llvm-6502/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
Matt Arsenault b1d220c21a SLSR: Pass address space to isLegalAddressingMode
This only updates one of the uses. The other is used in cases
that may never touch memory, so I'm not sure why this is even
calling it. Perhaps there should be a new, similar hook for such
cases or pass -1 for unknown address space.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239540 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-11 16:13:39 +00:00

713 lines
28 KiB
C++

//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements straight-line strength reduction (SLSR). Unlike loop
// strength reduction, this algorithm is designed to reduce arithmetic
// redundancy in straight-line code instead of loops. It has proven to be
// effective in simplifying arithmetic statements derived from an unrolled loop.
// It can also simplify the logic of SeparateConstOffsetFromGEP.
//
// There are many optimizations we can perform in the domain of SLSR. This file
// for now contains only an initial step. Specifically, we look for strength
// reduction candidates in the following forms:
//
// Form 1: B + i * S
// Form 2: (B + i) * S
// Form 3: &B[i * S]
//
// where S is an integer variable, and i is a constant integer. If we found two
// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
// in a simpler way with respect to S1. For example,
//
// S1: X = B + i * S
// S2: Y = B + i' * S => X + (i' - i) * S
//
// S1: X = (B + i) * S
// S2: Y = (B + i') * S => X + (i' - i) * S
//
// S1: X = &B[i * S]
// S2: Y = &B[i' * S] => &X[(i' - i) * S]
//
// Note: (i' - i) * S is folded to the extent possible.
//
// This rewriting is in general a good idea. The code patterns we focus on
// usually come from loop unrolling, so (i' - i) * S is likely the same
// across iterations and can be reused. When that happens, the optimized form
// takes only one add starting from the second iteration.
//
// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
// multiple bases, we choose to rewrite S2 with respect to its "immediate"
// basis, the basis that is the closest ancestor in the dominator tree.
//
// TODO:
//
// - Floating point arithmetics when fast math is enabled.
//
// - SLSR may decrease ILP at the architecture level. Targets that are very
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
// left as future work.
//
// - When (i' - i) is constant but i and i' are not, we could still perform
// SLSR.
#include <vector>
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
namespace {
class StraightLineStrengthReduce : public FunctionPass {
public:
// SLSR candidate. Such a candidate must be in one of the forms described in
// the header comments.
struct Candidate : public ilist_node<Candidate> {
enum Kind {
Invalid, // reserved for the default constructor
Add, // B + i * S
Mul, // (B + i) * S
GEP, // &B[..][i * S][..]
};
Candidate()
: CandidateKind(Invalid), Base(nullptr), Index(nullptr),
Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I)
: CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
Basis(nullptr) {}
Kind CandidateKind;
const SCEV *Base;
// Note that Index and Stride of a GEP candidate do not necessarily have the
// same integer type. In that case, during rewriting, Stride will be
// sign-extended or truncated to Index's type.
ConstantInt *Index;
Value *Stride;
// The instruction this candidate corresponds to. It helps us to rewrite a
// candidate with respect to its immediate basis. Note that one instruction
// can correspond to multiple candidates depending on how you associate the
// expression. For instance,
//
// (a + 1) * (b + 2)
//
// can be treated as
//
// <Base: a, Index: 1, Stride: b + 2>
//
// or
//
// <Base: b, Index: 2, Stride: a + 1>
Instruction *Ins;
// Points to the immediate basis of this candidate, or nullptr if we cannot
// find any basis for this candidate.
Candidate *Basis;
};
static char ID;
StraightLineStrengthReduce()
: FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TargetTransformInfoWrapperPass>();
// We do not modify the shape of the CFG.
AU.setPreservesCFG();
}
bool doInitialization(Module &M) override {
DL = &M.getDataLayout();
return false;
}
bool runOnFunction(Function &F) override;
private:
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
// share the same base and stride.
bool isBasisFor(const Candidate &Basis, const Candidate &C);
// Returns whether the candidate can be folded into an addressing mode.
bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
const DataLayout *DL);
// Returns true if C is already in a simplest form and not worth being
// rewritten.
bool isSimplestForm(const Candidate &C);
// Checks whether I is in a candidate form. If so, adds all the matching forms
// to Candidates, and tries to find the immediate basis for each of them.
void allocateCandidatesAndFindBasis(Instruction *I);
// Allocate candidates and find bases for Add instructions.
void allocateCandidatesAndFindBasisForAdd(Instruction *I);
// Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
// candidate.
void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for Mul instructions.
void allocateCandidatesAndFindBasisForMul(Instruction *I);
// Splits LHS into Base + Index and, if succeeds, calls
// allocateCandidatesAndFindBasis.
void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
Instruction *I);
// Allocate candidates and find bases for GetElementPtr instructions.
void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
// A helper function that scales Idx with ElementSize before invoking
// allocateCandidatesAndFindBasis.
void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
Value *S, uint64_t ElementSize,
Instruction *I);
// Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
// basis.
void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
ConstantInt *Idx, Value *S,
Instruction *I);
// Rewrites candidate C with respect to Basis.
