llvm-6502/lib/VMCore/Type.cpp
Dale Johannesen 0488fb649a Massive rewrite of MMX:
The x86_mmx type is used for MMX intrinsics, parameters and
return values where these use MMX registers, and is also
supported in load, store, and bitcast.

Only the above operations generate MMX instructions, and optimizations
do not operate on or produce MMX intrinsics. 

MMX-sized vectors <2 x i32> etc. are lowered to XMM or split into
smaller pieces.  Optimizations may occur on these forms and the
result casted back to x86_mmx, provided the result feeds into a
previous existing x86_mmx operation.

The point of all this is prevent optimizations from introducing
MMX operations, which is unsafe due to the EMMS problem.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115243 91177308-0d34-0410-b5e6-96231b3b80d8
2010-09-30 23:57:10 +00:00

1231 lines
42 KiB
C++

//===-- Type.cpp - Implement the Type class -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/System/Threading.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single canonical version of a type.
//
// #define DEBUG_MERGE_TYPES 1
AbstractTypeUser::~AbstractTypeUser() {}
void AbstractTypeUser::setType(Value *V, const Type *NewTy) {
V->VTy = NewTy;
}
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
/// Because of the way Type subclasses are allocated, this function is necessary
/// to use the correct kind of "delete" operator to deallocate the Type object.
/// Some type objects (FunctionTy, StructTy) allocate additional space
/// after the space for their derived type to hold the contained types array of
/// PATypeHandles. Using this allocation scheme means all the PATypeHandles are
/// allocated with the type object, decreasing allocations and eliminating the
/// need for a std::vector to be used in the Type class itself.
/// @brief Type destruction function
void Type::destroy() const {
// Nothing calls getForwardedType from here on.
if (ForwardType && ForwardType->isAbstract()) {
ForwardType->dropRef();
ForwardType = NULL;
}
// Structures and Functions allocate their contained types past the end of
// the type object itself. These need to be destroyed differently than the
// other types.
if (this->isFunctionTy() || this->isStructTy()) {
// First, make sure we destruct any PATypeHandles allocated by these
// subclasses. They must be manually destructed.
for (unsigned i = 0; i < NumContainedTys; ++i)
ContainedTys[i].PATypeHandle::~PATypeHandle();
// Now call the destructor for the subclass directly because we're going
// to delete this as an array of char.
if (this->isFunctionTy())
static_cast<const FunctionType*>(this)->FunctionType::~FunctionType();
else {
assert(isStructTy());
static_cast<const StructType*>(this)->StructType::~StructType();
}
// Finally, remove the memory as an array deallocation of the chars it was
// constructed from.
operator delete(const_cast<Type *>(this));
return;
} else if (const OpaqueType *opaque_this = dyn_cast<OpaqueType>(this)) {
LLVMContextImpl *pImpl = this->getContext().pImpl;
pImpl->OpaqueTypes.erase(opaque_this);
}
// For all the other type subclasses, there is either no contained types or
// just one (all Sequentials). For Sequentials, the PATypeHandle is not
// allocated past the type object, its included directly in the SequentialType
// class. This means we can safely just do "normal" delete of this object and
// all the destructors that need to run will be run.
delete this;
}
const Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return getVoidTy(C);
case FloatTyID : return getFloatTy(C);
case DoubleTyID : return getDoubleTy(C);
case X86_FP80TyID : return getX86_FP80Ty(C);
case FP128TyID : return getFP128Ty(C);
case PPC_FP128TyID : return getPPC_FP128Ty(C);
case LabelTyID : return getLabelTy(C);
case MetadataTyID : return getMetadataTy(C);
case X86_MMXTyID : return getX86_MMXTy(C);
default:
return 0;
}
}
const Type *Type::getVAArgsPromotedType(LLVMContext &C) const {
if (ID == IntegerTyID && getSubclassData() < 32)
return Type::getInt32Ty(C);
else if (ID == FloatTyID)
return Type::getDoubleTy(C);
else
return this;
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
const Type *Type::getScalarType() const {
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType();
return this;
}
/// isIntegerTy - Return true if this is an IntegerType of the specified width.
bool Type::isIntegerTy(unsigned Bitwidth) const {
return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
}
/// isIntOrIntVectorTy - Return true if this is an integer type or a vector of
/// integer types.
