llvm-6502/lib/Target/X86/X86RegisterInfo.cpp
2006-04-07 16:34:46 +00:00

699 lines
35 KiB
C++

//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the MRegisterInfo class. This
// file is responsible for the frame pointer elimination optimization on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86InstrBuilder.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/STLExtras.h"
#include <iostream>
using namespace llvm;
namespace {
cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
}
X86RegisterInfo::X86RegisterInfo()
: X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP) {}
void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, int FrameIdx,
const TargetRegisterClass *RC) const {
unsigned Opc;
if (RC == &X86::R32RegClass) {
Opc = X86::MOV32mr;
} else if (RC == &X86::R8RegClass) {
Opc = X86::MOV8mr;
} else if (RC == &X86::R16RegClass) {
Opc = X86::MOV16mr;
} else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
Opc = X86::FpST64m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSmr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDmr;
} else if (RC == &X86::VR128RegClass) {
Opc = X86::MOVAPDmr;
} else {
assert(0 && "Unknown regclass");
abort();
}
addFrameReference(BuildMI(MBB, MI, Opc, 5), FrameIdx).addReg(SrcReg);
}
void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC) const{
unsigned Opc;
if (RC == &X86::R32RegClass) {
Opc = X86::MOV32rm;
} else if (RC == &X86::R8RegClass) {
Opc = X86::MOV8rm;
} else if (RC == &X86::R16RegClass) {
Opc = X86::MOV16rm;
} else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
Opc = X86::FpLD64m;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::MOVSSrm;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::MOVSDrm;
} else if (RC == &X86::VR128RegClass) {
Opc = X86::MOVAPDrm;
} else {
assert(0 && "Unknown regclass");
abort();
}
addFrameReference(BuildMI(MBB, MI, Opc, 4, DestReg), FrameIdx);
}
void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *RC) const {
unsigned Opc;
if (RC == &X86::R32RegClass) {
Opc = X86::MOV32rr;
} else if (RC == &X86::R8RegClass) {
Opc = X86::MOV8rr;
} else if (RC == &X86::R16RegClass) {
Opc = X86::MOV16rr;
} else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
Opc = X86::FpMOV;
} else if (RC == &X86::FR32RegClass) {
Opc = X86::FsMOVAPSrr;
} else if (RC == &X86::FR64RegClass) {
Opc = X86::FsMOVAPDrr;
} else if (RC == &X86::VR128RegClass) {
Opc = X86::MOVAPDrr;
} else {
assert(0 && "Unknown regclass");
abort();
}
BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg);
}
static MachineInstr *MakeMInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 4), FrameIndex);
}
static MachineInstr *MakeMRInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addReg(MI->getOperand(1).getReg());
}
static MachineInstr *MakeMRIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 6), FrameIndex)
.addReg(MI->getOperand(1).getReg())
.addZImm(MI->getOperand(2).getImmedValue());
}
static MachineInstr *MakeMIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
if (MI->getOperand(1).isImmediate())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addZImm(MI->getOperand(1).getImmedValue());
else if (MI->getOperand(1).isGlobalAddress())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addGlobalAddress(MI->getOperand(1).getGlobal(),
false, MI->getOperand(1).getOffset());
assert(0 && "Unknown operand for MakeMI!");
return 0;
}
static MachineInstr *MakeM0Inst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 5), FrameIndex).addZImm(0);
}
static MachineInstr *MakeRMInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
const MachineOperand& op = MI->getOperand(0);
return addFrameReference(BuildMI(Opcode, 5, op.getReg(), op.getUseType()),
FrameIndex);
}
static MachineInstr *MakeRMIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
const MachineOperand& op = MI->getOperand(0);
return addFrameReference(BuildMI(Opcode, 6, op.getReg(), op.getUseType()),
FrameIndex).addZImm(MI->getOperand(2).getImmedValue());
}
MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr* MI,
unsigned i,
int FrameIndex) const {
if (NoFusing) return NULL;
/// FIXME: This should obviously be autogenerated by tablegen when patterns
/// are available!
