llvm-6502/lib/Transforms/InstCombine/InstCombinePHI.cpp
Chandler Carruth d04a8d4b33 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
2012-12-03 16:50:05 +00:00

905 lines
35 KiB
C++

//===- InstCombinePHI.cpp -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitPHINode function.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/DataLayout.h"
using namespace llvm;
/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
/// and if a/b/c and the add's all have a single use, turn this into a phi
/// and a single binop.
Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
unsigned Opc = FirstInst->getOpcode();
Value *LHSVal = FirstInst->getOperand(0);
Value *RHSVal = FirstInst->getOperand(1);
Type *LHSType = LHSVal->getType();
Type *RHSType = RHSVal->getType();
bool isNUW = false, isNSW = false, isExact = false;
if (OverflowingBinaryOperator *BO =
dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
isNUW = BO->hasNoUnsignedWrap();
isNSW = BO->hasNoSignedWrap();
} else if (PossiblyExactOperator *PEO =
dyn_cast<PossiblyExactOperator>(FirstInst))
isExact = PEO->isExact();
// Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
// Verify type of the LHS matches so we don't fold cmp's of different
// types.
I->getOperand(0)->getType() != LHSType ||
I->getOperand(1)->getType() != RHSType)
return 0;
// If they are CmpInst instructions, check their predicates
if (CmpInst *CI = dyn_cast<CmpInst>(I))
if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
return 0;
if (isNUW)
isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
if (isNSW)
isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
if (isExact)
isExact = cast<PossiblyExactOperator>(I)->isExact();
// Keep track of which operand needs a phi node.
if (I->getOperand(0) != LHSVal) LHSVal = 0;
if (I->getOperand(1) != RHSVal) RHSVal = 0;
}
// If both LHS and RHS would need a PHI, don't do this transformation,
// because it would increase the number of PHIs entering the block,
// which leads to higher register pressure. This is especially
// bad when the PHIs are in the header of a loop.
if (!LHSVal && !RHSVal)
return 0;
// Otherwise, this is safe to transform!
Value *InLHS = FirstInst->getOperand(0);
Value *InRHS = FirstInst->getOperand(1);
PHINode *NewLHS = 0, *NewRHS = 0;
if (LHSVal == 0) {
NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
FirstInst->getOperand(0)->getName() + ".pn");
NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
InsertNewInstBefore(NewLHS, PN);
LHSVal = NewLHS;
}
if (RHSVal == 0) {
NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
FirstInst->getOperand(1)->getName() + ".pn");
NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
InsertNewInstBefore(NewRHS, PN);
RHSVal = NewRHS;
}
// Add all operands to the new PHIs.
if (NewLHS || NewRHS) {
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
if (NewLHS) {
Value *NewInLHS = InInst->getOperand(0);
NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
}
if (NewRHS) {
Value *NewInRHS = InInst->getOperand(1);
NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
}
}
}
if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
LHSVal, RHSVal);
NewCI->setDebugLoc(FirstInst->getDebugLoc());
return NewCI;
}
BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
BinaryOperator *NewBinOp =
BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
if (isNUW) NewBinOp->setHasNoUnsignedWrap();
if (isNSW) NewBinOp->setHasNoSignedWrap();
if (isExact) NewBinOp->setIsExact();
NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
return NewBinOp;
}
Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
FirstInst->op_end());
// This is true if all GEP bases are allocas and if all indices into them are
// constants.
bool AllBasePointersAreAllocas = true;
// We don't want to replace this phi if the replacement would require
// more than one phi, which leads to higher register pressure. This is
// especially bad when the PHIs are in the header of a loop.
bool NeededPhi = false;
bool AllInBounds = true;
// Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
GEP->getNumOperands() != FirstInst->getNumOperands())
return 0;
AllInBounds &= GEP->isInBounds();
// Keep track of whether or not all GEPs are of alloca pointers.
if (AllBasePointersAreAllocas &&
(!isa<AllocaInst>(GEP->getOperand(0)) ||
!GEP->hasAllConstantIndices()))
AllBasePointersAreAllocas = false;
// Compare the operand lists.