///
bool Type::isIntOrIntVectorTy() const {
if (isIntegerTy())
return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isIntegerTy();
}
/// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP types.
///
bool Type::isFPOrFPVectorTy() const {
if (ID == Type::FloatTyID || ID == Type::DoubleTyID ||
ID == Type::FP128TyID || ID == Type::X86_FP80TyID ||
ID == Type::PPC_FP128TyID)
return true;
if (ID != Type::VectorTyID) return false;
return cast<VectorType>(this)->getElementType()->isFloatingPointTy();
}
// canLosslesslyBitCastTo - Return true if this type can be converted to
// 'Ty' without any reinterpretation of bits. For example, i8* to i32*.
//
bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not. Also, 64-bit vector types can be
// converted to x86mmx.
if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
if (Ty->getTypeID() == Type::X86_MMXTyID &&
thisPTy->getBitWidth() == 64)
return true;
}
if (this->getTypeID() == Type::X86_MMXTyID)
if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
if (thatPTy->getBitWidth() == 64)
return true;
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
// else is not lossless.
if (this->isPointerTy())
return Ty->isPointerTy();
return false; // Other types have no identity values
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::FloatTyID: return 32;
case Type::DoubleTyID: return 64;
case Type::X86_FP80TyID: return 80;
case Type::FP128TyID: return 128;
case Type::PPC_FP128TyID: return 128;
case Type::X86_MMXTyID: return 64;
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
default: return 0;
}
}
/// getScalarSizeInBits - If this is a vector type, return the
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
/// getPrimitiveSizeInBits value for this type.
unsigned Type::getScalarSizeInBits() const {
return getScalarType()->getPrimitiveSizeInBits();
}
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
/// is only valid on floating point types. If the FP type does not
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
int Type::getFPMantissaWidth() const {
if (const VectorType *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->getFPMantissaWidth();
assert(isFloatingPointTy() && "Not a floating point type!");
if (ID == FloatTyID) return 24;
if (ID == DoubleTyID) return 53;
if (ID == X86_FP80TyID) return 64;
if (ID == FP128TyID) return 113;
assert(ID == PPC_FP128TyID && "unknown fp type");
return -1;
}
/// isSizedDerivedType - Derived types like structures and arrays are sized
/// iff all of the members of the type are sized as well. Since asking for
/// their size is relatively uncommon, move this operation out of line.
bool Type::isSizedDerivedType() const {
if (this->isIntegerTy())
return true;
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized();
if (const VectorType *PTy = dyn_cast<VectorType>(this))
return PTy->getElementType()->isSized();
if (!this->isStructTy())
return false;
// Okay, our struct is sized if all of the elements are...
for (subtype_iterator I = subtype_begin(), E = subtype_end(); I != E; ++I)
if (!(*I)->isSized())
return false;
return true;
}
/// getForwardedTypeInternal - This method is used to implement the union-find
/// algorithm for when a type is being forwarded to another type.
const Type *Type::getForwardedTypeInternal() const {
assert(ForwardType && "This type is not being forwarded to another type!");
// Check to see if the forwarded type has been forwarded on. If so, collapse
// the forwarding links.
const Type *RealForwardedType = ForwardType->getForwardedType();
if (!RealForwardedType)
return ForwardType; // No it's not forwarded again
// Yes, it is forwarded again. First thing, add the reference to the new
// forward type.
if (RealForwardedType->isAbstract())
RealForwardedType->addRef();
// Now drop the old reference. This could cause ForwardType to get deleted.
// ForwardType must be abstract because only abstract types can have their own
// ForwardTypes.
ForwardType->dropRef();
// Return the updated type.
ForwardType = RealForwardedType;
return ForwardType;
}
void Type::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
llvm_unreachable("Attempting to refine a derived type!");
}
void Type::typeBecameConcrete(const DerivedType *AbsTy) {
llvm_unreachable("DerivedType is already a concrete type!");
}
std::string Type::getDescription() const {
LLVMContextImpl *pImpl = getContext().pImpl;
TypePrinting &Map =
isAbstract() ?
pImpl->AbstractTypeDescriptions :
pImpl->ConcreteTypeDescriptions;
std::string DescStr;
raw_string_ostream DescOS(DescStr);
Map.print(this, DescOS);
return DescOS.str();
}
bool StructType::indexValid(const Value *V) const {
// Structure indexes require 32-bit integer constants.
if (V->getType()->isIntegerTy(32))
if (const ConstantInt *CU = dyn_cast<ConstantInt>(V))
return indexValid(CU->getZExtValue());
return false;
}
bool StructType::indexValid(unsigned V) const {
return V < NumContainedTys;
}
// getTypeAtIndex - Given an index value into the type, return the type of the
// element. For a structure type, this must be a constant value...