MachineBasicBlock& MBB = *MI->getParent();
if (i == 0) {
switch(MI->getOpcode()) {
case X86::XCHG8rr: return MakeMRInst(X86::XCHG8mr ,FrameIndex, MI);
case X86::XCHG16rr: return MakeMRInst(X86::XCHG16mr,FrameIndex, MI);
case X86::XCHG32rr: return MakeMRInst(X86::XCHG32mr,FrameIndex, MI);
case X86::MOV8rr: return MakeMRInst(X86::MOV8mr , FrameIndex, MI);
case X86::MOV16rr: return MakeMRInst(X86::MOV16mr, FrameIndex, MI);
case X86::MOV32rr: return MakeMRInst(X86::MOV32mr, FrameIndex, MI);
case X86::MOV8ri: return MakeMIInst(X86::MOV8mi , FrameIndex, MI);
case X86::MOV16ri: return MakeMIInst(X86::MOV16mi, FrameIndex, MI);
case X86::MOV32ri: return MakeMIInst(X86::MOV32mi, FrameIndex, MI);
case X86::MUL8r: return MakeMInst( X86::MUL8m , FrameIndex, MI);
case X86::MUL16r: return MakeMInst( X86::MUL16m, FrameIndex, MI);
case X86::MUL32r: return MakeMInst( X86::MUL32m, FrameIndex, MI);
case X86::IMUL8r: return MakeMInst( X86::IMUL8m , FrameIndex, MI);
case X86::IMUL16r: return MakeMInst( X86::IMUL16m, FrameIndex, MI);
case X86::IMUL32r: return MakeMInst( X86::IMUL32m, FrameIndex, MI);
case X86::DIV8r: return MakeMInst( X86::DIV8m , FrameIndex, MI);
case X86::DIV16r: return MakeMInst( X86::DIV16m, FrameIndex, MI);
case X86::DIV32r: return MakeMInst( X86::DIV32m, FrameIndex, MI);
case X86::IDIV8r: return MakeMInst( X86::IDIV8m , FrameIndex, MI);
case X86::IDIV16r: return MakeMInst( X86::IDIV16m, FrameIndex, MI);
case X86::IDIV32r: return MakeMInst( X86::IDIV32m, FrameIndex, MI);
case X86::NEG8r: return MakeMInst( X86::NEG8m , FrameIndex, MI);
case X86::NEG16r: return MakeMInst( X86::NEG16m, FrameIndex, MI);
case X86::NEG32r: return MakeMInst( X86::NEG32m, FrameIndex, MI);
case X86::NOT8r: return MakeMInst( X86::NOT8m , FrameIndex, MI);
case X86::NOT16r: return MakeMInst( X86::NOT16m, FrameIndex, MI);
case X86::NOT32r: return MakeMInst( X86::NOT32m, FrameIndex, MI);
case X86::INC8r: return MakeMInst( X86::INC8m , FrameIndex, MI);
case X86::INC16r: return MakeMInst( X86::INC16m, FrameIndex, MI);
case X86::INC32r: return MakeMInst( X86::INC32m, FrameIndex, MI);
case X86::DEC8r: return MakeMInst( X86::DEC8m , FrameIndex, MI);
case X86::DEC16r: return MakeMInst( X86::DEC16m, FrameIndex, MI);
case X86::DEC32r: return MakeMInst( X86::DEC32m, FrameIndex, MI);
case X86::ADD8rr: return MakeMRInst(X86::ADD8mr , FrameIndex, MI);
case X86::ADD16rr: return MakeMRInst(X86::ADD16mr, FrameIndex, MI);
case X86::ADD32rr: return MakeMRInst(X86::ADD32mr, FrameIndex, MI);
case X86::ADD8ri: return MakeMIInst(X86::ADD8mi , FrameIndex, MI);
case X86::ADD16ri: return MakeMIInst(X86::ADD16mi, FrameIndex, MI);
case X86::ADD32ri: return MakeMIInst(X86::ADD32mi, FrameIndex, MI);
case X86::ADD16ri8: return MakeMIInst(X86::ADD16mi8,FrameIndex, MI);
case X86::ADD32ri8: return MakeMIInst(X86::ADD32mi8,FrameIndex, MI);
case X86::ADC32rr: return MakeMRInst(X86::ADC32mr, FrameIndex, MI);
case X86::ADC32ri: return MakeMIInst(X86::ADC32mi, FrameIndex, MI);
case X86::ADC32ri8: return MakeMIInst(X86::ADC32mi8,FrameIndex, MI);
case X86::SUB8rr: return MakeMRInst(X86::SUB8mr , FrameIndex, MI);
case X86::SUB16rr: return MakeMRInst(X86::SUB16mr, FrameIndex, MI);
case X86::SUB32rr: return MakeMRInst(X86::SUB32mr, FrameIndex, MI);
case X86::SUB8ri: return MakeMIInst(X86::SUB8mi , FrameIndex, MI);
case X86::SUB16ri: return MakeMIInst(X86::SUB16mi, FrameIndex, MI);
case X86::SUB32ri: return MakeMIInst(X86::SUB32mi, FrameIndex, MI);
case X86::SUB16ri8: return MakeMIInst(X86::SUB16mi8,FrameIndex, MI);
