkNewNodes(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceLegalValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::PromoteOperand_ANY_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedOp(N->getOperand(0));
return DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteOperand_ZERO_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedOp(N->getOperand(0));
Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
return DAG.getZeroExtendInReg(Op, N->getOperand(0).getValueType());
}
SDOperand DAGTypeLegalizer::PromoteOperand_SIGN_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedOp(N->getOperand(0));
Op = DAG.getNode(ISD::ANY_EXTEND, N->getValueType(0), Op);
return DAG.getNode(ISD::SIGN_EXTEND_INREG, Op.getValueType(),
Op, DAG.getValueType(N->getOperand(0).getValueType()));
}
SDOperand DAGTypeLegalizer::PromoteOperand_TRUNCATE(SDNode *N) {
SDOperand Op = GetPromotedOp(N->getOperand(0));
return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteOperand_FP_EXTEND(SDNode *N) {
SDOperand Op = GetPromotedOp(N->getOperand(0));
return DAG.getNode(ISD::FP_EXTEND, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteOperand_FP_ROUND(SDNode *N) {
SDOperand Op = GetPromotedOp(N->getOperand(0));
return DAG.getNode(ISD::FP_ROUND, N->getValueType(0), Op);
}
SDOperand DAGTypeLegalizer::PromoteOperand_INT_TO_FP(SDNode *N) {
SDOperand In = GetPromotedOp(N->getOperand(0));
MVT::ValueType OpVT = N->getOperand(0).getValueType();
if (N->getOpcode() == ISD::UINT_TO_FP)
In = DAG.getZeroExtendInReg(In, OpVT);
else
In = DAG.getNode(ISD::SIGN_EXTEND_INREG, In.getValueType(),
In, DAG.getValueType(OpVT));
return DAG.UpdateNodeOperands(SDOperand(N, 0), In);
}
SDOperand DAGTypeLegalizer::PromoteOperand_SELECT(SDNode *N, unsigned OpNo) {
assert(OpNo == 0 && "Only know how to promote condition");
SDOperand Cond = GetPromotedOp(N->getOperand(0)); // Promote the condition.
// The top bits of the promoted condition are not necessarily zero, ensure
// that the value is properly zero extended.
if (!DAG.MaskedValueIsZero(Cond,
MVT::getIntVTBitMask(Cond.getValueType())^1)) {
Cond = DAG.getZeroExtendInReg(Cond, MVT::i1);
MarkNewNodes(Cond.Val);
}
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return DAG.UpdateNodeOperands(SDOperand(N, 0), Cond, N->getOperand(1),
N->getOperand(2));
}
SDOperand DAGTypeLegalizer::PromoteOperand_BRCOND(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "only know how to promote condition");
SDOperand Cond = GetPromotedOp(N->getOperand(1)); // Promote the condition.
// The top bits of the promoted condition are not necessarily zero, ensure
// that the value is properly zero extended.
if (!DAG.MaskedValueIsZero(Cond,
MVT::getIntVTBitMask(Cond.getValueType())^1)) {
Cond = DAG.getZeroExtendInReg(Cond, MVT::i1);
MarkNewNodes(Cond.Val);
}
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0), Cond,
N->getOperand(2));
}
SDOperand DAGTypeLegalizer::PromoteOperand_BR_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand");
SDOperand LHS = N->getOperand(2);
SDOperand RHS = N->getOperand(3);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
// The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
// legal types.
return DAG.UpdateNodeOperands(SDOperand(N, 0), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
/// PromoteSetCCOperands - Promote the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::PromoteSetCCOperands(SDOperand &NewLHS,SDOperand &NewRHS,
ISD::CondCode CCCode) {
MVT::ValueType VT = NewLHS.getValueType();
// Get the promoted values.
NewLHS = GetPromotedOp(NewLHS);
NewRHS = GetPromotedOp(NewRHS);
// If this is an FP compare, the operands have already been extended.
if (!MVT::isInteger(NewLHS.getValueType()))
return;
// Otherwise, we have to insert explicit sign or zero extends. Note
// that we could insert sign extends for ALL conditions, but zero extend
// is cheaper on many machines (an AND instead of two shifts), so prefer
// it.
switch (CCCode) {
default: assert(0 && "Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE:
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
// ALL of these operations will work if we either sign or zero extend
// the operands (including the unsigned comparisons!). Zero extend is
// usually a simpler/cheaper operation, so prefer it.
