llvm-6502/include/llvm/CodeGen/MachineInstrAnnot.h
Vikram S. Adve a2bae305fb Remove separate vector of implicit refs from MachineInstr, and
instead record them as extra operands in the operands[] vector.
Also, move CallArgsDescriptor into this class instead of making it an
annotation on the machine instruction.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4399 91177308-0d34-0410-b5e6-96231b3b80d8
2002-10-29 19:41:18 +00:00

84 lines
3.3 KiB
C++

//===-- llvm/CodeGen/MachineInstrAnnot.h ------------------------*- C++ -*-===//
//
// Annotations used to pass information between code generation phases.
//
//===----------------------------------------------------------------------===//
#ifndef MACHINE_INSTR_ANNOT_h
#define MACHINE_INSTR_ANNOT_h
#include "llvm/CodeGen/MachineInstr.h"
class Value;
class TmpInstruction;
class CallInst;
class CallArgInfo {
// Flag values for different argument passing methods
static const unsigned char IntArgReg = 0x1;
static const unsigned char FPArgReg = 0x2;
static const unsigned char StackSlot = 0x4;
const Value* argVal; // this argument
const Value* argValCopy; // second copy of arg. when multiple
// copies must be passed in registers
unsigned char passingMethod; // flags recording passing methods
public:
// Constructors
CallArgInfo(const Value* _argVal)
: argVal(_argVal), argValCopy(NULL), passingMethod(0x0) {}
CallArgInfo(const CallArgInfo& obj)
: argVal(obj.argVal), argValCopy(obj.argValCopy),
passingMethod(obj.passingMethod) {}
// Accessor methods
const Value* getArgVal() { return argVal; }
const Value* getArgCopy() { return argValCopy; }
bool usesIntArgReg() { return (bool) (passingMethod & IntArgReg);}
bool usesFPArgReg() { return (bool) (passingMethod & FPArgReg); }
bool usesStackSlot() { return (bool) (passingMethod & StackSlot);}
// Modifier methods
void replaceArgVal(const Value* newVal) { argVal = newVal; }
void setUseIntArgReg() { passingMethod |= IntArgReg; }
void setUseFPArgReg() { passingMethod |= FPArgReg; }
void setUseStackSlot() { passingMethod |= StackSlot; }
void setArgCopy(const Value* tmp) { argValCopy = tmp; }
};
class CallArgsDescriptor {
std::vector<CallArgInfo> argInfoVec; // Descriptor for each argument
const CallInst* callInstr; // The call instruction == result value
const Value* funcPtr; // Pointer for indirect calls
TmpInstruction* retAddrReg; // Tmp value for return address reg.
bool isVarArgs; // Is this a varargs call?
bool noPrototype; // Is this a call with no prototype?
public:
CallArgsDescriptor(const CallInst* _callInstr, TmpInstruction* _retAddrReg,
bool _isVarArgs, bool _noPrototype);
// Accessor methods to retrieve information about the call
// Note that operands are numbered 1..#CallArgs
unsigned int getNumArgs() const { return argInfoVec.size(); }
CallArgInfo& getArgInfo(unsigned int op) { assert(op < argInfoVec.size());
return argInfoVec[op]; }
const CallInst* getCallInst() const { return callInstr; }
const CallInst* getReturnValue() const;
const Value* getIndirectFuncPtr() const { return funcPtr; }
TmpInstruction* getReturnAddrReg() const { return retAddrReg; }
bool isVarArgsFunc() const { return isVarArgs; }
bool hasNoPrototype() const { return noPrototype; }
// Mechanism to get the descriptor for a CALL MachineInstr.
//
static CallArgsDescriptor *get(const MachineInstr* MI);
};
#endif