for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
if (FirstInst->getOperand(op) == GEP->getOperand(op))
continue;
// Don't merge two GEPs when two operands differ (introducing phi nodes)
// if one of the PHIs has a constant for the index. The index may be
// substantially cheaper to compute for the constants, so making it a
// variable index could pessimize the path. This also handles the case
// for struct indices, which must always be constant.
if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
isa<ConstantInt>(GEP->getOperand(op)))
return 0;
if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
return 0;
// If we already needed a PHI for an earlier operand, and another operand
// also requires a PHI, we'd be introducing more PHIs than we're
// eliminating, which increases register pressure on entry to the PHI's
// block.
if (NeededPhi)
return 0;
FixedOperands[op] = 0; // Needs a PHI.
NeededPhi = true;
}
}
// If all of the base pointers of the PHI'd GEPs are from allocas, don't
// bother doing this transformation. At best, this will just save a bit of
// offset calculation, but all the predecessors will have to materialize the
// stack address into a register anyway. We'd actually rather *clone* the
// load up into the predecessors so that we have a load of a gep of an alloca,
// which can usually all be folded into the load.
if (AllBasePointersAreAllocas)
return 0;
// Otherwise, this is safe to transform. Insert PHI nodes for each operand
// that is variable.
SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
bool HasAnyPHIs = false;
for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
if (FixedOperands[i]) continue; // operand doesn't need a phi.
Value *FirstOp = FirstInst->getOperand(i);
PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
FirstOp->getName()+".pn");
InsertNewInstBefore(NewPN, PN);
NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
OperandPhis[i] = NewPN;
FixedOperands[i] = NewPN;
HasAnyPHIs = true;
}
// Add all operands to the new PHIs.
if (HasAnyPHIs) {
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
BasicBlock *InBB = PN.getIncomingBlock(i);
for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
if (PHINode *OpPhi = OperandPhis[op])
OpPhi->addIncoming(InGEP->getOperand(op), InBB);
}
}
Value *Base = FixedOperands[0];
GetElementPtrInst *NewGEP =
GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
if (AllInBounds) NewGEP->setIsInBounds();
NewGEP->setDebugLoc(FirstInst->getDebugLoc());
return NewGEP;
}
/// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
/// sink the load out of the block that defines it. This means that it must be
/// obvious the value of the load is not changed from the point of the load to
/// the end of the block it is in.
///
/// Finally, it is safe, but not profitable, to sink a load targeting a
/// non-address-taken alloca. Doing so will cause us to not promote the alloca
/// to a register.
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
BasicBlock::iterator BBI = L, E = L->getParent()->end();
for (++BBI; BBI != E; ++BBI)
if (BBI->mayWriteToMemory())
return false;
// Check for non-address taken alloca. If not address-taken already, it isn't
// profitable to do this xform.
if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
bool isAddressTaken = false;
for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
UI != E; ++UI) {
User *U = *UI;
if (isa<LoadInst>(U)) continue;
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
// If storing TO the alloca, then the address isn't taken.
if (SI->getOperand(1) == AI) continue;
}
isAddressTaken = true;
break;
}
if (!isAddressTaken && AI->isStaticAlloca())
return false;
}
// If this load is a load from a GEP with a constant offset from an alloca,
// then we don't want to sink it. In its present form, it will be
// load [constant stack offset]. Sinking it will cause us to have to
// materialize the stack addresses in each predecessor in a register only to
// do a shared load from register in the successor.
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
return false;
return true;
}
Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
// FIXME: This is overconservative; this transform is allowed in some cases
// for atomic operations.
if (FirstLI->isAtomic())
return 0;
// When processing loads, we need to propagate two bits of information to the
// sunk load: whether it is volatile, and what its alignment is. We currently
// don't sink loads when some have their alignment specified and some don't.
// visitLoadInst will propagate an alignment onto the load when TD is around,
// and if TD isn't around, we can't handle the mixed case.
bool isVolatile = FirstLI->isVolatile();
unsigned LoadAlignment = FirstLI->getAlignment();
unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
// We can't sink the load if the loaded value could be modified between the
// load and the PHI.
if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
!isSafeAndProfitableToSinkLoad(FirstLI))
return 0;
// If the PHI is of volatile loads and the load block has multiple
// successors, sinking it would remove a load of the volatile value from
// the path through the other successor.
if (isVolatile &&
FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
return 0;
// Check to see if all arguments are the same operation.
