llvm-6502/lib/Target/X86/X86AsmBackend.cpp
Rafael Espindola 1c952b9cc9 Initial support for the cfi directives. This is just enough to get
f:
        .cfi_startproc
        nop
        .cfi_endproc

assembled (on ELF).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121434 91177308-0d34-0410-b5e6-96231b3b80d8
2010-12-09 23:48:29 +00:00

427 lines
13 KiB
C++

//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetAsmBackend.h"
#include "X86.h"
#include "X86FixupKinds.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectFormat.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Object/MachOFormat.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmBackend.h"
using namespace llvm;
static unsigned getFixupKindLog2Size(unsigned Kind) {
switch (Kind) {
default: assert(0 && "invalid fixup kind!");
case FK_PCRel_1:
case FK_Data_1: return 0;
case FK_PCRel_2:
case FK_Data_2: return 1;
case FK_PCRel_4:
case X86::reloc_riprel_4byte:
case X86::reloc_riprel_4byte_movq_load:
case X86::reloc_signed_4byte:
case X86::reloc_global_offset_table:
case FK_Data_4: return 2;
case FK_Data_8: return 3;
}
}
namespace {
class X86AsmBackend : public TargetAsmBackend {
public:
X86AsmBackend(const Target &T)
: TargetAsmBackend() {}
void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value) const {
unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
assert(Fixup.getOffset() + Size <= DataSize &&
"Invalid fixup offset!");
for (unsigned i = 0; i != Size; ++i)
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
bool MayNeedRelaxation(const MCInst &Inst) const;
void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
};
} // end anonymous namespace
static unsigned getRelaxedOpcodeBranch(unsigned Op) {
switch (Op) {
default:
return Op;
case X86::JAE_1: return X86::JAE_4;
case X86::JA_1: return X86::JA_4;
case X86::JBE_1: return X86::JBE_4;
case X86::JB_1: return X86::JB_4;
case X86::JE_1: return X86::JE_4;
case X86::JGE_1: return X86::JGE_4;
case X86::JG_1: return X86::JG_4;
case X86::JLE_1: return X86::JLE_4;
case X86::JL_1: return X86::JL_4;
case X86::JMP_1: return X86::JMP_4;
case X86::JNE_1: return X86::JNE_4;
case X86::JNO_1: return X86::JNO_4;
case X86::JNP_1: return X86::JNP_4;
case X86::JNS_1: return X86::JNS_4;
case X86::JO_1: return X86::JO_4;
case X86::JP_1: return X86::JP_4;
case X86::JS_1: return X86::JS_4;
}
}
static unsigned getRelaxedOpcodeArith(unsigned Op) {
switch (Op) {
default:
return Op;
// IMUL
case X86::IMUL16rri8: return X86::IMUL16rri;
case X86::IMUL16rmi8: return X86::IMUL16rmi;
case X86::IMUL32rri8: return X86::IMUL32rri;
case X86::IMUL32rmi8: return X86::IMUL32rmi;
case X86::IMUL64rri8: return X86::IMUL64rri32;
case X86::IMUL64rmi8: return X86::IMUL64rmi32;
// AND
case X86::AND16ri8: return X86::AND16ri;
case X86::AND16mi8: return X86::AND16mi;
case X86::AND32ri8: return X86::AND32ri;
case X86::AND32mi8: return X86::AND32mi;
case X86::AND64ri8: return X86::AND64ri32;
case X86::AND64mi8: return X86::AND64mi32;
// OR
case X86::OR16ri8: return X86::OR16ri;
case X86::OR16mi8: return X86::OR16mi;
case X86::OR32ri8: return X86::OR32ri;
case X86::OR32mi8: return X86::OR32mi;
case X86::OR64ri8: return X86::OR64ri32;
case X86::OR64mi8: return X86::OR64mi32;
// XOR
case X86::XOR16ri8: return X86::XOR16ri;
case X86::XOR16mi8: return X86::XOR16mi;
case X86::XOR32ri8: return X86::XOR32ri;
case X86::XOR32mi8: return X86::XOR32mi;
case X86::XOR64ri8: return X86::XOR64ri32;
case X86::XOR64mi8: return X86::XOR64mi32;
// ADD
case X86::ADD16ri8: return X86::ADD16ri;
case X86::ADD16mi8: return X86::ADD16mi;
case X86::ADD32ri8: return X86::ADD32ri;
case X86::ADD32mi8: return X86::ADD32mi;
case X86::ADD64ri8: return X86::ADD64ri32;
case X86::ADD64mi8: return X86::ADD64mi32;
// SUB
case X86::SUB16ri8: return X86::SUB16ri;
case X86::SUB16mi8: return X86::SUB16mi;
case X86::SUB32ri8: return X86::SUB32ri;
case X86::SUB32mi8: return X86::SUB32mi;
case X86::SUB64ri8: return X86::SUB64ri32;
case X86::SUB64mi8: return X86::SUB64mi32;
// CMP
case X86::CMP16ri8: return X86::CMP16ri;
case X86::CMP16mi8: return X86::CMP16mi;
case X86::CMP32ri8: return X86::CMP32ri;
case X86::CMP32mi8: return X86::CMP32mi;
case X86::CMP64ri8: return X86::CMP64ri32;
case X86::CMP64mi8: return X86::CMP64mi32;
}
}
static unsigned getRelaxedOpcode(unsigned Op) {
unsigned R = getRelaxedOpcodeArith(Op);
if (R != Op)
return R;
return getRelaxedOpcodeBranch(Op);
}
bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
// Branches can always be relaxed.
if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
return true;
// Check if this instruction is ever relaxable.
if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
return false;
// Check if it has an expression and is not RIP relative.
bool hasExp = false;
bool hasRIP = false;
for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
const MCOperand &Op = Inst.getOperand(i);
if (Op.isExpr())
hasExp = true;
if (Op.isReg() && Op.getReg() == X86::RIP)
hasRIP = true;
}
// FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
// how we do relaxations?
return hasExp && !hasRIP;
}
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
Res = Inst;
Res.setOpcode(RelaxedOp);
}
/// WriteNopData - Write optimal nops to the output file for the \arg Count