case X86::SUB32ri8: return MakeMIInst(X86::SUB32mi8,FrameIndex, MI);
case X86::SBB32rr: return MakeMRInst(X86::SBB32mr, FrameIndex, MI);
case X86::SBB32ri: return MakeMIInst(X86::SBB32mi, FrameIndex, MI);
case X86::SBB32ri8: return MakeMIInst(X86::SBB32mi8,FrameIndex, MI);
case X86::AND8rr: return MakeMRInst(X86::AND8mr , FrameIndex, MI);
case X86::AND16rr: return MakeMRInst(X86::AND16mr, FrameIndex, MI);
case X86::AND32rr: return MakeMRInst(X86::AND32mr, FrameIndex, MI);
case X86::AND8ri: return MakeMIInst(X86::AND8mi , FrameIndex, MI);
case X86::AND16ri: return MakeMIInst(X86::AND16mi, FrameIndex, MI);
case X86::AND32ri: return MakeMIInst(X86::AND32mi, FrameIndex, MI);
case X86::AND16ri8: return MakeMIInst(X86::AND16mi8,FrameIndex, MI);
case X86::AND32ri8: return MakeMIInst(X86::AND32mi8,FrameIndex, MI);
case X86::OR8rr: return MakeMRInst(X86::OR8mr , FrameIndex, MI);
case X86::OR16rr: return MakeMRInst(X86::OR16mr, FrameIndex, MI);
case X86::OR32rr: return MakeMRInst(X86::OR32mr, FrameIndex, MI);
case X86::OR8ri: return MakeMIInst(X86::OR8mi , FrameIndex, MI);
case X86::OR16ri: return MakeMIInst(X86::OR16mi, FrameIndex, MI);
case X86::OR32ri: return MakeMIInst(X86::OR32mi, FrameIndex, MI);
case X86::OR16ri8: return MakeMIInst(X86::OR16mi8, FrameIndex, MI);
case X86::OR32ri8: return MakeMIInst(X86::OR32mi8, FrameIndex, MI);
case X86::XOR8rr: return MakeMRInst(X86::XOR8mr , FrameIndex, MI);
case X86::XOR16rr: return MakeMRInst(X86::XOR16mr, FrameIndex, MI);
case X86::XOR32rr: return MakeMRInst(X86::XOR32mr, FrameIndex, MI);
case X86::XOR8ri: return MakeMIInst(X86::XOR8mi , FrameIndex, MI);
case X86::XOR16ri: return MakeMIInst(X86::XOR16mi, FrameIndex, MI);
case X86::XOR32ri: return MakeMIInst(X86::XOR32mi, FrameIndex, MI);
case X86::XOR16ri8: return MakeMIInst(X86::XOR16mi8,FrameIndex, MI);
case X86::XOR32ri8: return MakeMIInst(X86::XOR32mi8,FrameIndex, MI);
case X86::SHL8rCL: return MakeMInst( X86::SHL8mCL ,FrameIndex, MI);
case X86::SHL16rCL: return MakeMInst( X86::SHL16mCL,FrameIndex, MI);
case X86::SHL32rCL: return MakeMInst( X86::SHL32mCL,FrameIndex, MI);
case X86::SHL8ri: return MakeMIInst(X86::SHL8mi , FrameIndex, MI);
case X86::SHL16ri: return MakeMIInst(X86::SHL16mi, FrameIndex, MI);
case X86::SHL32ri: return MakeMIInst(X86::SHL32mi, FrameIndex, MI);
case X86::SHR8rCL: return MakeMInst( X86::SHR8mCL ,FrameIndex, MI);
case X86::SHR16rCL: return MakeMInst( X86::SHR16mCL,FrameIndex, MI);
case X86::SHR32rCL: return MakeMInst( X86::SHR32mCL,FrameIndex, MI);
case X86::SHR8ri: return MakeMIInst(X86::SHR8mi , FrameIndex, MI);
case X86::SHR16ri: return MakeMIInst(X86::SHR16mi, FrameIndex, MI);
case X86::SHR32ri: return MakeMIInst(X86::SHR32mi, FrameIndex, MI);
case X86::SAR8rCL: return MakeMInst( X86::SAR8mCL ,FrameIndex, MI);
case X86::SAR16rCL: return MakeMInst( X86::SAR16mCL,FrameIndex, MI);
case X86::SAR32rCL: return MakeMInst( X86::SAR32mCL,FrameIndex, MI);
case X86::SAR8ri: return MakeMIInst(X86::SAR8mi , FrameIndex, MI);
case X86::SAR16ri: return MakeMIInst(X86::SAR16mi, FrameIndex, MI);
case X86::SAR32ri: return MakeMIInst(X86::SAR32mi, FrameIndex, MI);
case X86::ROL8rCL: return MakeMInst( X86::ROL8mCL ,FrameIndex, MI);
case X86::ROL16rCL: return MakeMInst( X86::ROL16mCL,FrameIndex, MI);
case X86::ROL32rCL: return MakeMInst( X86::ROL32mCL,FrameIndex, MI);
case X86::ROL8ri: return MakeMIInst(X86::ROL8mi , FrameIndex, MI);
case X86::ROL16ri: return MakeMIInst(X86::ROL16mi, FrameIndex, MI);
