mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
28c2fda9df
Currently, llvm (backend) doesn't know cortex-r4, even though it is the default target for armv7r. Using "--target=armv7r-arm-none-eabi" provokes 'cortex-r4' is not a recognized processor for this target' by llvm. This patch adds support for cortex-r4 and, very closely related, r4f. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234486 91177308-0d34-0410-b5e6-96231b3b80d8
453 lines
16 KiB
C++
453 lines
16 KiB
C++
//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the ARM specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
|
|
#define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H
|
|
|
|
|
|
#include "ARMFrameLowering.h"
|
|
#include "ARMISelLowering.h"
|
|
#include "ARMInstrInfo.h"
|
|
#include "ARMSelectionDAGInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMMCTargetDesc.h"
|
|
#include "Thumb1FrameLowering.h"
|
|
#include "Thumb1InstrInfo.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <string>
|
|
|
|
#define GET_SUBTARGETINFO_HEADER
|
|
#include "ARMGenSubtargetInfo.inc"
|
|
|
|
namespace llvm {
|
|
class GlobalValue;
|
|
class StringRef;
|
|
class TargetOptions;
|
|
class ARMBaseTargetMachine;
|
|
|
|
class ARMSubtarget : public ARMGenSubtargetInfo {
|
|
protected:
|
|
enum ARMProcFamilyEnum {
|
|
Others, CortexA5, CortexA7, CortexA8, CortexA9, CortexA12, CortexA15,
|
|
CortexA17, CortexR4, CortexR4F, CortexR5, Swift, CortexA53, CortexA57, Krait,
|
|
};
|
|
enum ARMProcClassEnum {
|
|
None, AClass, RClass, MClass
|
|
};
|
|
|
|
/// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others.
|
|
ARMProcFamilyEnum ARMProcFamily;
|
|
|
|
/// ARMProcClass - ARM processor class: None, AClass, RClass or MClass.
|
|
ARMProcClassEnum ARMProcClass;
|
|
|
|
/// HasV4TOps, HasV5TOps, HasV5TEOps,
|
|
/// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops -
|
|
/// Specify whether target support specific ARM ISA variants.
|
|
bool HasV4TOps;
|
|
bool HasV5TOps;
|
|
bool HasV5TEOps;
|
|
bool HasV6Ops;
|
|
bool HasV6MOps;
|
|
bool HasV6KOps;
|
|
bool HasV6T2Ops;
|
|
bool HasV7Ops;
|
|
bool HasV8Ops;
|
|
bool HasV8_1aOps;
|
|
|
|
/// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what
|
|
/// floating point ISAs are supported.
|
|
bool HasVFPv2;
|
|
bool HasVFPv3;
|
|
bool HasVFPv4;
|
|
bool HasFPARMv8;
|
|
bool HasNEON;
|
|
|
|
/// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been
|
|
/// specified. Use the method useNEONForSinglePrecisionFP() to
|
|
/// determine if NEON should actually be used.
|
|
bool UseNEONForSinglePrecisionFP;
|
|
|
|
/// UseMulOps - True if non-microcoded fused integer multiply-add and
|
|
/// multiply-subtract instructions should be used.
|
|
bool UseMulOps;
|
|
|
|
/// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates
|
|
/// whether the FP VML[AS] instructions are slow (if so, don't use them).
|
|
bool SlowFPVMLx;
|
|
|
|
/// HasVMLxForwarding - If true, NEON has special multiplier accumulator
|
|
/// forwarding to allow mul + mla being issued back to back.
|
|
bool HasVMLxForwarding;
|
|
|
|
/// SlowFPBrcc - True if floating point compare + branch is slow.
|
|
bool SlowFPBrcc;
|
|
|
|
/// InThumbMode - True if compiling for Thumb, false for ARM.
|
|
bool InThumbMode;
|
|
|
|
/// HasThumb2 - True if Thumb2 instructions are supported.
|
|
bool HasThumb2;
|
|
|
|
/// NoARM - True if subtarget does not support ARM mode execution.
|
|
bool NoARM;
|
|
|
|
/// IsR9Reserved - True if R9 is a not available as general purpose register.
|
|
bool IsR9Reserved;
|
|
|
|
/// UseMovt - True if MOVT / MOVW pairs are used for materialization of 32-bit
|
|
/// imms (including global addresses).
|
|
bool UseMovt;
|
|
|
|
/// SupportsTailCall - True if the OS supports tail call. The dynamic linker
|
|
/// must be able to synthesize call stubs for interworking between ARM and
|
|
/// Thumb.
|
|
bool SupportsTailCall;
|
|
|
|
/// HasFP16 - True if subtarget supports half-precision FP (We support VFP+HF
|
|
/// only so far)
|
|
bool HasFP16;
|
|
|
|
/// HasD16 - True if subtarget is limited to 16 double precision
|
|
/// FP registers for VFPv3.