//
const Type *StructType::getTypeAtIndex(const Value *V) const {
unsigned Idx = (unsigned)cast<ConstantInt>(V)->getZExtValue();
return getTypeAtIndex(Idx);
}
const Type *StructType::getTypeAtIndex(unsigned Idx) const {
assert(indexValid(Idx) && "Invalid structure index!");
return ContainedTys[Idx];
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
const Type *Type::getVoidTy(LLVMContext &C) {
return &C.pImpl->VoidTy;
}
const Type *Type::getLabelTy(LLVMContext &C) {
return &C.pImpl->LabelTy;
}
const Type *Type::getFloatTy(LLVMContext &C) {
return &C.pImpl->FloatTy;
}
const Type *Type::getDoubleTy(LLVMContext &C) {
return &C.pImpl->DoubleTy;
}
const Type *Type::getMetadataTy(LLVMContext &C) {
return &C.pImpl->MetadataTy;
}
const Type *Type::getX86_FP80Ty(LLVMContext &C) {
return &C.pImpl->X86_FP80Ty;
}
const Type *Type::getFP128Ty(LLVMContext &C) {
return &C.pImpl->FP128Ty;
}
const Type *Type::getPPC_FP128Ty(LLVMContext &C) {
return &C.pImpl->PPC_FP128Ty;
}
const Type *Type::getX86_MMXTy(LLVMContext &C) {
return &C.pImpl->X86_MMXTy;
}
const IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
return IntegerType::get(C, N);
}
const IntegerType *Type::getInt1Ty(LLVMContext &C) {
return &C.pImpl->Int1Ty;
}
const IntegerType *Type::getInt8Ty(LLVMContext &C) {
return &C.pImpl->Int8Ty;
}
const IntegerType *Type::getInt16Ty(LLVMContext &C) {
return &C.pImpl->Int16Ty;
}
const IntegerType *Type::getInt32Ty(LLVMContext &C) {
return &C.pImpl->Int32Ty;
}
const IntegerType *Type::getInt64Ty(LLVMContext &C) {
return &C.pImpl->Int64Ty;
}
const PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
return getFloatTy(C)->getPointerTo(AS);
}
const PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
return getDoubleTy(C)->getPointerTo(AS);
}
const PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
return getX86_FP80Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
return getFP128Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
return getPPC_FP128Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
return getX86_MMXTy(C)->getPointerTo(AS);
}
const PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
return getIntNTy(C, N)->getPointerTo(AS);
}
const PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
return getInt1Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
return getInt8Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
return getInt16Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
return getInt32Ty(C)->getPointerTo(AS);
}
const PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
return getInt64Ty(C)->getPointerTo(AS);
}
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
/// isValidReturnType - Return true if the specified type is valid as a return
/// type.
bool FunctionType::isValidReturnType(const Type *RetTy) {
return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
!RetTy->isMetadataTy();
}
/// isValidArgumentType - Return true if the specified type is valid as an
/// argument type.