NewLHS = DAG.getZeroExtendInReg(NewLHS, VT);
NewRHS = DAG.getZeroExtendInReg(NewRHS, VT);
return;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
NewLHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewLHS.getValueType(), NewLHS,
DAG.getValueType(VT));
NewRHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, NewRHS.getValueType(), NewRHS,
DAG.getValueType(VT));
return;
}
}
SDOperand DAGTypeLegalizer::PromoteOperand_STORE(StoreSDNode *N, unsigned OpNo){
SDOperand Ch = N->getChain(), Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
SDOperand Val = GetPromotedOp(N->getValue()); // Get promoted value.
assert(!N->isTruncatingStore() && "Cannot promote this store operand!");
// Truncate the value and store the result.
return DAG.getTruncStore(Ch, Val, Ptr, N->getSrcValue(),
SVOffset, N->getStoredVT(),
isVolatile, Alignment);
}
//===----------------------------------------------------------------------===//
// Operand Expansion
//===----------------------------------------------------------------------===//
/// ExpandOperand - This method is called when the specified operand of the
/// specified node is found to need expansion. At this point, all of the result
/// types of the node are known to be legal, but other operands of the node may
/// need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::ExpandOperand(SDNode *N, unsigned OpNo) {
DEBUG(cerr << "Expand node operand: "; N->dump(&DAG); cerr << "\n");
SDOperand Res;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
cerr << "ExpandOperand Op #" << OpNo << ": ";
N->dump(&DAG); cerr << "\n";
#endif
assert(0 && "Do not know how to expand this operator's operand!");
abort();
case ISD::TRUNCATE: Res = ExpandOperand_TRUNCATE(N); break;
case ISD::BIT_CONVERT: Res = ExpandOperand_BIT_CONVERT(N); break;
case ISD::SINT_TO_FP:
Res = ExpandOperand_SINT_TO_FP(N->getOperand(0), N->getValueType(0));
break;
case ISD::UINT_TO_FP:
Res = ExpandOperand_UINT_TO_FP(N->getOperand(0), N->getValueType(0));
break;
case ISD::EXTRACT_ELEMENT: Res = ExpandOperand_EXTRACT_ELEMENT(N); break;
case ISD::SETCC: Res = ExpandOperand_SETCC(N); break;
case ISD::STORE: Res = ExpandOperand_STORE(cast<StoreSDNode>(N), OpNo); break;
case ISD::MEMSET:
case ISD::MEMCPY:
case ISD::MEMMOVE: Res = HandleMemIntrinsic(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.Val) return false;
// If the result is N, the sub-method updated N in place. Check to see if any
// operands are new, and if so, mark them.
if (Res.Val == N) {
// Mark N as new and remark N and its operands. This allows us to correctly
// revisit N if it needs another step of promotion and allows us to visit
// any new operands to N.
N->setNodeId(NewNode);
MarkNewNodes(N);
return true;
}
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceLegalValueWith(SDOperand(N, 0), Res);
return false;
}
SDOperand DAGTypeLegalizer::ExpandOperand_TRUNCATE(SDNode *N) {
SDOperand InL, InH;
GetExpandedOp(N->getOperand(0), InL, InH);
// Just truncate the low part of the source.
return DAG.getNode(ISD::TRUNCATE, N->getValueType(0), InL);
}
SDOperand DAGTypeLegalizer::ExpandOperand_BIT_CONVERT(SDNode *N) {
return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
}
SDOperand DAGTypeLegalizer::ExpandOperand_SINT_TO_FP(SDOperand Source,
MVT::ValueType DestTy) {
// We know the destination is legal, but that the input needs to be expanded.
assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
// Check to see if the target has a custom way to lower this. If so, use it.
switch (TLI.getOperationAction(ISD::SINT_TO_FP, Source.getValueType())) {
default: assert(0 && "This action not implemented for this operation!");
case TargetLowering::Legal:
case TargetLowering::Expand:
break; // This case is handled below.
case TargetLowering::Custom:
SDOperand NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy,
Source), DAG);
if (NV.Val) return NV;
break; // The target lowered this.
}
RTLIB::Libcall LC;
if (DestTy == MVT::f32)
LC = RTLIB::SINTTOFP_I64_F32;
else {
assert(DestTy == MVT::f64 && "Unknown fp value type!");
LC = RTLIB::SINTTOFP_I64_F64;
}
assert(0 && "FIXME: no libcalls yet!");
abort();
#if 0
assert(TLI.getLibcallName(LC) && "Don't know how to expand this SINT_TO_FP!");
Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source);
SDOperand UnusedHiPart;
return ExpandLibCall(TLI.getLibcallName(LC), Source.Val, true, UnusedHiPart);
#endif
}
SDOperand DAGTypeLegalizer::ExpandOperand_UINT_TO_FP(SDOperand Source,
MVT::ValueType DestTy) {
// We know the destination is legal, but that the input needs to be expanded.
assert(getTypeAction(Source.getValueType()) == Expand &&
"This is not an expansion!");
assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
// If this is unsigned, and not supported, first perform the conversion to
// signed, then adjust the result if the sign bit is set.