case X86::ROL32ri: return MakeMIInst(X86::ROL32mi, FrameIndex, MI);
case X86::ROR8rCL: return MakeMInst( X86::ROR8mCL ,FrameIndex, MI);
case X86::ROR16rCL: return MakeMInst( X86::ROR16mCL,FrameIndex, MI);
case X86::ROR32rCL: return MakeMInst( X86::ROR32mCL,FrameIndex, MI);
case X86::ROR8ri: return MakeMIInst(X86::ROR8mi , FrameIndex, MI);
case X86::ROR16ri: return MakeMIInst(X86::ROR16mi, FrameIndex, MI);
case X86::ROR32ri: return MakeMIInst(X86::ROR32mi, FrameIndex, MI);
case X86::SHLD32rrCL:return MakeMRInst( X86::SHLD32mrCL,FrameIndex, MI);
case X86::SHLD32rri8:return MakeMRIInst(X86::SHLD32mri8,FrameIndex, MI);
case X86::SHRD32rrCL:return MakeMRInst( X86::SHRD32mrCL,FrameIndex, MI);
case X86::SHRD32rri8:return MakeMRIInst(X86::SHRD32mri8,FrameIndex, MI);
case X86::SHLD16rrCL:return MakeMRInst( X86::SHLD16mrCL,FrameIndex, MI);
case X86::SHLD16rri8:return MakeMRIInst(X86::SHLD16mri8,FrameIndex, MI);
case X86::SHRD16rrCL:return MakeMRInst( X86::SHRD16mrCL,FrameIndex, MI);
case X86::SHRD16rri8:return MakeMRIInst(X86::SHRD16mri8,FrameIndex, MI);
case X86::SETBr: return MakeMInst( X86::SETBm, FrameIndex, MI);
case X86::SETAEr: return MakeMInst( X86::SETAEm, FrameIndex, MI);
case X86::SETEr: return MakeMInst( X86::SETEm, FrameIndex, MI);
case X86::SETNEr: return MakeMInst( X86::SETNEm, FrameIndex, MI);
case X86::SETBEr: return MakeMInst( X86::SETBEm, FrameIndex, MI);
case X86::SETAr: return MakeMInst( X86::SETAm, FrameIndex, MI);
case X86::SETSr: return MakeMInst( X86::SETSm, FrameIndex, MI);
case X86::SETNSr: return MakeMInst( X86::SETNSm, FrameIndex, MI);
case X86::SETPr: return MakeMInst( X86::SETPm, FrameIndex, MI);
case X86::SETNPr: return MakeMInst( X86::SETNPm, FrameIndex, MI);
case X86::SETLr: return MakeMInst( X86::SETLm, FrameIndex, MI);
case X86::SETGEr: return MakeMInst( X86::SETGEm, FrameIndex, MI);
case X86::SETLEr: return MakeMInst( X86::SETLEm, FrameIndex, MI);
case X86::SETGr: return MakeMInst( X86::SETGm, FrameIndex, MI);
case X86::TEST8rr: return MakeMRInst(X86::TEST8mr ,FrameIndex, MI);
case X86::TEST16rr: return MakeMRInst(X86::TEST16mr,FrameIndex, MI);
case X86::TEST32rr: return MakeMRInst(X86::TEST32mr,FrameIndex, MI);
case X86::TEST8ri: return MakeMIInst(X86::TEST8mi ,FrameIndex, MI);
case X86::TEST16ri: return MakeMIInst(X86::TEST16mi,FrameIndex, MI);
case X86::TEST32ri: return MakeMIInst(X86::TEST32mi,FrameIndex, MI);
case X86::CMP8rr: return MakeMRInst(X86::CMP8mr , FrameIndex, MI);
case X86::CMP16rr: return MakeMRInst(X86::CMP16mr, FrameIndex, MI);
case X86::CMP32rr: return MakeMRInst(X86::CMP32mr, FrameIndex, MI);
case X86::CMP8ri: return MakeMIInst(X86::CMP8mi , FrameIndex, MI);
case X86::CMP16ri: return MakeMIInst(X86::CMP16mi, FrameIndex, MI);
case X86::CMP32ri: return MakeMIInst(X86::CMP32mi, FrameIndex, MI);
// Alias instructions
case X86::MOV8r0: return MakeM0Inst(X86::MOV8mi, FrameIndex, MI);
case X86::MOV16r0: return MakeM0Inst(X86::MOV16mi, FrameIndex, MI);
case X86::MOV32r0: return MakeM0Inst(X86::MOV32mi, FrameIndex, MI);
// Alias scalar SSE instructions
case X86::FsMOVAPSrr: return MakeMRInst(X86::MOVSSmr, FrameIndex, MI);
case X86::FsMOVAPDrr: return MakeMRInst(X86::MOVSDmr, FrameIndex, MI);
// Scalar SSE instructions
case X86::MOVSSrr: return MakeMRInst(X86::MOVSSmr, FrameIndex, MI);
case X86::MOVSDrr: return MakeMRInst(X86::MOVSDmr, FrameIndex, MI);
#if 0
// Packed SSE instructions
// FIXME: Can't use these until we are spilling XMM registers to
// 128-bit locations.