|
|
bool HasD16;
|
|
|
|
/// HasHardwareDivide - True if subtarget supports [su]div
|
|
bool HasHardwareDivide;
|
|
|
|
/// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode
|
|
bool HasHardwareDivideInARM;
|
|
|
|
/// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack
|
|
/// instructions.
|
|
bool HasT2ExtractPack;
|
|
|
|
/// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier
|
|
/// instructions.
|
|
bool HasDataBarrier;
|
|
|
|
/// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions
|
|
/// over 16-bit ones.
|
|
bool Pref32BitThumb;
|
|
|
|
/// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions
|
|
/// that partially update CPSR and add false dependency on the previous
|
|
/// CPSR setting instruction.
|
|
bool AvoidCPSRPartialUpdate;
|
|
|
|
/// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting
|
|
/// movs with shifter operand (i.e. asr, lsl, lsr).
|
|
bool AvoidMOVsShifterOperand;
|
|
|
|
/// HasRAS - Some processors perform return stack prediction. CodeGen should
|
|
/// avoid issue "normal" call instructions to callees which do not return.
|
|
bool HasRAS;
|
|
|
|
/// HasMPExtension - True if the subtarget supports Multiprocessing
|
|
/// extension (ARMv7 only).
|
|
bool HasMPExtension;
|
|
|
|
/// HasVirtualization - True if the subtarget supports the Virtualization
|
|
/// extension.
|
|
bool HasVirtualization;
|
|
|
|
/// FPOnlySP - If true, the floating point unit only supports single
|
|
/// precision.
|
|
bool FPOnlySP;
|
|
|
|
/// If true, the processor supports the Performance Monitor Extensions. These
|
|
/// include a generic cycle-counter as well as more fine-grained (often
|
|
/// implementation-specific) events.
|
|
bool HasPerfMon;
|
|
|
|
/// HasTrustZone - if true, processor supports TrustZone security extensions
|
|
bool HasTrustZone;
|
|
|
|
/// HasCrypto - if true, processor supports Cryptography extensions
|
|
bool HasCrypto;
|
|
|
|
/// HasCRC - if true, processor supports CRC instructions
|
|
bool HasCRC;
|
|
|
|
/// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are
|
|
/// particularly effective at zeroing a VFP register.
|
|
bool HasZeroCycleZeroing;
|
|
|
|
/// AllowsUnalignedMem - If true, the subtarget allows unaligned memory
|
|
/// accesses for some types. For details, see
|
|
/// ARMTargetLowering::allowsMisalignedMemoryAccesses().
|
|
bool AllowsUnalignedMem;
|
|
|
|
/// RestrictIT - If true, the subtarget disallows generation of deprecated IT
|
|
/// blocks to conform to ARMv8 rule.
|
|
bool RestrictIT;
|
|
|
|
/// Thumb2DSP - If true, the subtarget supports the v7 DSP (saturating arith
|
|
/// and such) instructions in Thumb2 code.
|
|
bool Thumb2DSP;
|
|
|
|
/// NaCl TRAP instruction is generated instead of the regular TRAP.
|
|
bool UseNaClTrap;
|
|
|
|
/// Target machine allowed unsafe FP math (such as use of NEON fp)
|
|
bool UnsafeFPMath;
|
|
|
|
/// stackAlignment - The minimum alignment known to hold of the stack frame on
|
|
/// entry to the function and which must be maintained by every function.
|
|
unsigned stackAlignment;
|
|
|
|
/// CPUString - String name of used CPU.
|
|
std::string CPUString;
|
|
|
|
/// IsLittle - The target is Little Endian
|
|
bool IsLittle;
|
|
|
|
/// TargetTriple - What processor and OS we're targeting.
|
|
Triple TargetTriple;
|
|
|
|
/// SchedModel - Processor specific instruction costs.
|
|
MCSchedModel SchedModel;
|
|
|
|
/// Selected instruction itineraries (one entry per itinerary class.)
|
|
InstrItineraryData InstrItins;
|
|
|
|
/// Options passed via command line that could influence the target
|
|
const TargetOptions &Options;
|
|
|
|
const ARMBaseTargetMachine &TM;
|
|
|
|
public:
|
|
/// This constructor initializes the data members to match that
|
|
/// of the specified triple.
|
|
///
|
|
ARMSubtarget(const std::string &TT, const std::string &CPU,
|
|
const std::string &FS, const ARMBaseTargetMachine &TM, bool IsLittle);
|
|
|
|
/// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
|
|
/// that still makes it profitable to inline the call.
|
|
unsigned getMaxInlineSizeThreshold() const {
|
|
return 64;
|
|
}
|
|
/// ParseSubtargetFeatures - Parses features string setting specified
|
|
/// subtarget options. Definition of function is auto generated by tblgen.
