mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 17:32:19 +00:00
16717a7c56
PHI nodes which were matched, rather than climbing up the original PHI node's operands to rediscover PHI nodes for recording, since the PHI nodes found that are not necessarily part of the matched set. This fixes rdar://10589171. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149654 91177308-0d34-0410-b5e6-96231b3b80d8
457 lines
16 KiB
C++
457 lines
16 KiB
C++
//===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides a template that implements the core algorithm for the
|
|
// SSAUpdater and MachineSSAUpdater.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
|
#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
|
|
namespace llvm {
|
|
|
|
class CastInst;
|
|
class PHINode;
|
|
template<typename T> class SSAUpdaterTraits;
|
|
|
|
template<typename UpdaterT>
|
|
class SSAUpdaterImpl {
|
|
private:
|
|
UpdaterT *Updater;
|
|
|
|
typedef SSAUpdaterTraits<UpdaterT> Traits;
|
|
typedef typename Traits::BlkT BlkT;
|
|
typedef typename Traits::ValT ValT;
|
|
typedef typename Traits::PhiT PhiT;
|
|
|
|
/// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
|
|
/// The predecessors of each block are cached here since pred_iterator is
|
|
/// slow and we need to iterate over the blocks at least a few times.
|
|
class BBInfo {
|
|
public:
|
|
BlkT *BB; // Back-pointer to the corresponding block.
|
|
ValT AvailableVal; // Value to use in this block.
|
|
BBInfo *DefBB; // Block that defines the available value.
|
|
int BlkNum; // Postorder number.
|
|
BBInfo *IDom; // Immediate dominator.
|
|
unsigned NumPreds; // Number of predecessor blocks.
|
|
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
|
PhiT *PHITag; // Marker for existing PHIs that match.
|
|
|
|
BBInfo(BlkT *ThisBB, ValT V)
|
|
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
|
NumPreds(0), Preds(0), PHITag(0) { }
|
|
};
|
|
|
|
typedef DenseMap<BlkT*, ValT> AvailableValsTy;
|
|
AvailableValsTy *AvailableVals;
|
|
|
|
SmallVectorImpl<PhiT*> *InsertedPHIs;
|
|
|
|
typedef SmallVectorImpl<BBInfo*> BlockListTy;
|
|
typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
|
|
BBMapTy BBMap;
|
|
BumpPtrAllocator Allocator;
|
|
|
|
public:
|
|
explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
|
|
SmallVectorImpl<PhiT*> *Ins) :
|
|
Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
|
|
|
|
/// GetValue - Check to see if AvailableVals has an entry for the specified
|
|
/// BB and if so, return it. If not, construct SSA form by first
|
|
/// calculating the required placement of PHIs and then inserting new PHIs
|
|
/// where needed.
|
|
ValT GetValue(BlkT *BB) {
|
|
SmallVector<BBInfo*, 100> BlockList;
|
|
BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
|
|
|
|
// Special case: bail out if BB is unreachable.
|
|
if (BlockList.size() == 0) {
|
|
ValT V = Traits::GetUndefVal(BB, Updater);
|
|
(*AvailableVals)[BB] = V;
|
|
return V;
|
|
}
|
|
|
|
FindDominators(&BlockList, PseudoEntry);
|
|
FindPHIPlacement(&BlockList);
|
|
FindAvailableVals(&BlockList);
|
|
|
|
return BBMap[BB]->DefBB->AvailableVal;
|
|
}
|
|
|
|
/// BuildBlockList - Starting from the specified basic block, traverse back
|
|
/// through its predecessors until reaching blocks with known values.
|
|
/// Create BBInfo structures for the blocks and append them to the block
|
|
/// list.
|
|
BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
|
|
SmallVector<BBInfo*, 10> RootList;
|
|
SmallVector<BBInfo*, 64> WorkList;
|
|
|
|
BBInfo *Info = new (Allocator) BBInfo(BB, 0);
|
|
BBMap[BB] = Info;
|
|
WorkList.push_back(Info);
|
|
|
|
// Search backward from BB, creating BBInfos along the way and stopping
|
|
// when reaching blocks that define the value. Record those defining
|
|
// blocks on the RootList.