case X86::MOVAPSrr: return MakeMRInst(X86::MOVAPSmr, FrameIndex, MI);
case X86::MOVAPDrr: return MakeMRInst(X86::MOVAPDmr, FrameIndex, MI);
#endif
}
} else if (i == 1) {
switch(MI->getOpcode()) {
case X86::XCHG8rr: return MakeRMInst(X86::XCHG8rm ,FrameIndex, MI);
case X86::XCHG16rr: return MakeRMInst(X86::XCHG16rm,FrameIndex, MI);
case X86::XCHG32rr: return MakeRMInst(X86::XCHG32rm,FrameIndex, MI);
case X86::MOV8rr: return MakeRMInst(X86::MOV8rm , FrameIndex, MI);
case X86::MOV16rr: return MakeRMInst(X86::MOV16rm, FrameIndex, MI);
case X86::MOV32rr: return MakeRMInst(X86::MOV32rm, FrameIndex, MI);
case X86::CMOVB16rr: return MakeRMInst(X86::CMOVB16rm , FrameIndex, MI);
case X86::CMOVB32rr: return MakeRMInst(X86::CMOVB32rm , FrameIndex, MI);
case X86::CMOVAE16rr: return MakeRMInst(X86::CMOVAE16rm , FrameIndex, MI);
case X86::CMOVAE32rr: return MakeRMInst(X86::CMOVAE32rm , FrameIndex, MI);
case X86::CMOVE16rr: return MakeRMInst(X86::CMOVE16rm , FrameIndex, MI);
case X86::CMOVE32rr: return MakeRMInst(X86::CMOVE32rm , FrameIndex, MI);
case X86::CMOVNE16rr:return MakeRMInst(X86::CMOVNE16rm, FrameIndex, MI);
case X86::CMOVNE32rr:return MakeRMInst(X86::CMOVNE32rm, FrameIndex, MI);
case X86::CMOVBE16rr:return MakeRMInst(X86::CMOVBE16rm, FrameIndex, MI);
case X86::CMOVBE32rr:return MakeRMInst(X86::CMOVBE32rm, FrameIndex, MI);
case X86::CMOVA16rr:return MakeRMInst(X86::CMOVA16rm, FrameIndex, MI);
case X86::CMOVA32rr:return MakeRMInst(X86::CMOVA32rm, FrameIndex, MI);
case X86::CMOVS16rr: return MakeRMInst(X86::CMOVS16rm , FrameIndex, MI);
case X86::CMOVS32rr: return MakeRMInst(X86::CMOVS32rm , FrameIndex, MI);
case X86::CMOVNS16rr: return MakeRMInst(X86::CMOVNS16rm , FrameIndex, MI);
case X86::CMOVNS32rr: return MakeRMInst(X86::CMOVNS32rm , FrameIndex, MI);
case X86::CMOVP16rr: return MakeRMInst(X86::CMOVP16rm , FrameIndex, MI);
case X86::CMOVP32rr: return MakeRMInst(X86::CMOVP32rm , FrameIndex, MI);
case X86::CMOVNP16rr: return MakeRMInst(X86::CMOVNP16rm , FrameIndex, MI);
case X86::CMOVNP32rr: return MakeRMInst(X86::CMOVNP32rm , FrameIndex, MI);
case X86::CMOVL16rr: return MakeRMInst(X86::CMOVL16rm , FrameIndex, MI);
case X86::CMOVL32rr: return MakeRMInst(X86::CMOVL32rm , FrameIndex, MI);
case X86::CMOVGE16rr: return MakeRMInst(X86::CMOVGE16rm , FrameIndex, MI);
case X86::CMOVGE32rr: return MakeRMInst(X86::CMOVGE32rm , FrameIndex, MI);
case X86::CMOVLE16rr: return MakeRMInst(X86::CMOVLE16rm , FrameIndex, MI);
case X86::CMOVLE32rr: return MakeRMInst(X86::CMOVLE32rm , FrameIndex, MI);
case X86::CMOVG16rr: return MakeRMInst(X86::CMOVG16rm , FrameIndex, MI);
case X86::CMOVG32rr: return MakeRMInst(X86::CMOVG32rm , FrameIndex, MI);
case X86::ADD8rr: return MakeRMInst(X86::ADD8rm , FrameIndex, MI);
case X86::ADD16rr: return MakeRMInst(X86::ADD16rm, FrameIndex, MI);
case X86::ADD32rr: return MakeRMInst(X86::ADD32rm, FrameIndex, MI);
case X86::ADC32rr: return MakeRMInst(X86::ADC32rm, FrameIndex, MI);
case X86::SUB8rr: return MakeRMInst(X86::SUB8rm , FrameIndex, MI);
case X86::SUB16rr: return MakeRMInst(X86::SUB16rm, FrameIndex, MI);
case X86::SUB32rr: return MakeRMInst(X86::SUB32rm, FrameIndex, MI);
case X86::SBB32rr: return MakeRMInst(X86::SBB32rm, FrameIndex, MI);
case X86::AND8rr: return MakeRMInst(X86::AND8rm , FrameIndex, MI);