|
|
void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
|
|
|
|
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
|
|
/// so that we can use initializer lists for subtarget initialization.
|
|
ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
|
|
|
|
const ARMSelectionDAGInfo *getSelectionDAGInfo() const override {
|
|
return &TSInfo;
|
|
}
|
|
const ARMBaseInstrInfo *getInstrInfo() const override {
|
|
return InstrInfo.get();
|
|
}
|
|
const ARMTargetLowering *getTargetLowering() const override {
|
|
return &TLInfo;
|
|
}
|
|
const ARMFrameLowering *getFrameLowering() const override {
|
|
return FrameLowering.get();
|
|
}
|
|
const ARMBaseRegisterInfo *getRegisterInfo() const override {
|
|
return &InstrInfo->getRegisterInfo();
|
|
}
|
|
|
|
private:
|
|
ARMSelectionDAGInfo TSInfo;
|
|
// Either Thumb1FrameLowering or ARMFrameLowering.
|
|
std::unique_ptr<ARMFrameLowering> FrameLowering;
|
|
// Either Thumb1InstrInfo or Thumb2InstrInfo.
|
|
std::unique_ptr<ARMBaseInstrInfo> InstrInfo;
|
|
ARMTargetLowering TLInfo;
|
|
|
|
void initializeEnvironment();
|
|
void initSubtargetFeatures(StringRef CPU, StringRef FS);
|
|
ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS);
|
|
|
|
public:
|
|
void computeIssueWidth();
|
|
|
|
bool hasV4TOps() const { return HasV4TOps; }
|
|
bool hasV5TOps() const { return HasV5TOps; }
|
|
bool hasV5TEOps() const { return HasV5TEOps; }
|
|
bool hasV6Ops() const { return HasV6Ops; }
|
|
bool hasV6MOps() const { return HasV6MOps; }
|
|
bool hasV6KOps() const { return HasV6KOps; }
|
|
bool hasV6T2Ops() const { return HasV6T2Ops; }
|
|
bool hasV7Ops() const { return HasV7Ops; }
|
|
bool hasV8Ops() const { return HasV8Ops; }
|
|
bool hasV8_1aOps() const { return HasV8_1aOps; }
|
|
|
|
bool isCortexA5() const { return ARMProcFamily == CortexA5; }
|
|
bool isCortexA7() const { return ARMProcFamily == CortexA7; }
|
|
bool isCortexA8() const { return ARMProcFamily == CortexA8; }
|
|
bool isCortexA9() const { return ARMProcFamily == CortexA9; }
|
|
bool isCortexA15() const { return ARMProcFamily == CortexA15; }
|
|
bool isSwift() const { return ARMProcFamily == Swift; }
|
|
bool isCortexM3() const { return CPUString == "cortex-m3"; }
|
|
bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); }
|
|
bool isCortexR5() const { return ARMProcFamily == CortexR5; }
|
|
bool isKrait() const { return ARMProcFamily == Krait; }
|
|
|
|
bool hasARMOps() const { return !NoARM; }
|
|
|
|
bool hasVFP2() const { return HasVFPv2; }
|
|
bool hasVFP3() const { return HasVFPv3; }
|
|
bool hasVFP4() const { return HasVFPv4; }
|
|
bool hasFPARMv8() const { return HasFPARMv8; }
|
|
bool hasNEON() const { return HasNEON; }
|
|
bool hasCrypto() const { return HasCrypto; }
|
|
bool hasCRC() const { return HasCRC; }
|
|
bool hasVirtualization() const { return HasVirtualization; }
|
|
bool useNEONForSinglePrecisionFP() const {
|
|
return hasNEON() && UseNEONForSinglePrecisionFP;
|
|
}
|
|
|
|
bool hasDivide() const { return HasHardwareDivide; }
|
|
bool hasDivideInARMMode() const { return HasHardwareDivideInARM; }
|
|
bool hasT2ExtractPack() const { return HasT2ExtractPack; }
|
|
bool hasDataBarrier() const { return HasDataBarrier; }
|
|
bool hasAnyDataBarrier() const {
|
|
return HasDataBarrier || (hasV6Ops() && !isThumb());
|
|
}
|
|
bool useMulOps() const { return UseMulOps; }
|
|
bool useFPVMLx() const { return !SlowFPVMLx; }
|
|
bool hasVMLxForwarding() const { return HasVMLxForwarding; }
|
|
bool isFPBrccSlow() const { return SlowFPBrcc; }
|
|
bool isFPOnlySP() const { return FPOnlySP; }
|
|
bool hasPerfMon() const { return HasPerfMon; }
|
|
bool hasTrustZone() const { return HasTrustZone; }
|
|
bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; }
|
|
bool prefers32BitThumb() const { return Pref32BitThumb; }
|
|
bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; }
|
|
bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; }
|
|
bool hasRAS() const { return HasRAS; }
|
|
bool hasMPExtension() const { return HasMPExtension; }
|
|
bool hasThumb2DSP() const { return Thumb2DSP; }
|
|
bool useNaClTrap() const { return UseNaClTrap; }
|
|
|
|
bool hasFP16() const { return HasFP16; }
|
|
bool hasD16() const { return HasD16; }
|
|
|
|
const Triple &getTargetTriple() const { return TargetTriple; }
|
|
|
|
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
|
|
bool isTargetIOS() const { return TargetTriple.isiOS(); }
|
|
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
|
|
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
|
|
bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); }
|
|
bool isTargetWindows() const { return TargetTriple.isOSWindows(); }
|
|
|
|
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
|
|
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
|
|
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
|
|
|
|
// ARM EABI is the bare-metal EABI described in ARM ABI documents and
|
|
// can be accessed via -target arm-none-eabi. This is NOT GNUEABI.