|
|
SmallVector<BlkT*, 10> Preds;
|
|
while (!WorkList.empty()) {
|
|
Info = WorkList.pop_back_val();
|
|
Preds.clear();
|
|
Traits::FindPredecessorBlocks(Info->BB, &Preds);
|
|
Info->NumPreds = Preds.size();
|
|
if (Info->NumPreds == 0)
|
|
Info->Preds = 0;
|
|
else
|
|
Info->Preds = static_cast<BBInfo**>
|
|
(Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
|
|
AlignOf<BBInfo*>::Alignment));
|
|
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
BlkT *Pred = Preds[p];
|
|
// Check if BBMap already has a BBInfo for the predecessor block.
|
|
typename BBMapTy::value_type &BBMapBucket =
|
|
BBMap.FindAndConstruct(Pred);
|
|
if (BBMapBucket.second) {
|
|
Info->Preds[p] = BBMapBucket.second;
|
|
continue;
|
|
}
|
|
|
|
// Create a new BBInfo for the predecessor.
|
|
ValT PredVal = AvailableVals->lookup(Pred);
|
|
BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
|
|
BBMapBucket.second = PredInfo;
|
|
Info->Preds[p] = PredInfo;
|
|
|
|
if (PredInfo->AvailableVal) {
|
|
RootList.push_back(PredInfo);
|
|
continue;
|
|
}
|
|
WorkList.push_back(PredInfo);
|
|
}
|
|
}
|
|
|
|
// Now that we know what blocks are backwards-reachable from the starting
|
|
// block, do a forward depth-first traversal to assign postorder numbers
|
|
// to those blocks.
|
|
BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
|
|
unsigned BlkNum = 1;
|
|
|
|
// Initialize the worklist with the roots from the backward traversal.
|
|
while (!RootList.empty()) {
|
|
Info = RootList.pop_back_val();
|
|
Info->IDom = PseudoEntry;
|
|
Info->BlkNum = -1;
|
|
WorkList.push_back(Info);
|
|
}
|
|
|
|
while (!WorkList.empty()) {
|
|
Info = WorkList.back();
|
|
|
|
if (Info->BlkNum == -2) {
|
|
// All the successors have been handled; assign the postorder number.
|
|
Info->BlkNum = BlkNum++;
|
|
// If not a root, put it on the BlockList.
|
|
if (!Info->AvailableVal)
|
|
BlockList->push_back(Info);
|
|
WorkList.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
|
// successors have been put on the worklist. When it returns to the top
|
|
// the list, after handling its successors, it will be assigned a
|
|
// number.
|
|
Info->BlkNum = -2;
|
|
|
|
// Add unvisited successors to the work list.
|
|
for (typename Traits::BlkSucc_iterator SI =
|
|
Traits::BlkSucc_begin(Info->BB),
|
|
E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
|
|
BBInfo *SuccInfo = BBMap[*SI];
|
|
if (!SuccInfo || SuccInfo->BlkNum)
|
|
continue;
|
|
SuccInfo->BlkNum = -1;
|
|
WorkList.push_back(SuccInfo);
|
|
}
|
|
}
|
|
PseudoEntry->BlkNum = BlkNum;
|
|
return PseudoEntry;
|
|
}
|
|
|
|
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
|
/// finding dominators. Given two basic blocks, it walks up the dominator
|
|
/// tree until it finds a common dominator of both. It uses the postorder
|
|
/// number of the blocks to determine how to do that.