case X86::AND16rr: return MakeRMInst(X86::AND16rm, FrameIndex, MI);
case X86::AND32rr: return MakeRMInst(X86::AND32rm, FrameIndex, MI);
case X86::OR8rr: return MakeRMInst(X86::OR8rm , FrameIndex, MI);
case X86::OR16rr: return MakeRMInst(X86::OR16rm, FrameIndex, MI);
case X86::OR32rr: return MakeRMInst(X86::OR32rm, FrameIndex, MI);
case X86::XOR8rr: return MakeRMInst(X86::XOR8rm , FrameIndex, MI);
case X86::XOR16rr: return MakeRMInst(X86::XOR16rm, FrameIndex, MI);
case X86::XOR32rr: return MakeRMInst(X86::XOR32rm, FrameIndex, MI);
case X86::TEST8rr: return MakeRMInst(X86::TEST8rm ,FrameIndex, MI);
case X86::TEST16rr: return MakeRMInst(X86::TEST16rm,FrameIndex, MI);
case X86::TEST32rr: return MakeRMInst(X86::TEST32rm,FrameIndex, MI);
case X86::IMUL16rr: return MakeRMInst(X86::IMUL16rm,FrameIndex, MI);
case X86::IMUL32rr: return MakeRMInst(X86::IMUL32rm,FrameIndex, MI);
case X86::IMUL16rri: return MakeRMIInst(X86::IMUL16rmi, FrameIndex, MI);
case X86::IMUL32rri: return MakeRMIInst(X86::IMUL32rmi, FrameIndex, MI);
case X86::IMUL16rri8:return MakeRMIInst(X86::IMUL16rmi8, FrameIndex, MI);
case X86::IMUL32rri8:return MakeRMIInst(X86::IMUL32rmi8, FrameIndex, MI);
case X86::CMP8rr: return MakeRMInst(X86::CMP8rm , FrameIndex, MI);
case X86::CMP16rr: return MakeRMInst(X86::CMP16rm, FrameIndex, MI);
case X86::CMP32rr: return MakeRMInst(X86::CMP32rm, FrameIndex, MI);
case X86::MOVSX16rr8:return MakeRMInst(X86::MOVSX16rm8 , FrameIndex, MI);
case X86::MOVSX32rr8:return MakeRMInst(X86::MOVSX32rm8, FrameIndex, MI);
case X86::MOVSX32rr16:return MakeRMInst(X86::MOVSX32rm16, FrameIndex, MI);
case X86::MOVZX16rr8:return MakeRMInst(X86::MOVZX16rm8 , FrameIndex, MI);
case X86::MOVZX32rr8:return MakeRMInst(X86::MOVZX32rm8, FrameIndex, MI);
case X86::MOVZX32rr16:return MakeRMInst(X86::MOVZX32rm16, FrameIndex, MI);
// Alias scalar SSE instructions
case X86::FsMOVAPSrr:return MakeRMInst(X86::MOVSSrm, FrameIndex, MI);
case X86::FsMOVAPDrr:return MakeRMInst(X86::MOVSDrm, FrameIndex, MI);
// Scalar SSE instructions
case X86::MOVSSrr: return MakeRMInst(X86::MOVSSrm, FrameIndex, MI);
case X86::MOVSDrr: return MakeRMInst(X86::MOVSDrm, FrameIndex, MI);
case X86::CVTTSS2SIrr:return MakeRMInst(X86::CVTTSS2SIrm, FrameIndex, MI);
case X86::CVTTSD2SIrr:return MakeRMInst(X86::CVTTSD2SIrm, FrameIndex, MI);
case X86::CVTSS2SDrr:return MakeRMInst(X86::CVTSS2SDrm, FrameIndex, MI);
case X86::CVTSD2SSrr:return MakeRMInst(X86::CVTSD2SSrm, FrameIndex, MI);
case X86::CVTSI2SSrr:return MakeRMInst(X86::CVTSI2SSrm, FrameIndex, MI);
case X86::CVTSI2SDrr:return MakeRMInst(X86::CVTSI2SDrm, FrameIndex, MI);
case X86::SQRTSSr: return MakeRMInst(X86::SQRTSSm, FrameIndex, MI);
case X86::SQRTSDr: return MakeRMInst(X86::SQRTSDm, FrameIndex, MI);
case X86::UCOMISSrr: return MakeRMInst(X86::UCOMISSrm, FrameIndex, MI);
case X86::UCOMISDrr: return MakeRMInst(X86::UCOMISDrm, FrameIndex, MI);
case X86::ADDSSrr: return MakeRMInst(X86::ADDSSrm, FrameIndex, MI);
case X86::ADDSDrr: return MakeRMInst(X86::ADDSDrm, FrameIndex, MI);
case X86::MULSSrr: return MakeRMInst(X86::MULSSrm, FrameIndex, MI);
case X86::MULSDrr: return MakeRMInst(X86::MULSDrm, FrameIndex, MI);
case X86::DIVSSrr: return MakeRMInst(X86::DIVSSrm, FrameIndex, MI);
case X86::DIVSDrr: return MakeRMInst(X86::DIVSDrm, FrameIndex, MI);