bool FunctionType::isValidArgumentType(const Type *ArgTy) {
return ArgTy->isFirstClassType() || ArgTy->isOpaqueTy();
}
FunctionType::FunctionType(const Type *Result,
const std::vector<const Type*> &Params,
bool IsVarArgs)
: DerivedType(Result->getContext(), FunctionTyID), isVarArgs(IsVarArgs) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
NumContainedTys = Params.size() + 1; // + 1 for result type
assert(isValidReturnType(Result) && "invalid return type for function");
bool isAbstract = Result->isAbstract();
new (&ContainedTys[0]) PATypeHandle(Result, this);
for (unsigned i = 0; i != Params.size(); ++i) {
assert(isValidArgumentType(Params[i]) &&
"Not a valid type for function argument!");
new (&ContainedTys[i+1]) PATypeHandle(Params[i], this);
isAbstract |= Params[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
StructType::StructType(LLVMContext &C,
const std::vector<const Type*> &Types, bool isPacked)
: CompositeType(C, StructTyID) {
ContainedTys = reinterpret_cast<PATypeHandle*>(this + 1);
NumContainedTys = Types.size();
setSubclassData(isPacked);
bool isAbstract = false;
for (unsigned i = 0; i < Types.size(); ++i) {
assert(Types[i] && "<null> type for structure field!");
assert(isValidElementType(Types[i]) &&
"Invalid type for structure element!");
new (&ContainedTys[i]) PATypeHandle(Types[i], this);
isAbstract |= Types[i]->isAbstract();
}
// Calculate whether or not this type is abstract
setAbstract(isAbstract);
}
ArrayType::ArrayType(const Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType) {
NumElements = NumEl;
// Calculate whether or not this type is abstract
setAbstract(ElType->isAbstract());
}
VectorType::VectorType(const Type *ElType, unsigned NumEl)
: SequentialType(VectorTyID, ElType) {
NumElements = NumEl;
setAbstract(ElType->isAbstract());
assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0");
assert(isValidElementType(ElType) &&
"Elements of a VectorType must be a primitive type");
}
PointerType::PointerType(const Type *E, unsigned AddrSpace)
: SequentialType(PointerTyID, E) {
AddressSpace = AddrSpace;
// Calculate whether or not this type is abstract
setAbstract(E->isAbstract());
}
OpaqueType::OpaqueType(LLVMContext &C) : DerivedType(C, OpaqueTyID) {
setAbstract(true);
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << *this << "\n");
#endif
}
void PATypeHolder::destroy() {
Ty = 0;
}
// dropAllTypeUses - When this (abstract) type is resolved to be equal to
// another (more concrete) type, we must eliminate all references to other
// types, to avoid some circular reference problems.
void DerivedType::dropAllTypeUses() {
if (NumContainedTys != 0) {
// The type must stay abstract. To do this, we insert a pointer to a type
// that will never get resolved, thus will always be abstract.
ContainedTys[0] = getContext().pImpl->AlwaysOpaqueTy;
// Change the rest of the types to be Int32Ty's. It doesn't matter what we
// pick so long as it doesn't point back to this type. We choose something
// concrete to avoid overhead for adding to AbstractTypeUser lists and
// stuff.
const Type *ConcreteTy = Type::getInt32Ty(getContext());
for (unsigned i = 1, e = NumContainedTys; i != e; ++i)
ContainedTys[i] = ConcreteTy;
}
}
namespace {
/// TypePromotionGraph and graph traits - this is designed to allow us to do
/// efficient SCC processing of type graphs. This is the exact same as
/// GraphTraits<Type*>, except that we pretend that concrete types have no
/// children to avoid processing them.
struct TypePromotionGraph {
Type *Ty;
TypePromotionGraph(Type *T) : Ty(T) {}
};
}
namespace llvm {
template <> struct GraphTraits<TypePromotionGraph> {
typedef Type NodeType;
typedef Type::subtype_iterator ChildIteratorType;
static inline NodeType *getEntryNode(TypePromotionGraph G) { return G.Ty; }
static inline ChildIteratorType child_begin(NodeType *N) {
if (N->isAbstract())
return N->subtype_begin();
// No need to process children of concrete types.
return N->subtype_end();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->subtype_end();
}
};
}
// PromoteAbstractToConcrete - This is a recursive function that walks a type
// graph calculating whether or not a type is abstract.
//
void Type::PromoteAbstractToConcrete() {
if (!isAbstract()) return;
scc_iterator<TypePromotionGraph> SI = scc_begin(TypePromotionGraph(this));
scc_iterator<TypePromotionGraph> SE = scc_end (TypePromotionGraph(this));
for (; SI != SE; ++SI) {
std::vector<Type*> &SCC = *SI;
// Concrete types are leaves in the tree. Since an SCC will either be all
// abstract or all concrete, we only need to check one type.
if (!SCC[0]->isAbstract()) continue;
if (SCC[0]->isOpaqueTy())
return; // Not going to be concrete, sorry.
// If all of the children of all of the types in this SCC are concrete,
// then this SCC is now concrete as well. If not, neither this SCC, nor
// any parent SCCs will be concrete, so we might as well just exit.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
for (Type::subtype_iterator CI = SCC[i]->subtype_begin(),
E = SCC[i]->subtype_end(); CI != E; ++CI)
if ((*CI)->isAbstract())
// If the child type is in our SCC, it doesn't make the entire SCC
// abstract unless there is a non-SCC abstract type.
if (std::find(SCC.begin(), SCC.end(), *CI) == SCC.end())
return; // Not going to be concrete, sorry.