|
|
BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
|
|
while (Blk1 != Blk2) {
|
|
while (Blk1->BlkNum < Blk2->BlkNum) {
|
|
Blk1 = Blk1->IDom;
|
|
if (!Blk1)
|
|
return Blk2;
|
|
}
|
|
while (Blk2->BlkNum < Blk1->BlkNum) {
|
|
Blk2 = Blk2->IDom;
|
|
if (!Blk2)
|
|
return Blk1;
|
|
}
|
|
}
|
|
return Blk1;
|
|
}
|
|
|
|
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
|
/// corresponding to the basic blocks on the BlockList. This uses the
|
|
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
|
|
/// and Kennedy, published in Software--Practice and Experience, 2001,
|
|
/// 4:1-10. Because the CFG subset does not include any edges leading into
|
|
/// blocks that define the value, the results are not the usual dominator
|
|
/// tree. The CFG subset has a single pseudo-entry node with edges to a set
|
|
/// of root nodes for blocks that define the value. The dominators for this
|
|
/// subset CFG are not the standard dominators but they are adequate for
|
|
/// placing PHIs within the subset CFG.
|
|
void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
BBInfo *NewIDom = 0;
|
|
|
|
// Iterate through the block's predecessors.
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
BBInfo *Pred = Info->Preds[p];
|
|
|
|
// Treat an unreachable predecessor as a definition with 'undef'.
|
|
if (Pred->BlkNum == 0) {
|
|
Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
|
|
(*AvailableVals)[Pred->BB] = Pred->AvailableVal;
|
|
Pred->DefBB = Pred;
|
|
Pred->BlkNum = PseudoEntry->BlkNum;
|
|
PseudoEntry->BlkNum++;
|
|
}
|
|
|
|
if (!NewIDom)
|
|
NewIDom = Pred;
|
|
else
|
|
NewIDom = IntersectDominators(NewIDom, Pred);
|
|
}
|
|
|
|
// Check if the IDom value has changed.
|
|
if (NewIDom && NewIDom != Info->IDom) {
|
|
Info->IDom = NewIDom;
|
|
Changed = true;
|
|
}
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
|
/// any blocks containing definitions of the value. If one is found, then
|
|
/// the successor of Pred is in the dominance frontier for the definition,
|
|
/// and this function returns true.
|
|
bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
|
|
for (; Pred != IDom; Pred = Pred->IDom) {
|
|
if (Pred->DefBB == Pred)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
|
|
/// of the known definitions. Iteratively add PHIs in the dom frontiers
|
|
/// until nothing changes. Along the way, keep track of the nearest
|
|
/// dominating definitions for non-PHI blocks.
|
|
void FindPHIPlacement(BlockListTy *BlockList) {
|
|
bool Changed;
|
|
do {
|
|
Changed = false;
|
|
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
|
|
// If this block already needs a PHI, there is nothing to do here.
|
|
if (Info->DefBB == Info)
|
|
continue;
|
|
|
|
// Default to use the same def as the immediate dominator.
|
|
BBInfo *NewDefBB = Info->IDom->DefBB;
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
|
// Need a PHI here.
|
|
NewDefBB = Info;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if anything changed.
|
|
if (NewDefBB != Info->DefBB) {
|
|
Info->DefBB = NewDefBB;
|
|
Changed = true;
|
|
}
|
|
}
|
|
} while (Changed);
|
|
}
|
|
|
|
/// FindAvailableVal - If this block requires a PHI, first check if an
|
|
/// existing PHI matches the PHI placement and reaching definitions computed
|
|
/// earlier, and if not, create a new PHI. Visit all the block's
|
|
/// predecessors to calculate the available value for each one and fill in
|
|
/// the incoming values for a new PHI.
|
|
void FindAvailableVals(BlockListTy *BlockList) {
|
|
// Go through the worklist in forward order (i.e., backward through the CFG)
|
|
// and check if existing PHIs can be used. If not, create empty PHIs where
|
|
// they are needed.
|
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
|
E = BlockList->end(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
// Check if there needs to be a PHI in BB.
|
|
if (Info->DefBB != Info)
|
|
continue;
|
|
|
|
// Look for an existing PHI.
|
|
FindExistingPHI(Info->BB, BlockList);
|
|
if (Info->AvailableVal)
|
|
continue;
|
|
|
|
ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
|
|
Info->AvailableVal = PHI;
|
|
(*AvailableVals)[Info->BB] = PHI;
|
|
}
|
|
|
|
// Now go back through the worklist in reverse order to fill in the
|
|
// arguments for any new PHIs added in the forward traversal.