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
if (!LI || !LI->hasOneUse())
return 0;
// We can't sink the load if the loaded value could be modified between
// the load and the PHI.
if (LI->isVolatile() != isVolatile ||
LI->getParent() != PN.getIncomingBlock(i) ||
LI->getPointerAddressSpace() != LoadAddrSpace ||
!isSafeAndProfitableToSinkLoad(LI))
return 0;
// If some of the loads have an alignment specified but not all of them,
// we can't do the transformation.
if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
return 0;
LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
// If the PHI is of volatile loads and the load block has multiple
// successors, sinking it would remove a load of the volatile value from
// the path through the other successor.
if (isVolatile &&
LI->getParent()->getTerminator()->getNumSuccessors() != 1)
return 0;
}
// Okay, they are all the same operation. Create a new PHI node of the
// correct type, and PHI together all of the LHS's of the instructions.
PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
PN.getNumIncomingValues(),
PN.getName()+".in");
Value *InVal = FirstLI->getOperand(0);
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
// Add all operands to the new PHI.
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
if (NewInVal != InVal)
InVal = 0;
NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
}
Value *PhiVal;
if (InVal) {
// The new PHI unions all of the same values together. This is really
// common, so we handle it intelligently here for compile-time speed.
PhiVal = InVal;
delete NewPN;
} else {
InsertNewInstBefore(NewPN, PN);
PhiVal = NewPN;
}
// If this was a volatile load that we are merging, make sure to loop through
// and mark all the input loads as non-volatile. If we don't do this, we will
// insert a new volatile load and the old ones will not be deletable.
if (isVolatile)
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
NewLI->setDebugLoc(FirstLI->getDebugLoc());
return NewLI;
}
/// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
/// operator and they all are only used by the PHI, PHI together their
/// inputs, and do the operation once, to the result of the PHI.
Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
if (isa<GetElementPtrInst>(FirstInst))
return FoldPHIArgGEPIntoPHI(PN);
if (isa<LoadInst>(FirstInst))
return FoldPHIArgLoadIntoPHI(PN);
// Scan the instruction, looking for input operations that can be folded away.
// If all input operands to the phi are the same instruction (e.g. a cast from
// the same type or "+42") we can pull the operation through the PHI, reducing
// code size and simplifying code.
Constant *ConstantOp = 0;
Type *CastSrcTy = 0;
bool isNUW = false, isNSW = false, isExact = false;
if (isa<CastInst>(FirstInst)) {
CastSrcTy = FirstInst->getOperand(0)->getType();
// Be careful about transforming integer PHIs. We don't want to pessimize
// the code by turning an i32 into an i1293.
if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
if (!ShouldChangeType(PN.getType(), CastSrcTy))
return 0;
}
} else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
// Can fold binop, compare or shift here if the RHS is a constant,
// otherwise call FoldPHIArgBinOpIntoPHI.
ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
if (ConstantOp == 0)
return FoldPHIArgBinOpIntoPHI(PN);
if (OverflowingBinaryOperator *BO =
dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
isNUW = BO->hasNoUnsignedWrap();
isNSW = BO->hasNoSignedWrap();
} else if (PossiblyExactOperator *PEO =
dyn_cast<PossiblyExactOperator>(FirstInst))
isExact = PEO->isExact();
} else {
return 0; // Cannot fold this operation.
}
// Check to see if all arguments are the same operation.
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
return 0;
if (CastSrcTy) {
if (I->getOperand(0)->getType() != CastSrcTy)
return 0; // Cast operation must match.
} else if (I->getOperand(1) != ConstantOp) {
return 0;
}
if (isNUW)
isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
if (isNSW)
isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
if (isExact)
isExact = cast<PossiblyExactOperator>(I)->isExact();
}
// Okay, they are all the same operation. Create a new PHI node of the
// correct type, and PHI together all of the LHS's of the instructions.
PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
PN.getNumIncomingValues(),
PN.getName()+".in");
Value *InVal = FirstInst->getOperand(0);
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
// Add all operands to the new PHI.
for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
if (NewInVal != InVal)
InVal = 0;
NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
}
Value *PhiVal;
if (InVal) {
// The new PHI unions all of the same values together. This is really
// common, so we handle it intelligently here for compile-time speed.
PhiVal = InVal;
delete NewPN;
} else {
InsertNewInstBefore(NewPN, PN);
PhiVal = NewPN;
}
// Insert and return the new operation.
if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
PN.getType());
NewCI->setDebugLoc(FirstInst->getDebugLoc());
return NewCI;
}
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
if (isNUW) BinOp->setHasNoUnsignedWrap();
if (isNSW) BinOp->setHasNoSignedWrap();
if (isExact) BinOp->setIsExact();
BinOp->setDebugLoc(FirstInst->getDebugLoc());
return BinOp;
}
CmpInst *CIOp = cast<CmpInst>(FirstInst);
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
PhiVal, ConstantOp);
NewCI->setDebugLoc(FirstInst->getDebugLoc());
return NewCI;
}
/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
/// that is dead.
static bool DeadPHICycle(PHINode *PN,
SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
if (PN->use_empty()) return true;
if (!PN->hasOneUse()) return false;
// Remember this node, and if we find the cycle, return.
if (!PotentiallyDeadPHIs.insert(PN))
return true;
// Don't scan crazily complex things.
if (PotentiallyDeadPHIs.size() == 16)
return false;
if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
return DeadPHICycle(PU, PotentiallyDeadPHIs);
return false;
}
/// PHIsEqualValue - Return true if this phi node is always equal to
/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
/// z = some value; x = phi (y, z); y = phi (x, z)
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
// See if we already saw this PHI node.
if (!ValueEqualPHIs.insert(PN))
return true;
// Don't scan crazily complex things.
if (ValueEqualPHIs.size() == 16)
return false;
// Scan the operands to see if they are either phi nodes or are equal to
// the value.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Op = PN->getIncomingValue(i);
if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
return false;
} else if (Op != NonPhiInVal)
return false;
}
return true;
}
namespace {
struct PHIUsageRecord {
unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
unsigned Shift; // The amount shifted.
Instruction *Inst; // The trunc instruction.
PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
: PHIId(pn), Shift(Sh), Inst(User) {}
bool operator<(const PHIUsageRecord &RHS) const {
if (PHIId < RHS.PHIId) return true;
if (PHIId > RHS.PHIId) return false;
if (Shift < RHS.Shift) return true;
if (Shift > RHS.Shift) return false;
return Inst->getType()->getPrimitiveSizeInBits() <
RHS.Inst->getType()->getPrimitiveSizeInBits();
}
};
struct LoweredPHIRecord {
PHINode *PN; // The PHI that was lowered.
unsigned Shift; // The amount shifted.
unsigned Width; // The width extracted.
LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
: PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
// Ctor form used by DenseMap.
LoweredPHIRecord(PHINode *pn, unsigned Sh)
: PN(pn), Shift(Sh), Width(0) {}
};
}
namespace llvm {
template<>
struct DenseMapInfo<LoweredPHIRecord> {
static inline LoweredPHIRecord getEmptyKey() {
return LoweredPHIRecord(0, 0);
}
static inline LoweredPHIRecord getTombstoneKey() {
return LoweredPHIRecord(0, 1);
}
static unsigned getHashValue(const LoweredPHIRecord &Val) {
return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
(Val.Width>>3);
}
static bool isEqual(const LoweredPHIRecord &LHS,
const LoweredPHIRecord &RHS) {
return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
LHS.Width == RHS.Width;
}
};
template <>
struct isPodLike<LoweredPHIRecord> { static const bool value = true; };
}
/// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
/// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
/// so, we split the PHI into the various pieces being extracted. This sort of
/// thing is introduced when SROA promotes an aggregate to large integer values.
///
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
/// inttoptr. We should produce new PHIs in the right type.
///
Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
// PHIUsers - Keep track of all of the truncated values extracted from a set
// of PHIs, along with their offset. These are the things we want to rewrite.