case X86::SUBSSrr: return MakeRMInst(X86::SUBSSrm, FrameIndex, MI);
case X86::SUBSDrr: return MakeRMInst(X86::SUBSDrm, FrameIndex, MI);
case X86::CMPSSrr: return MakeRMInst(X86::CMPSSrm, FrameIndex, MI);
case X86::CMPSDrr: return MakeRMInst(X86::CMPSDrm, FrameIndex, MI);
#if 0
// Packed SSE instructions
// FIXME: Can't use these until we are spilling XMM registers to
// 128-bit locations.
case X86::ANDPSrr: return MakeRMInst(X86::ANDPSrm, FrameIndex, MI);
case X86::ANDPDrr: return MakeRMInst(X86::ANDPDrm, FrameIndex, MI);
case X86::ORPSrr: return MakeRMInst(X86::ORPSrm, FrameIndex, MI);
case X86::ORPDrr: return MakeRMInst(X86::ORPDrm, FrameIndex, MI);
case X86::XORPSrr: return MakeRMInst(X86::XORPSrm, FrameIndex, MI);
case X86::XORPDrr: return MakeRMInst(X86::XORPDrm, FrameIndex, MI);
case X86::ANDNPSrr: return MakeRMInst(X86::ANDNPSrm, FrameIndex, MI);
case X86::ANDNPDrr: return MakeRMInst(X86::ANDNPDrm, FrameIndex, MI);
case X86::MOVAPSrr: return MakeRMInst(X86::MOVAPSrm, FrameIndex, MI);
case X86::MOVAPDrr: return MakeRMInst(X86::MOVAPDrm, FrameIndex, MI);
#endif
}
}
if (PrintFailedFusing)
std::cerr << "We failed to fuse: " << *MI;
return NULL;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
// hasFP - Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function has variable sized allocas or
// if frame pointer elimination is disabled.
//
static bool hasFP(MachineFunction &MF) {
return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects();
}
void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (hasFP(MF)) {
// If we have a frame pointer, turn the adjcallstackup instruction into a
// 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP,
// <amt>'
MachineInstr *Old = I;
unsigned Amount = Old->getOperand(0).getImmedValue();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
MachineInstr *New = 0;
if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
New=BuildMI(X86::SUB32ri, 1, X86::ESP, MachineOperand::UseAndDef)
.addZImm(Amount);
} else {
assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
// factor out the amount the callee already popped.
unsigned CalleeAmt = Old->getOperand(1).getImmedValue();
Amount -= CalleeAmt;
if (Amount) {
unsigned Opc = Amount < 128 ? X86::ADD32ri8 : X86::ADD32ri;
New = BuildMI(Opc, 1, X86::ESP,
MachineOperand::UseAndDef).addZImm(Amount);
}
}
// Replace the pseudo instruction with a new instruction...
if (New) MBB.insert(I, New);
}
} else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
// If we are performing frame pointer elimination and if the callee pops
// something off the stack pointer, add it back. We do this until we have
// more advanced stack pointer tracking ability.
if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) {
unsigned Opc = CalleeAmt < 128 ? X86::SUB32ri8 : X86::SUB32ri;
MachineInstr *New =
BuildMI(Opc, 1, X86::ESP,
MachineOperand::UseAndDef).addZImm(CalleeAmt);
MBB.insert(I, New);
}
}
MBB.erase(I);
}
void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
while (!MI.getOperand(i).isFrameIndex()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getFrameIndex();
// This must be part of a four operand memory reference. Replace the
// FrameIndex with base register with EBP. Add add an offset to the offset.