|
|
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
|
E = BlockList->rend(); I != E; ++I) {
|
|
BBInfo *Info = *I;
|
|
|
|
if (Info->DefBB != Info) {
|
|
// Record the available value at join nodes to speed up subsequent
|
|
// uses of this SSAUpdater for the same value.
|
|
if (Info->NumPreds > 1)
|
|
(*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
|
|
continue;
|
|
}
|
|
|
|
// Check if this block contains a newly added PHI.
|
|
PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
|
|
if (!PHI)
|
|
continue;
|
|
|
|
// Iterate through the block's predecessors.
|
|
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
|
BBInfo *PredInfo = Info->Preds[p];
|
|
BlkT *Pred = PredInfo->BB;
|
|
// Skip to the nearest preceding definition.
|
|
if (PredInfo->DefBB != PredInfo)
|
|
PredInfo = PredInfo->DefBB;
|
|
Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
|
|
}
|
|
|
|
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
|
|
|
// If the client wants to know about all new instructions, tell it.
|
|
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
|
}
|
|
}
|
|
|
|
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
|
/// them match what is needed.
|
|
void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
|
|
for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
|
|
BBI != BBE; ++BBI) {
|
|
PhiT *SomePHI = Traits::InstrIsPHI(BBI);
|
|
if (!SomePHI)
|
|
break;
|
|
if (CheckIfPHIMatches(SomePHI)) {
|
|
RecordMatchingPHIs(BlockList);
|
|
break;
|
|
}
|
|
// Match failed: clear all the PHITag values.
|
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
|
E = BlockList->end(); I != E; ++I)
|
|
(*I)->PHITag = 0;
|
|
}
|
|
}
|
|
|
|
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
|
/// in the BBMap.
|
|
bool CheckIfPHIMatches(PhiT *PHI) {
|
|
SmallVector<PhiT*, 20> WorkList;
|
|
WorkList.push_back(PHI);
|
|
|
|
// Mark that the block containing this PHI has been visited.
|
|
BBMap[PHI->getParent()]->PHITag = PHI;
|
|
|
|
while (!WorkList.empty()) {
|
|
PHI = WorkList.pop_back_val();
|
|
|
|
// Iterate through the PHI's incoming values.
|
|
for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
|
|
E = Traits::PHI_end(PHI); I != E; ++I) {
|
|
ValT IncomingVal = I.getIncomingValue();
|
|
BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
|
|
// Skip to the nearest preceding definition.
|
|
if (PredInfo->DefBB != PredInfo)
|
|
PredInfo = PredInfo->DefBB;
|
|
|
|
// Check if it matches the expected value.
|
|
if (PredInfo->AvailableVal) {
|
|
if (IncomingVal == PredInfo->AvailableVal)
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
// Check if the value is a PHI in the correct block.
|
|
PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
|
|
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
|
return false;
|
|
|
|
// If this block has already been visited, check if this PHI matches.
|
|
if (PredInfo->PHITag) {
|
|
if (IncomingPHIVal == PredInfo->PHITag)
|
|
continue;
|
|
return false;
|
|
}
|
|
PredInfo->PHITag = IncomingPHIVal;
|
|
|
|
WorkList.push_back(IncomingPHIVal);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// RecordMatchingPHIs - For each PHI node that matches, record it in both
|
|
/// the BBMap and the AvailableVals mapping.
|
|
void RecordMatchingPHIs(BlockListTy *BlockList) {
|
|
for (typename BlockListTy::iterator I = BlockList->begin(),
|
|
E = BlockList->end(); I != E; ++I)
|
|
if (PhiT *PHI = (*I)->PHITag) {
|
|
BlkT *BB = PHI->getParent();
|
|
ValT PHIVal = Traits::GetPHIValue(PHI);
|
|
(*AvailableVals)[BB] = PHIVal;
|
|
BBMap[BB]->AvailableVal = PHIVal;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|