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
// A helper function that factors ArrayIdx to a product of a stride and a
// constant index, and invokes allocateCandidatesAndFindBasis with the
// factorings.
void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
GetElementPtrInst *GEP);
// Emit code that computes the "bump" from Basis to C. If the candidate is a
// GEP and the bump is not divisible by the element size of the GEP, this
// function sets the BumpWithUglyGEP flag to notify its caller to bump the
// basis using an ugly GEP.
static Value *emitBump(const Candidate &Basis, const Candidate &C,
IRBuilder<> &Builder, const DataLayout *DL,
bool &BumpWithUglyGEP);
const DataLayout *DL;
DominatorTree *DT;
ScalarEvolution *SE;
TargetTransformInfo *TTI;
ilist<Candidate> Candidates;
// Temporarily holds all instructions that are unlinked (but not deleted) by
// rewriteCandidateWithBasis. These instructions will be actually removed
// after all rewriting finishes.
std::vector<Instruction *> UnlinkedInstructions;
};
} // anonymous namespace
char StraightLineStrengthReduce::ID = 0;
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
"Straight line strength reduction", false, false)
FunctionPass *llvm::createStraightLineStrengthReducePass() {
return new StraightLineStrengthReduce();
}
bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
const Candidate &C) {
return (Basis.Ins != C.Ins && // skip the same instruction
// Basis must dominate C in order to rewrite C with respect to Basis.
DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
// They share the same base, stride, and candidate kind.
Basis.Base == C.Base &&
Basis.Stride == C.Stride &&
Basis.CandidateKind == C.CandidateKind);
}
static bool isGEPFoldable(GetElementPtrInst *GEP,
const TargetTransformInfo *TTI,
const DataLayout *DL) {
GlobalVariable *BaseGV = nullptr;
int64_t BaseOffset = 0;
bool HasBaseReg = false;
int64_t Scale = 0;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
BaseGV = GV;
else
HasBaseReg = true;
gep_type_iterator GTI = gep_type_begin(GEP);
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
if (isa<SequentialType>(*GTI)) {
int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
BaseOffset += ConstIdx->getSExtValue() * ElementSize;
} else {
// Needs scale register.
if (Scale != 0) {
// No addressing mode takes two scale registers.
return false;
}
Scale = ElementSize;
}
} else {
StructType *STy = cast<StructType>(*GTI);
uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
}
}
unsigned AddrSpace = GEP->getPointerAddressSpace();
return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
BaseOffset, HasBaseReg, Scale, AddrSpace);
}
// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
TargetTransformInfo *TTI) {
return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
Index->getSExtValue());
}
bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
TargetTransformInfo *TTI,
const DataLayout *DL) {
if (C.CandidateKind == Candidate::Add)
return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
if (C.CandidateKind == Candidate::GEP)
return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
return false;
}
// Returns true if GEP has zero or one non-zero index.
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
unsigned NumNonZeroIndices = 0;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
if (ConstIdx == nullptr || !ConstIdx->isZero())
++NumNonZeroIndices;
}
return NumNonZeroIndices <= 1;
}
bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
if (C.CandidateKind == Candidate::Add) {
// B + 1 * S or B + (-1) * S
return C.Index->isOne() || C.Index->isMinusOne();
}
if (C.CandidateKind == Candidate::Mul) {
// (B + 0) * S
return C.Index->isZero();
}
if (C.CandidateKind == Candidate::GEP) {
// (char*)B + S or (char*)B - S
return ((C.Index->isOne() || C.Index->isMinusOne()) &&
hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
}
return false;
}
// TODO: We currently implement an algorithm whose time complexity is linear in
// the number of existing candidates. However, we could do better by using
// ScopedHashTable. Specifically, while traversing the dominator tree, we could
// maintain all the candidates that dominate the basic block being traversed in
// a ScopedHashTable. This hash table is indexed by the base and the stride of
// a candidate. Therefore, finding the immediate basis of a candidate boils down
// to one hash-table look up.
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
Instruction *I) {
Candidate C(CT, B, Idx, S, I);
// SLSR can complicate an instruction in two cases:
//
// 1. If we can fold I into an addressing mode, computing I is likely free or
// takes only one instruction.
//
// 2. I is already in a simplest form. For example, when
// X = B + 8 * S
// Y = B + S,
// rewriting Y to X - 7 * S is probably a bad idea.