MI.SetMachineOperandReg(i, hasFP(MF) ? X86::EBP : X86::ESP);
// Now add the frame object offset to the offset from EBP.
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MI.getOperand(i+3).getImmedValue()+4;
if (!hasFP(MF))
Offset += MF.getFrameInfo()->getStackSize();
else
Offset += 4; // Skip the saved EBP
MI.SetMachineOperandConst(i+3, MachineOperand::MO_SignExtendedImmed, Offset);
}
void
X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
if (hasFP(MF)) {
// Create a frame entry for the EBP register that must be saved.
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, -8);
assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
"Slot for EBP register must be last in order to be found!");
}
}
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineInstr *MI;
// Get the number of bytes to allocate from the FrameInfo
unsigned NumBytes = MFI->getStackSize();
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+4;
if (NumBytes) { // adjust stack pointer: ESP -= numbytes
unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
MI = BuildMI(Opc, 1, X86::ESP,MachineOperand::UseAndDef).addImm(NumBytes);
MBB.insert(MBBI, MI);
}
// Save EBP into the appropriate stack slot...
MI = addRegOffset(BuildMI(X86::MOV32mr, 5), // mov [ESP-<offset>], EBP
X86::ESP, EBPOffset+NumBytes).addReg(X86::EBP);
MBB.insert(MBBI, MI);
// Update EBP with the new base value...
if (NumBytes == 4) // mov EBP, ESP
MI = BuildMI(X86::MOV32rr, 2, X86::EBP).addReg(X86::ESP);
else // lea EBP, [ESP+StackSize]
MI = addRegOffset(BuildMI(X86::LEA32r, 5, X86::EBP), X86::ESP,NumBytes-4);
MBB.insert(MBBI, MI);
} else {
if (MFI->hasCalls()) {
// When we have no frame pointer, we reserve argument space for call sites
// in the function immediately on entry to the current function. This
// eliminates the need for add/sub ESP brackets around call sites.
//
NumBytes += MFI->getMaxCallFrameSize();
// Round the size to a multiple of the alignment (don't forget the 4 byte
// offset though).
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4;
}
// Update frame info to pretend that this is part of the stack...
MFI->setStackSize(NumBytes);
if (NumBytes) {
// adjust stack pointer: ESP -= numbytes
unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
MI= BuildMI(Opc, 1, X86::ESP, MachineOperand::UseAndDef).addImm(NumBytes);
MBB.insert(MBBI, MI);
}
}
}
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock::iterator MBBI = prior(MBB.end());
switch (MBBI->getOpcode()) {
case X86::RET:
case X86::RETI:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm: break; // These are ok
default:
assert(0 && "Can only insert epilog into returning blocks");
}
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4;
// mov ESP, EBP
BuildMI(MBB, MBBI, X86::MOV32rr, 1,X86::ESP).addReg(X86::EBP);
// pop EBP
BuildMI(MBB, MBBI, X86::POP32r, 0, X86::EBP);
} else {
// Get the number of bytes allocated from the FrameInfo...
unsigned NumBytes = MFI->getStackSize();
if (NumBytes) { // adjust stack pointer back: ESP += numbytes
// If there is an ADD32ri or SUB32ri of ESP immediately before this
// instruction, merge the two instructions.
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
if ((PI->getOpcode() == X86::ADD32ri ||
PI->getOpcode() == X86::ADD32ri8) &&
PI->getOperand(0).getReg() == X86::ESP) {
NumBytes += PI->getOperand(1).getImmedValue();
MBB.erase(PI);
} else if ((PI->getOpcode() == X86::SUB32ri ||
PI->getOpcode() == X86::SUB32ri8) &&
PI->getOperand(0).getReg() == X86::ESP) {
NumBytes -= PI->getOperand(1).getImmedValue();
MBB.erase(PI);
} else if (PI->getOpcode() == X86::ADJSTACKPTRri) {
NumBytes += PI->getOperand(1).getImmedValue();
MBB.erase(PI);
}
}
if (NumBytes > 0) {
unsigned Opc = NumBytes < 128 ? X86::ADD32ri8 : X86::ADD32ri;
BuildMI(MBB, MBBI, Opc, 2)
.addReg(X86::ESP, MachineOperand::UseAndDef).addZImm(NumBytes);
} else if ((int)NumBytes < 0) {
unsigned Opc = -NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
BuildMI(MBB, MBBI, Opc, 2)
.addReg(X86::ESP, MachineOperand::UseAndDef).addZImm(-NumBytes);
}
}
}
}
unsigned X86RegisterInfo::getRARegister() const {
return X86::ST0; // use a non-register register
}
unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
return hasFP(MF) ? X86::EBP : X86::ESP;
}
#include "X86GenRegisterInfo.inc"