// Okay, we just discovered this whole SCC is now concrete, mark it as
// such!
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(SCC[i]->isAbstract() && "Why are we processing concrete types?");
SCC[i]->setAbstract(false);
}
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
assert(!SCC[i]->isAbstract() && "Concrete type became abstract?");
// The type just became concrete, notify all users!
cast<DerivedType>(SCC[i])->notifyUsesThatTypeBecameConcrete();
}
}
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
std::map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getTypeID() != Ty2->getTypeID()) return false;
if (Ty->isOpaqueTy())
return false; // Two unequal opaque types are never equal
std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty);
if (It != EqTypes.end())
return It->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(It, std::make_pair(Ty, Ty2));
// Two really annoying special cases that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// and that function types can be varargs or not. Consider this now.
//
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
const IntegerType *ITy2 = cast<IntegerType>(Ty2);
return ITy->getBitWidth() == ITy2->getBitWidth();
}
if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
const PointerType *PTy2 = cast<PointerType>(Ty2);
return PTy->getAddressSpace() == PTy2->getAddressSpace() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
}
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
const StructType *STy2 = cast<StructType>(Ty2);
if (STy->getNumElements() != STy2->getNumElements()) return false;
if (STy->isPacked() != STy2->isPacked()) return false;
for (unsigned i = 0, e = STy2->getNumElements(); i != e; ++i)
if (!TypesEqual(STy->getElementType(i), STy2->getElementType(i), EqTypes))
return false;
return true;
}
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const ArrayType *ATy2 = cast<ArrayType>(Ty2);
return ATy->getNumElements() == ATy2->getNumElements() &&
TypesEqual(ATy->getElementType(), ATy2->getElementType(), EqTypes);
}
if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
const VectorType *PTy2 = cast<VectorType>(Ty2);
return PTy->getNumElements() == PTy2->getNumElements() &&
TypesEqual(PTy->getElementType(), PTy2->getElementType(), EqTypes);
}
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
if (FTy->isVarArg() != FTy2->isVarArg() ||
FTy->getNumParams() != FTy2->getNumParams() ||
!TypesEqual(FTy->getReturnType(), FTy2->getReturnType(), EqTypes))
return false;
for (unsigned i = 0, e = FTy2->getNumParams(); i != e; ++i) {
if (!TypesEqual(FTy->getParamType(i), FTy2->getParamType(i), EqTypes))
return false;
}
return true;
}
llvm_unreachable("Unknown derived type!");
return false;
}
namespace llvm { // in namespace llvm so findable by ADL
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
std::map<const Type *, const Type *> EqTypes;
return ::TypesEqual(Ty, Ty2, EqTypes);
}
}
// AbstractTypeHasCycleThrough - Return true there is a path from CurTy to
// TargetTy in the type graph. We know that Ty is an abstract type, so if we
// ever reach a non-abstract type, we know that we don't need to search the
// subgraph.
static bool AbstractTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
SmallPtrSet<const Type*, 128> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!CurTy->isAbstract()) return false;
if (!VisitedTypes.insert(CurTy))
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (AbstractTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
static bool ConcreteTypeHasCycleThrough(const Type *TargetTy, const Type *CurTy,
SmallPtrSet<const Type*, 128> &VisitedTypes) {
if (TargetTy == CurTy) return true;
if (!VisitedTypes.insert(CurTy))
return false; // Already been here.
for (Type::subtype_iterator I = CurTy->subtype_begin(),
E = CurTy->subtype_end(); I != E; ++I)
if (ConcreteTypeHasCycleThrough(TargetTy, *I, VisitedTypes))
return true;
return false;
}
/// TypeHasCycleThroughItself - Return true if the specified type has
/// a cycle back to itself.
namespace llvm { // in namespace llvm so it's findable by ADL
static bool TypeHasCycleThroughItself(const Type *Ty) {
SmallPtrSet<const Type*, 128> VisitedTypes;
if (Ty->isAbstract()) { // Optimized case for abstract types.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (AbstractTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
} else {
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
if (ConcreteTypeHasCycleThrough(Ty, *I, VisitedTypes))
return true;
}
return false;
}
}
//===----------------------------------------------------------------------===//
// Function Type Factory and Value Class...