//
// In the above cases, we still add I to the candidate list so that I can be
// the basis of other candidates, but we leave I's basis blank so that I
// won't be rewritten.
if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
// Try to compute the immediate basis of C.
unsigned NumIterations = 0;
// Limit the scan radius to avoid running in quadratice time.
static const unsigned MaxNumIterations = 50;
for (auto Basis = Candidates.rbegin();
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
++Basis, ++NumIterations) {
if (isBasisFor(*Basis, C)) {
C.Basis = &(*Basis);
break;
}
}
}
// Regardless of whether we find a basis for C, we need to push C to the
// candidate list so that it can be the basis of other candidates.
Candidates.push_back(C);
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
allocateCandidatesAndFindBasisForAdd(I);
break;
case Instruction::Mul:
allocateCandidatesAndFindBasisForMul(I);
break;
case Instruction::GetElementPtr:
allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
break;
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
Instruction *I) {
// Try matching B + i * S.
if (!isa<IntegerType>(I->getType()))
return;
assert(I->getNumOperands() == 2 && "isn't I an add?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
if (LHS != RHS)
allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
Value *LHS, Value *RHS, Instruction *I) {
Value *S = nullptr;
ConstantInt *Idx = nullptr;
if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
// I = LHS + RHS = LHS + Idx * S
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
} else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
// I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
APInt One(Idx->getBitWidth(), 1);
Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
} else {
// At least, I = LHS + 1 * RHS
ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
I);
}
}
// Returns true if A matches B + C where C is constant.
static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
match(A, m_Add(m_ConstantInt(C), m_Value(B))));
}
// Returns true if A matches B | C where C is constant.
static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
match(A, m_Or(m_ConstantInt(C), m_Value(B))));
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Value *LHS, Value *RHS, Instruction *I) {
Value *B = nullptr;
ConstantInt *Idx = nullptr;
if (matchesAdd(LHS, B, Idx)) {
// If LHS is in the form of "Base + Index", then I is in the form of
// "(Base + Index) * RHS".
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
// If LHS is in the form of "Base | Index" and Base and Index have no common
// bits set, then
// Base | Index = Base + Index
// and I is thus in the form of "(Base + Index) * RHS".
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
} else {
// Otherwise, at least try the form (LHS + 0) * RHS.
ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
I);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Instruction *I) {
// Try matching (B + i) * S.
// TODO: we could extend SLSR to float and vector types.
if (!isa<IntegerType>(I->getType()))
return;
assert(I->getNumOperands() == 2 && "isn't I a mul?");
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
if (LHS != RHS) {
// Symmetrically, try to split RHS to Base + Index.
allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
Instruction *I) {
// I = B + sext(Idx *nsw S) * ElementSize
// = B + (sext(Idx) * sext(S)) * ElementSize
// = B + (sext(Idx) * ElementSize) * sext(S)
// Casting to IntegerType is safe because we skipped vector GEPs.
IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
ConstantInt *ScaledIdx = ConstantInt::get(
IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
}
void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
const SCEV *Base,
uint64_t ElementSize,
GetElementPtrInst *GEP) {
// At least, ArrayIdx = ArrayIdx *nsw 1.
allocateCandidatesAndFindBasisForGEP(
Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
ArrayIdx, ElementSize, GEP);
Value *LHS = nullptr;
ConstantInt *RHS = nullptr;
// One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
// itself. This would allow us to handle the shl case for free. However,
// matching SCEVs has two issues:
//
// 1. this would complicate rewriting because the rewriting procedure
// would have to translate SCEVs back to IR instructions. This translation
// is difficult when LHS is further evaluated to a composite SCEV.
//
// 2. ScalarEvolution is designed to be control-flow oblivious. It tends
// to strip nsw/nuw flags which are critical for SLSR to trace into
// sext'ed multiplication.
if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
// SLSR is currently unsafe if i * S may overflow.
// GEP = Base + sext(LHS *nsw RHS) * ElementSize
allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
} else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
// GEP = Base + sext(LHS <<nsw RHS) * ElementSize
// = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
APInt One(RHS->getBitWidth(), 1);
ConstantInt *PowerOf2 =
ConstantInt::get(RHS->getContext(), One << RHS->getValue());
allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
}
}
void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
GetElementPtrInst *GEP) {
// TODO: handle vector GEPs
if (GEP->getType()->isVectorTy())
return;
SmallVector<const SCEV *, 4> IndexExprs;
for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
IndexExprs.push_back(SE->getSCEV(*I));
gep_type_iterator GTI = gep_type_begin(GEP);
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
if (!isa<SequentialType>(*GTI++))
continue;
const SCEV *OrigIndexExpr = IndexExprs[I - 1];
IndexExprs[I - 1] = SE->getConstant(OrigIndexExpr->getType(), 0);
// The base of this candidate is GEP's base plus the offsets of all
// indices except this current one.
const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
SE->getSCEV(GEP->getPointerOperand()),
IndexExprs, GEP->isInBounds());
Value *ArrayIdx = GEP->getOperand(I);
uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
// When ArrayIdx is the sext of a value, we try to factor that value as
// well. Handling this case is important because array indices are
// typically sign-extended to the pointer size.