/// bytes. This returns the number of bytes written. It may return 0 if
/// the \arg Count is more than the maximum optimal nops.
bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
static const uint8_t Nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 0(%[re]ax)
{0x0f, 0x1f, 0x40, 0x00},
// nopl 0(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopw 0(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopl 0L(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
// nopl 0L(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw 0L(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw %cs:0L(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
// Write an optimal sequence for the first 15 bytes.
const uint64_t OptimalCount = (Count < 16) ? Count : 15;
const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
for (uint64_t i = 0, e = Prefixes; i != e; i++)
OW->Write8(0x66);
const uint64_t Rest = OptimalCount - Prefixes;
for (uint64_t i = 0, e = Rest; i != e; i++)
OW->Write8(Nops[Rest - 1][i]);
// Finish with single byte nops.
for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
OW->Write8(0x90);
return true;
}
/* *** */
namespace {
class ELFX86AsmBackend : public X86AsmBackend {
MCELFObjectFormat Format;
public:
Triple::OSType OSType;
ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
: X86AsmBackend(T), OSType(_OSType) {
HasScatteredSymbols = true;
HasReliableSymbolDifference = true;
}
virtual const MCObjectFormat &getObjectFormat() const {
return Format;
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
return ES.getFlags() & MCSectionELF::SHF_MERGE;
}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
: ELFX86AsmBackend(T, OSType) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createELFObjectWriter(OS, /*Is64Bit=*/false,
OSType, ELF::EM_386,
/*IsLittleEndian=*/true,
/*HasRelocationAddend=*/false);
}
};
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
: ELFX86AsmBackend(T, OSType) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createELFObjectWriter(OS, /*Is64Bit=*/true,
OSType, ELF::EM_X86_64,
/*IsLittleEndian=*/true,
/*HasRelocationAddend=*/true);
}
};
class WindowsX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
MCCOFFObjectFormat Format;
public:
WindowsX86AsmBackend(const Target &T, bool is64Bit)
: X86AsmBackend(T)
, Is64Bit(is64Bit) {
HasScatteredSymbols = true;
}
virtual const MCObjectFormat &getObjectFormat() const {
return Format;
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createWinCOFFObjectWriter(OS, Is64Bit);
}
};
class DarwinX86AsmBackend : public X86AsmBackend {
MCMachOObjectFormat Format;
public:
DarwinX86AsmBackend(const Target &T)
: X86AsmBackend(T) {
HasScatteredSymbols = true;
}
virtual const MCObjectFormat &getObjectFormat() const {
return Format;
}
};
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_32AsmBackend(const Target &T)
: DarwinX86AsmBackend(T) {}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createMachObjectWriter(OS, /*Is64Bit=*/false,
object::mach::CTM_i386,
object::mach::CSX86_ALL,
/*IsLittleEndian=*/true);
}
};
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_64AsmBackend(const Target &T)
: DarwinX86AsmBackend(T) {
HasReliableSymbolDifference = true;
}
MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
return createMachObjectWriter(OS, /*Is64Bit=*/true,
object::mach::CTM_x86_64,
object::mach::CSX86_ALL,
/*IsLittleEndian=*/true);
}
virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
// Temporary labels in the string literals sections require symbols. The
// issue is that the x86_64 relocation format does not allow symbol +
// offset, and so the linker does not have enough information to resolve the
// access to the appropriate atom unless an external relocation is used. For
// non-cstring sections, we expect the compiler to use a non-temporary label
// for anything that could have an addend pointing outside the symbol.
//
// See <rdar://problem/4765733>.
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
}
virtual bool isSectionAtomizable(const MCSection &Section) const {
const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
// Fixed sized data sections are uniqued, they cannot be diced into atoms.
switch (SMO.getType()) {
default:
return true;
case MCSectionMachO::S_4BYTE_LITERALS:
case MCSectionMachO::S_8BYTE_LITERALS:
case MCSectionMachO::S_16BYTE_LITERALS:
case MCSectionMachO::S_LITERAL_POINTERS:
case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
case MCSectionMachO::S_INTERPOSING:
return false;
}
}
};
} // end anonymous namespace
TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
const std::string &TT) {
switch (Triple(TT).getOS()) {
case Triple::Darwin:
return new DarwinX86_32AsmBackend(T);
case Triple::MinGW32:
case Triple::Cygwin:
case Triple::Win32:
return new WindowsX86AsmBackend(T, false);
default:
return new ELFX86_32AsmBackend(T, Triple(TT).getOS());
}
}
TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
const std::string &TT) {
switch (Triple(TT).getOS()) {
case Triple::Darwin:
return new DarwinX86_64AsmBackend(T);
case Triple::MinGW64:
case Triple::Cygwin:
case Triple::Win32:
return new WindowsX86AsmBackend(T, true);
default:
return new ELFX86_64AsmBackend(T, Triple(TT).getOS());
}
}