//
const IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
default:
break;
}
LLVMContextImpl *pImpl = C.pImpl;
IntegerValType IVT(NumBits);
IntegerType *ITy = 0;
// First, see if the type is already in the table, for which
// a reader lock suffices.
ITy = pImpl->IntegerTypes.get(IVT);
if (!ITy) {
// Value not found. Derive a new type!
ITy = new IntegerType(C, NumBits);
pImpl->IntegerTypes.add(IVT, ITy);
}
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << *ITy << "\n");
#endif
return ITy;
}
bool IntegerType::isPowerOf2ByteWidth() const {
unsigned BitWidth = getBitWidth();
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}
APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
FunctionValType FunctionValType::get(const FunctionType *FT) {
// Build up a FunctionValType
std::vector<const Type *> ParamTypes;
ParamTypes.reserve(FT->getNumParams());
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
ParamTypes.push_back(FT->getParamType(i));
return FunctionValType(FT->getReturnType(), ParamTypes, FT->isVarArg());
}
// FunctionType::get - The factory function for the FunctionType class...
FunctionType *FunctionType::get(const Type *ReturnType,
const std::vector<const Type*> &Params,
bool isVarArg) {
FunctionValType VT(ReturnType, Params, isVarArg);
FunctionType *FT = 0;
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
FT = pImpl->FunctionTypes.get(VT);
if (!FT) {
FT = (FunctionType*) operator new(sizeof(FunctionType) +
sizeof(PATypeHandle)*(Params.size()+1));
new (FT) FunctionType(ReturnType, Params, isVarArg);
pImpl->FunctionTypes.add(VT, FT);
}
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << FT << "\n");
#endif
return FT;
}
ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
assert(ElementType && "Can't get array of <null> types!");
assert(isValidElementType(ElementType) && "Invalid type for array element!");
ArrayValType AVT(ElementType, NumElements);
ArrayType *AT = 0;
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
AT = pImpl->ArrayTypes.get(AVT);
if (!AT) {
// Value not found. Derive a new type!
pImpl->ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << *AT << "\n");
#endif
return AT;
}
bool ArrayType::isValidElementType(const Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}
VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
assert(ElementType && "Can't get vector of <null> types!");
VectorValType PVT(ElementType, NumElements);
VectorType *PT = 0;
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
PT = pImpl->VectorTypes.get(PVT);
if (!PT) {
pImpl->VectorTypes.add(PVT, PT = new VectorType(ElementType, NumElements));
}
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
#endif
return PT;
}
bool VectorType::isValidElementType(const Type *ElemTy) {
return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
ElemTy->isOpaqueTy();
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
StructType *StructType::get(LLVMContext &Context,
const std::vector<const Type*> &ETypes,
bool isPacked) {
StructValType STV(ETypes, isPacked);
StructType *ST = 0;
LLVMContextImpl *pImpl = Context.pImpl;
ST = pImpl->StructTypes.get(STV);
if (!ST) {
// Value not found. Derive a new type!
ST = (StructType*) operator new(sizeof(StructType) +
sizeof(PATypeHandle) * ETypes.size());
new (ST) StructType(Context, ETypes, isPacked);
pImpl->StructTypes.add(STV, ST);
}
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << *ST << "\n");
#endif
return ST;
}
StructType *StructType::get(LLVMContext &Context, const Type *type, ...) {
va_list ap;
std::vector<const llvm::Type*> StructFields;
va_start(ap, type);
while (type) {
StructFields.push_back(type);
type = va_arg(ap, llvm::Type*);
}
return llvm::StructType::get(Context, StructFields);
}
bool StructType::isValidElementType(const Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
assert(ValueType && "Can't get a pointer to <null> type!");
assert(ValueType->getTypeID() != VoidTyID &&
"Pointer to void is not valid, use i8* instead!");
assert(isValidElementType(ValueType) && "Invalid type for pointer element!");
PointerValType PVT(ValueType, AddressSpace);
PointerType *PT = 0;
LLVMContextImpl *pImpl = ValueType->getContext().pImpl;
PT = pImpl->PointerTypes.get(PVT);
if (!PT) {
// Value not found. Derive a new type!
pImpl->PointerTypes.add(PVT, PT = new PointerType(ValueType, AddressSpace));
}
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "Derived new type: " << *PT << "\n");
#endif
return PT;
}
const PointerType *Type::getPointerTo(unsigned addrs) const {
return PointerType::get(this, addrs);
}
bool PointerType::isValidElementType(const Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
!ElemTy->isMetadataTy();
}
//===----------------------------------------------------------------------===//
// Opaque Type Factory...