SDOperand SignedConv = ExpandOperand_SINT_TO_FP(Source, DestTy);
// The 64-bit value loaded will be incorrectly if the 'sign bit' of the
// incoming integer is set. To handle this, we dynamically test to see if
// it is set, and, if so, add a fudge factor.
SDOperand Lo, Hi;
GetExpandedOp(Source, Lo, Hi);
SDOperand SignSet = DAG.getSetCC(TLI.getSetCCResultTy(), Hi,
DAG.getConstant(0, Hi.getValueType()),
ISD::SETLT);
SDOperand Zero = getIntPtrConstant(0), Four = getIntPtrConstant(4);
SDOperand CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(),
SignSet, Four, Zero);
uint64_t FF = 0x5f800000ULL;
if (TLI.isLittleEndian()) FF <<= 32;
Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF);
SDOperand CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset);
SDOperand FudgeInReg;
if (DestTy == MVT::f32)
FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, NULL, 0);
else if (MVT::getSizeInBits(DestTy) > MVT::getSizeInBits(MVT::f32))
// FIXME: Avoid the extend by construction the right constantpool?
FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(),
CPIdx, NULL, 0, MVT::f32);
else
assert(0 && "Unexpected conversion");
return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg);
}
SDOperand DAGTypeLegalizer::ExpandOperand_EXTRACT_ELEMENT(SDNode *N) {
SDOperand Lo, Hi;
GetExpandedOp(N->getOperand(0), Lo, Hi);
return cast<ConstantSDNode>(N->getOperand(1))->getValue() ? Hi : Lo;
}
SDOperand DAGTypeLegalizer::ExpandOperand_SETCC(SDNode *N) {
SDOperand NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
ExpandSetCCOperands(NewLHS, NewRHS, CCCode);
// If ExpandSetCCOperands returned a scalar, use it.
if (NewRHS.Val == 0) return NewLHS;
// Otherwise, update N to have the operands specified.
return DAG.UpdateNodeOperands(SDOperand(N, 0), NewLHS, NewRHS,
DAG.getCondCode(CCCode));
}
/// ExpandSetCCOperands - Expand the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::ExpandSetCCOperands(SDOperand &NewLHS, SDOperand &NewRHS,
ISD::CondCode &CCCode) {
SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
GetExpandedOp(NewLHS, LHSLo, LHSHi);
GetExpandedOp(NewRHS, RHSLo, RHSHi);
MVT::ValueType VT = NewLHS.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
assert(0 && "FIXME: softfp not implemented yet! should be promote not exp");
}
if (VT == MVT::ppcf128) {
// FIXME: This generated code sucks. We want to generate
// FCMP crN, hi1, hi2
// BNE crN, L:
// FCMP crN, lo1, lo2
// The following can be improved, but not that much.
SDOperand Tmp1, Tmp2, Tmp3;
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, CCCode);
Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETNE);
Tmp2 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, CCCode);
Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2);
NewLHS = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3);
NewRHS = SDOperand(); // LHS is the result, not a compare.
return;
}
if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
if (RHSLo == RHSHi)
if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo))
if (RHSCST->isAllOnesValue()) {
// Equality comparison to -1.
NewLHS = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi);
NewRHS = RHSLo;
return;
}
NewLHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
NewRHS = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
NewLHS = DAG.getNode(ISD::OR, NewLHS.getValueType(), NewLHS, NewRHS);
NewRHS = DAG.getConstant(0, NewLHS.getValueType());
return;
}
// If this is a comparison of the sign bit, just look at the top part.
// X > -1, x < 0
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
if ((CCCode == ISD::SETLT && CST->getValue() == 0) || // X < 0
(CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
NewLHS = LHSHi;
NewRHS = RHSHi;
return;
}
// FIXME: This generated code sucks.