Value *TruncatedArrayIdx = nullptr;
if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
IndexExprs[I - 1] = OrigIndexExpr;
}
}
// A helper function that unifies the bitwidth of A and B.
static void unifyBitWidth(APInt &A, APInt &B) {
if (A.getBitWidth() < B.getBitWidth())
A = A.sext(B.getBitWidth());
else if (A.getBitWidth() > B.getBitWidth())
B = B.sext(A.getBitWidth());
}
Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
const Candidate &C,
IRBuilder<> &Builder,
const DataLayout *DL,
bool &BumpWithUglyGEP) {
APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
unifyBitWidth(Idx, BasisIdx);
APInt IndexOffset = Idx - BasisIdx;
BumpWithUglyGEP = false;
if (Basis.CandidateKind == Candidate::GEP) {
APInt ElementSize(
IndexOffset.getBitWidth(),
DL->getTypeAllocSize(
cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
APInt Q, R;
APInt::sdivrem(IndexOffset, ElementSize, Q, R);
if (R.getSExtValue() == 0)
IndexOffset = Q;
else
BumpWithUglyGEP = true;
}
// Compute Bump = C - Basis = (i' - i) * S.
// Common case 1: if (i' - i) is 1, Bump = S.
if (IndexOffset.getSExtValue() == 1)
return C.Stride;
// Common case 2: if (i' - i) is -1, Bump = -S.
if (IndexOffset.getSExtValue() == -1)
return Builder.CreateNeg(C.Stride);
// Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
// have different bit widths.
IntegerType *DeltaType =
IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
if (IndexOffset.isPowerOf2()) {
// If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
return Builder.CreateShl(ExtendedStride, Exponent);
}
if ((-IndexOffset).isPowerOf2()) {
// If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
ConstantInt *Exponent =
ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
}
Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
return Builder.CreateMul(ExtendedStride, Delta);
}
void StraightLineStrengthReduce::rewriteCandidateWithBasis(
const Candidate &C, const Candidate &Basis) {
assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
C.Stride == Basis.Stride);
// We run rewriteCandidateWithBasis on all candidates in a post-order, so the
// basis of a candidate cannot be unlinked before the candidate.
assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
// An instruction can correspond to multiple candidates. Therefore, instead of
// simply deleting an instruction when we rewrite it, we mark its parent as
// nullptr (i.e. unlink it) so that we can skip the candidates whose
// instruction is already rewritten.
if (!C.Ins->getParent())
return;
IRBuilder<> Builder(C.Ins);
bool BumpWithUglyGEP;
Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
switch (C.CandidateKind) {
case Candidate::Add:
case Candidate::Mul:
// C = Basis + Bump
if (BinaryOperator::isNeg(Bump)) {
// If Bump is a neg instruction, emit C = Basis - (-Bump).
Reduced =
Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
// We only use the negative argument of Bump, and Bump itself may be
// trivially dead.
RecursivelyDeleteTriviallyDeadInstructions(Bump);
} else {
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
}
break;
case Candidate::GEP:
{
Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
if (BumpWithUglyGEP) {
// C = (char *)Basis + Bump
unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
if (InBounds)
Reduced =
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
else
Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
} else {
// C = gep Basis, Bump
// Canonicalize bump to pointer size.
Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
if (InBounds)
Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
else
Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
}
}
break;
default:
llvm_unreachable("C.CandidateKind is invalid");
};
Reduced->takeName(C.Ins);
C.Ins->replaceAllUsesWith(Reduced);
// Unlink C.Ins so that we can skip other candidates also corresponding to
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
C.Ins->removeFromParent();
UnlinkedInstructions.push_back(C.Ins);
}
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
if (skipOptnoneFunction(F))
return false;
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
// Traverse the dominator tree in the depth-first order. This order makes sure
// all bases of a candidate are in Candidates when we process it.
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
for (auto &I : *node->getBlock())
allocateCandidatesAndFindBasis(&I);
}
// Rewrite candidates in the reverse depth-first order. This order makes sure
// a candidate being rewritten is not a basis for any other candidate.
while (!Candidates.empty()) {
const Candidate &C = Candidates.back();
if (C.Basis != nullptr) {
rewriteCandidateWithBasis(C, *C.Basis);
}
Candidates.pop_back();
}
// Delete all unlink instructions.
for (auto *UnlinkedInst : UnlinkedInstructions) {
for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
Value *Op = UnlinkedInst->getOperand(I);
UnlinkedInst->setOperand(I, nullptr);
RecursivelyDeleteTriviallyDeadInstructions(Op);
}
delete UnlinkedInst;
}
bool Ret = !UnlinkedInstructions.empty();
UnlinkedInstructions.clear();
return Ret;
}