//
OpaqueType *OpaqueType::get(LLVMContext &C) {
OpaqueType *OT = new OpaqueType(C); // All opaque types are distinct.
LLVMContextImpl *pImpl = C.pImpl;
pImpl->OpaqueTypes.insert(OT);
return OT;
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
AbstractTypeUsers.push_back(U);
}
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is annihilated, because there is no way to get a reference to it ever again.
//
void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
unsigned i;
for (i = AbstractTypeUsers.size(); AbstractTypeUsers[i-1] != U; --i)
assert(i != 0 && "AbstractTypeUser not in user list!");
--i; // Convert to be in range 0 <= i < size()
assert(i < AbstractTypeUsers.size() && "Index out of range!"); // Wraparound?
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i);
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << " remAbstractTypeUser[" << (void*)this << ", "
<< *this << "][" << i << "] User = " << U << "\n");
#endif
if (AbstractTypeUsers.empty() && getRefCount() == 0 && isAbstract()) {
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "DELETEing unused abstract type: <" << *this
<< ">[" << (void*)this << "]" << "\n");
#endif
this->destroy();
}
}
// refineAbstractTypeTo - This function is used when it is discovered
// that the 'this' abstract type is actually equivalent to the NewType
// specified. This causes all users of 'this' to switch to reference the more
// concrete type NewType and for 'this' to be deleted. Only used for internal
// callers.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
assert(ForwardType == 0 && "This type has already been refined!");
LLVMContextImpl *pImpl = getContext().pImpl;
// The descriptions may be out of date. Conservatively clear them all!
pImpl->AbstractTypeDescriptions.clear();
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "REFINING abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewType << " "
<< *NewType << "]!\n");
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder NewTy(NewType);
// Any PATypeHolders referring to this type will now automatically forward to
// the type we are resolved to.
ForwardType = NewType;
if (ForwardType->isAbstract())
ForwardType->addRef();
// Add a self use of the current type so that we don't delete ourself until
// after the function exits.
//
PATypeHolder CurrentTy(this);
// To make the situation simpler, we ask the subclass to remove this type from
// the type map, and to replace any type uses with uses of non-abstract types.
// This dramatically limits the amount of recursive type trouble we can find
// ourselves in.
dropAllTypeUses();
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically. We have to check to
// make sure that NewTy doesn't _become_ 'this'. If it does, resolving types
// will not cause users to drop off of the use list. If we resolve to ourself
// we succeed!
//
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
<< *this << "] to [" << (void*)NewTy.get() << " "
<< *NewTy << "]!\n");
#endif
User->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
// If we were successful removing all users from the type, 'this' will be
// deleted when the last PATypeHolder is destroyed or updated from this type.
// This may occur on exit of this function, as the CurrentTy object is
// destroyed.
}
// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
// the current type has transitioned from being abstract to being concrete.
//
void DerivedType::notifyUsesThatTypeBecameConcrete() {
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
#endif
unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
assert(AbstractTypeUsers.size() < OldSize-- &&
"AbstractTypeUser did not remove itself from the use list!");
}
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void FunctionType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->FunctionTypes.RefineAbstractType(this, OldType, NewType);
}
void FunctionType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->FunctionTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->ArrayTypes.RefineAbstractType(this, OldType, NewType);
}
void ArrayType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->ArrayTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void VectorType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->VectorTypes.RefineAbstractType(this, OldType, NewType);
}
void VectorType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->VectorTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->StructTypes.RefineAbstractType(this, OldType, NewType);
}
void StructType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->StructTypes.TypeBecameConcrete(this, AbsTy);
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
LLVMContextImpl *pImpl = OldType->getContext().pImpl;
pImpl->PointerTypes.RefineAbstractType(this, OldType, NewType);
}
void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
LLVMContextImpl *pImpl = AbsTy->getContext().pImpl;
pImpl->PointerTypes.TypeBecameConcrete(this, AbsTy);
}
bool SequentialType::indexValid(const Value *V) const {
if (V->getType()->isIntegerTy())
return true;
return false;
}
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
}