SmallVector<PHIUsageRecord, 16> PHIUsers;
// PHIs are often mutually cyclic, so we keep track of a whole set of PHI
// nodes which are extracted from. PHIsToSlice is a set we use to avoid
// revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
// check the uses of (to ensure they are all extracts).
SmallVector<PHINode*, 8> PHIsToSlice;
SmallPtrSet<PHINode*, 8> PHIsInspected;
PHIsToSlice.push_back(&FirstPhi);
PHIsInspected.insert(&FirstPhi);
for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
PHINode *PN = PHIsToSlice[PHIId];
// Scan the input list of the PHI. If any input is an invoke, and if the
// input is defined in the predecessor, then we won't be split the critical
// edge which is required to insert a truncate. Because of this, we have to
// bail out.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
if (II == 0) continue;
if (II->getParent() != PN->getIncomingBlock(i))
continue;
// If we have a phi, and if it's directly in the predecessor, then we have
// a critical edge where we need to put the truncate. Since we can't
// split the edge in instcombine, we have to bail out.
return 0;
}
for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
// If the user is a PHI, inspect its uses recursively.
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (PHIsInspected.insert(UserPN))
PHIsToSlice.push_back(UserPN);
continue;
}
// Truncates are always ok.
if (isa<TruncInst>(User)) {
PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
continue;
}
// Otherwise it must be a lshr which can only be used by one trunc.
if (User->getOpcode() != Instruction::LShr ||
!User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
!isa<ConstantInt>(User->getOperand(1)))
return 0;
unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
}
}
// If we have no users, they must be all self uses, just nuke the PHI.
if (PHIUsers.empty())
return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
// If this phi node is transformable, create new PHIs for all the pieces
// extracted out of it. First, sort the users by their offset and size.
array_pod_sort(PHIUsers.begin(), PHIUsers.end());
DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n';
for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n';
);
// PredValues - This is a temporary used when rewriting PHI nodes. It is
// hoisted out here to avoid construction/destruction thrashing.
DenseMap<BasicBlock*, Value*> PredValues;
// ExtractedVals - Each new PHI we introduce is saved here so we don't
// introduce redundant PHIs.
DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
unsigned PHIId = PHIUsers[UserI].PHIId;
PHINode *PN = PHIsToSlice[PHIId];
unsigned Offset = PHIUsers[UserI].Shift;
Type *Ty = PHIUsers[UserI].Inst->getType();
PHINode *EltPHI;
// If we've already lowered a user like this, reuse the previously lowered
// value.
if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
// Otherwise, Create the new PHI node for this user.
EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
PN->getName()+".off"+Twine(Offset), PN);
assert(EltPHI->getType() != PN->getType() &&
"Truncate didn't shrink phi?");
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *Pred = PN->getIncomingBlock(i);
Value *&PredVal = PredValues[Pred];
// If we already have a value for this predecessor, reuse it.
if (PredVal) {
EltPHI->addIncoming(PredVal, Pred);
continue;
}
// Handle the PHI self-reuse case.
Value *InVal = PN->getIncomingValue(i);
if (InVal == PN) {
PredVal = EltPHI;
EltPHI->addIncoming(PredVal, Pred);
continue;
}
if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
// If the incoming value was a PHI, and if it was one of the PHIs we
// already rewrote it, just use the lowered value.
if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
PredVal = Res;
EltPHI->addIncoming(PredVal, Pred);
continue;
}
}
// Otherwise, do an extract in the predecessor.
Builder->SetInsertPoint(Pred, Pred->getTerminator());
Value *Res = InVal;
if (Offset)
Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
Offset), "extract");
Res = Builder->CreateTrunc(Res, Ty, "extract.t");
PredVal = Res;
EltPHI->addIncoming(Res, Pred);
// If the incoming value was a PHI, and if it was one of the PHIs we are
// rewriting, we will ultimately delete the code we inserted. This
// means we need to revisit that PHI to make sure we extract out the
// needed piece.
if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
if (PHIsInspected.count(OldInVal)) {
unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
OldInVal)-PHIsToSlice.begin();
PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
cast<Instruction>(Res)));
++UserE;
}
}
PredValues.clear();
DEBUG(errs() << " Made element PHI for offset " << Offset << ": "
<< *EltPHI << '\n');
ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
}
// Replace the use of this piece with the PHI node.
ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
}
// Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
// with undefs.
Value *Undef = UndefValue::get(FirstPhi.getType());
for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
return ReplaceInstUsesWith(FirstPhi, Undef);
}
// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
if (Value *V = SimplifyInstruction(&PN, TD))
return ReplaceInstUsesWith(PN, V);
// If all PHI operands are the same operation, pull them through the PHI,
// reducing code size.
if (isa<Instruction>(PN.getIncomingValue(0)) &&
isa<Instruction>(PN.getIncomingValue(1)) &&
cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
// FIXME: The hasOneUse check will fail for PHIs that use the value more
// than themselves more than once.
PN.getIncomingValue(0)->hasOneUse())
if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
return Result;
// If this is a trivial cycle in the PHI node graph, remove it. Basically, if
// this PHI only has a single use (a PHI), and if that PHI only has one use (a
// PHI)... break the cycle.
if (PN.hasOneUse()) {
Instruction *PHIUser = cast<Instruction>(PN.use_back());
if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
PotentiallyDeadPHIs.insert(&PN);
if (DeadPHICycle(PU, PotentiallyDeadPHIs))
return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
}
// If this phi has a single use, and if that use just computes a value for
// the next iteration of a loop, delete the phi. This occurs with unused
// induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
// common case here is good because the only other things that catch this
// are induction variable analysis (sometimes) and ADCE, which is only run
// late.
if (PHIUser->hasOneUse() &&
(isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
PHIUser->use_back() == &PN) {
return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
}
}
// We sometimes end up with phi cycles that non-obviously end up being the
// same value, for example:
// z = some value; x = phi (y, z); y = phi (x, z)
// where the phi nodes don't necessarily need to be in the same block. Do a
// quick check to see if the PHI node only contains a single non-phi value, if
// so, scan to see if the phi cycle is actually equal to that value.
{
unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
// Scan for the first non-phi operand.
while (InValNo != NumIncomingVals &&
isa<PHINode>(PN.getIncomingValue(InValNo)))
++InValNo;
if (InValNo != NumIncomingVals) {
Value *NonPhiInVal = PN.getIncomingValue(InValNo);
// Scan the rest of the operands to see if there are any conflicts, if so
// there is no need to recursively scan other phis.
for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
Value *OpVal = PN.getIncomingValue(InValNo);
if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
break;
}
// If we scanned over all operands, then we have one unique value plus
// phi values. Scan PHI nodes to see if they all merge in each other or
// the value.
if (InValNo == NumIncomingVals) {
SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
return ReplaceInstUsesWith(PN, NonPhiInVal);
}
}
}
// If there are multiple PHIs, sort their operands so that they all list
// the blocks in the same order. This will help identical PHIs be eliminated
// by other passes. Other passes shouldn't depend on this for correctness
// however.
PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
if (&PN != FirstPN)
for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *BBA = PN.getIncomingBlock(i);
BasicBlock *BBB = FirstPN->getIncomingBlock(i);
if (BBA != BBB) {
Value *VA = PN.getIncomingValue(i);
unsigned j = PN.getBasicBlockIndex(BBB);
Value *VB = PN.getIncomingValue(j);
PN.setIncomingBlock(i, BBB);
PN.setIncomingValue(i, VB);
PN.setIncomingBlock(j, BBA);
PN.setIncomingValue(j, VA);
// NOTE: Instcombine normally would want us to "return &PN" if we
// modified any of the operands of an instruction. However, since we
// aren't adding or removing uses (just rearranging them) we don't do
// this in this case.
}
}
// If this is an integer PHI and we know that it has an illegal type, see if
// it is only used by trunc or trunc(lshr) operations. If so, we split the
// PHI into the various pieces being extracted. This sort of thing is
// introduced when SROA promotes an aggregate to a single large integer type.
if (PN.getType()->isIntegerTy() && TD &&
!TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
return Res;
return 0;
}