llvm-6502/utils/TableGen/DAGISelMatcherOpt.cpp
Chris Lattner d323fd45e3 implement a new optimization to sink pattern predicates (like isSSE1)
as deeply into the pattern as we can get away with.  In pratice, this 
means "all the way to to the emitter code, but not across 
ComplexPatterns".  This substantially increases the amount of factoring
we get.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97305 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-27 06:22:57 +00:00

219 lines
7.6 KiB
C++

//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the DAG Matcher optimizer.
//
//===----------------------------------------------------------------------===//
#include "DAGISelMatcher.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using namespace llvm;
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
/// into single compound nodes like RecordChild.
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr) {
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// If we have a scope node, walk down all of the children.
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
OwningPtr<Matcher> Child(Scope->takeChild(i));
ContractNodes(Child);
Scope->resetChild(i, Child.take());
}
return;
}
// If we found a movechild node with a node that comes in a 'foochild' form,
// transform it.
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
Matcher *New = 0;
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor());
if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
if (New) {
// Insert the new node.
New->setNext(MatcherPtr.take());
MatcherPtr.reset(New);
// Remove the old one.
MC->setNext(MC->getNext()->takeNext());
return ContractNodes(MatcherPtr);
}
}
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
if (MoveParentMatcher *MP =
dyn_cast<MoveParentMatcher>(MC->getNext())) {
MatcherPtr.reset(MP->takeNext());
return ContractNodes(MatcherPtr);
}
ContractNodes(N->getNextPtr());
}
/// SinkPatternPredicates - Pattern predicates can be checked at any level of
/// the matching tree. The generator dumps them at the top level of the pattern
/// though, which prevents factoring from being able to see past them. This
/// optimization sinks them as far down into the pattern as possible.
///
/// Conceptually, we'd like to sink these predicates all the way to the last
/// matcher predicate in the series. However, it turns out that some
/// ComplexPatterns have side effects on the graph, so we really don't want to
/// run a the complex pattern if the pattern predicate will fail. For this
/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
///
static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
// Recursively scan for a PatternPredicate.
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// Walk down all members of a scope node.
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
OwningPtr<Matcher> Child(Scope->takeChild(i));
SinkPatternPredicates(Child);
Scope->resetChild(i, Child.take());
}
return;
}
// If this node isn't a CheckPatternPredicateMatcher we keep scanning until
// we find one.
CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
if (CPPM == 0)
return SinkPatternPredicates(N->getNextPtr());
// Ok, we found one, lets try to sink it. Check if we can sink it past the
// next node in the chain. If not, we won't be able to change anything and
// might as well bail.
if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
return;
// Okay, we know we can sink it past at least one node. Unlink it from the
// chain and scan for the new insertion point.
MatcherPtr.take(); // Don't delete CPPM.
MatcherPtr.reset(CPPM->takeNext());
N = MatcherPtr.get();
while (N->getNext()->isSafeToReorderWithPatternPredicate())
N = N->getNext();
// At this point, we want to insert CPPM after N.
CPPM->setNext(N->takeNext());
N->setNext(CPPM);
}
/// FactorNodes - Turn matches like this:
/// Scope
/// OPC_CheckType i32
/// ABC
/// OPC_CheckType i32
/// XYZ
/// into:
/// OPC_CheckType i32
/// Scope
/// ABC
/// XYZ
///
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
// If we reached the end of the chain, we're done.
Matcher *N = MatcherPtr.get();
if (N == 0) return;
// If this is not a push node, just scan for one.
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
if (Scope == 0)
return FactorNodes(N->getNextPtr());
// Okay, pull together the children of the scope node into a vector so we can
// inspect it more easily. While we're at it, bucket them up by the hash
// code of their first predicate.
SmallVector<Matcher*, 32> OptionsToMatch;
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
// Factor the subexpression.
OwningPtr<Matcher> Child(Scope->takeChild(i));
FactorNodes(Child);
if (Matcher *N = Child.take())
OptionsToMatch.push_back(N);
}
SmallVector<Matcher*, 32> NewOptionsToMatch;
// Loop over options to match, merging neighboring patterns with identical
// starting nodes into a shared matcher.
for (unsigned i = 0, e = OptionsToMatch.size(); i != e;) {
// Find the set of matchers that start with this node.
Matcher *Optn = OptionsToMatch[i++];
// See if the next option starts with the same matcher, if not, no sharing.
if (i == e || !OptionsToMatch[i]->isEqual(Optn)) {
// TODO: Skip over mutually exclusive patterns.
NewOptionsToMatch.push_back(Optn);
continue;
}
// If the two neighbors *do* start with the same matcher, we can factor the
// matcher out of at least these two patterns. See what the maximal set we
// can merge together is.
SmallVector<Matcher*, 8> EqualMatchers;
EqualMatchers.push_back(Optn);
EqualMatchers.push_back(OptionsToMatch[i++]);
while (i != e && OptionsToMatch[i]->isEqual(Optn))
EqualMatchers.push_back(OptionsToMatch[i++]);
// Factor these checks by pulling the first node off each entry and
// discarding it. Take the first one off the first entry to reuse.
Matcher *Shared = Optn;
Optn = Optn->takeNext();
EqualMatchers[0] = Optn;
// Remove and delete the first node from the other matchers we're factoring.
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
Matcher *Tmp = EqualMatchers[i]->takeNext();
delete EqualMatchers[i];
EqualMatchers[i] = Tmp;
}
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
// Recursively factor the newly created node.
FactorNodes(Shared->getNextPtr());
NewOptionsToMatch.push_back(Shared);
}
// Reassemble a new Scope node.
assert(!NewOptionsToMatch.empty() && "where'd all our children go?");
if (NewOptionsToMatch.size() == 1)
MatcherPtr.reset(NewOptionsToMatch[0]);
else {
Scope->setNumChildren(NewOptionsToMatch.size());
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
Scope->resetChild(i, NewOptionsToMatch[i]);
}
}
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher) {
OwningPtr<Matcher> MatcherPtr(TheMatcher);
ContractNodes(MatcherPtr);
SinkPatternPredicates(MatcherPtr);
FactorNodes(MatcherPtr);
return MatcherPtr.take();
}