ISD::CondCode LowCC;
switch (CCCode) {
default: assert(0 && "Unknown integer setcc!");
case ISD::SETLT:
case ISD::SETULT: LowCC = ISD::SETULT; break;
case ISD::SETGT:
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
case ISD::SETLE:
case ISD::SETULE: LowCC = ISD::SETULE; break;
case ISD::SETGE:
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
}
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
// NOTE: on targets without efficient SELECT of bools, we can always use
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL);
SDOperand Tmp1, Tmp2;
Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC,
false, DagCombineInfo);
if (!Tmp1.Val)
Tmp1 = DAG.getSetCC(TLI.getSetCCResultTy(), LHSLo, RHSLo, LowCC);
Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
CCCode, false, DagCombineInfo);
if (!Tmp2.Val)
Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultTy(), LHSHi, RHSHi,
DAG.getCondCode(CCCode));
ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.Val);
ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.Val);
if ((Tmp1C && Tmp1C->getValue() == 0) ||
(Tmp2C && Tmp2C->getValue() == 0 &&
(CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
(Tmp2C && Tmp2C->getValue() == 1 &&
(CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
// low part is known false, returns high part.
// For LE / GE, if high part is known false, ignore the low part.
// For LT / GT, if high part is known true, ignore the low part.
NewLHS = Tmp2;
NewRHS = SDOperand();
return;
}
NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi,
ISD::SETEQ, false, DagCombineInfo);
if (!NewLHS.Val)
NewLHS = DAG.getSetCC(TLI.getSetCCResultTy(), LHSHi, RHSHi, ISD::SETEQ);
NewLHS = DAG.getNode(ISD::SELECT, Tmp1.getValueType(),
NewLHS, Tmp1, Tmp2);
NewRHS = SDOperand();
}
SDOperand DAGTypeLegalizer::ExpandOperand_STORE(StoreSDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "Can only expand the stored value so far");
assert(!N->isTruncatingStore() && "Can't expand truncstore!");
unsigned IncrementSize = 0;
SDOperand Lo, Hi;
// If this is a vector type, then we have to calculate the increment as
// the product of the element size in bytes, and the number of elements
// in the high half of the vector.
if (MVT::isVector(N->getValue().getValueType())) {
assert(0 && "Vectors not supported yet");
#if 0
SDNode *InVal = ST->getValue().Val;
unsigned NumElems = MVT::getVectorNumElements(InVal->getValueType(0));
MVT::ValueType EVT = MVT::getVectorElementType(InVal->getValueType(0));
// Figure out if there is a simple type corresponding to this Vector
// type. If so, convert to the vector type.
MVT::ValueType TVT = MVT::getVectorType(EVT, NumElems);
if (TLI.isTypeLegal(TVT)) {
// Turn this into a normal store of the vector type.
Tmp3 = LegalizeOp(Node->getOperand(1));
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
Result = LegalizeOp(Result);
break;
} else if (NumElems == 1) {
// Turn this into a normal store of the scalar type.
Tmp3 = ScalarizeVectorOp(Node->getOperand(1));
Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(),
SVOffset, isVolatile, Alignment);
// The scalarized value type may not be legal, e.g. it might require
// promotion or expansion. Relegalize the scalar store.
return LegalizeOp(Result);
} else {
SplitVectorOp(Node->getOperand(1), Lo, Hi);
IncrementSize = NumElems/2 * MVT::getSizeInBits(EVT)/8;
}
#endif
} else {
GetExpandedOp(N->getValue(), Lo, Hi);
IncrementSize = Hi.Val ? MVT::getSizeInBits(Hi.getValueType())/8 : 0;
if (!TLI.isLittleEndian())
std::swap(Lo, Hi);
}
SDOperand Chain = N->getChain();
SDOperand Ptr = N->getBasePtr();
int SVOffset = N->getSrcValueOffset();
unsigned Alignment = N->getAlignment();
bool isVolatile = N->isVolatile();
Lo = DAG.getStore(Chain, Lo, Ptr, N->getSrcValue(),
SVOffset, isVolatile, Alignment);
assert(Hi.Val && "FIXME: int <-> float should be handled with promote!");
#if 0
if (Hi.Val == NULL) {
// Must be int <-> float one-to-one expansion.
return Lo;
}
#endif
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
getIntPtrConstant(IncrementSize));
assert(isTypeLegal(Ptr.getValueType()) && "Pointers must be legal!");
Hi = DAG.getStore(Chain, Hi, Ptr, N->getSrcValue(), SVOffset+IncrementSize,
isVolatile, std::max(Alignment, IncrementSize));
return DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi);
}
//===----------------------------------------------------------------------===//
// Entry Point
//===----------------------------------------------------------------------===//
/// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void SelectionDAG::LegalizeTypes() {
DAGTypeLegalizer(*this).run();
}