|
|
// FIXME: Add a flag for bare-metal for that target and set Triple::EABI
|
|
// even for GNUEABI, so we can make a distinction here and still conform to
|
|
// the EABI on GNU (and Android) mode. This requires change in Clang, too.
|
|
// FIXME: The Darwin exception is temporary, while we move users to
|
|
// "*-*-*-macho" triples as quickly as possible.
|
|
bool isTargetAEABI() const {
|
|
return (TargetTriple.getEnvironment() == Triple::EABI ||
|
|
TargetTriple.getEnvironment() == Triple::EABIHF) &&
|
|
!isTargetDarwin() && !isTargetWindows();
|
|
}
|
|
|
|
// ARM Targets that support EHABI exception handling standard
|
|
// Darwin uses SjLj. Other targets might need more checks.
|
|
bool isTargetEHABICompatible() const {
|
|
return (TargetTriple.getEnvironment() == Triple::EABI ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABI ||
|
|
TargetTriple.getEnvironment() == Triple::EABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::Android) &&
|
|
!isTargetDarwin() && !isTargetWindows();
|
|
}
|
|
|
|
bool isTargetHardFloat() const {
|
|
// FIXME: this is invalid for WindowsCE
|
|
return TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::EABIHF ||
|
|
isTargetWindows();
|
|
}
|
|
bool isTargetAndroid() const {
|
|
return TargetTriple.getEnvironment() == Triple::Android;
|
|
}
|
|
|
|
bool isAPCS_ABI() const;
|
|
bool isAAPCS_ABI() const;
|
|
|
|
bool isThumb() const { return InThumbMode; }
|
|
bool isThumb1Only() const { return InThumbMode && !HasThumb2; }
|
|
bool isThumb2() const { return InThumbMode && HasThumb2; }
|
|
bool hasThumb2() const { return HasThumb2; }
|
|
bool isMClass() const { return ARMProcClass == MClass; }
|
|
bool isRClass() const { return ARMProcClass == RClass; }
|
|
bool isAClass() const { return ARMProcClass == AClass; }
|
|
|
|
bool isV6M() const {
|
|
return isThumb1Only() && isMClass();
|
|
}
|
|
|
|
bool isR9Reserved() const { return IsR9Reserved; }
|
|
|
|
bool useMovt(const MachineFunction &MF) const;
|
|
|
|
bool supportsTailCall() const { return SupportsTailCall; }
|
|
|
|
bool allowsUnalignedMem() const { return AllowsUnalignedMem; }
|
|
|
|
bool restrictIT() const { return RestrictIT; }
|
|
|
|
const std::string & getCPUString() const { return CPUString; }
|
|
|
|
bool isLittle() const { return IsLittle; }
|
|
|
|
unsigned getMispredictionPenalty() const;
|
|
|
|
/// This function returns true if the target has sincos() routine in its
|
|
/// compiler runtime or math libraries.
|
|
bool hasSinCos() const;
|
|
|
|
/// True for some subtargets at > -O0.
|
|
bool enablePostMachineScheduler() const override;
|
|
|
|
// enableAtomicExpand- True if we need to expand our atomics.
|
|
bool enableAtomicExpand() const override;
|
|
|
|
/// getInstrItins - Return the instruction itineraries based on subtarget
|
|
/// selection.
|
|
const InstrItineraryData *getInstrItineraryData() const override {
|
|
return &InstrItins;
|
|
}
|
|
|
|
/// getStackAlignment - Returns the minimum alignment known to hold of the
|
|
/// stack frame on entry to the function and which must be maintained by every
|
|
/// function for this subtarget.
|
|
unsigned getStackAlignment() const { return stackAlignment; }
|
|
|
|
/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect
|
|
/// symbol.
|
|
bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const;
|
|
|
|
};
|
|
} // End llvm namespace
|
|
|
|
#endif // ARMSUBTARGET_H
|