mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 03:32:21 +00:00
91aee47a1b
Here I had to make one non-trivial change: add a function to get a version of the opcode that takes an immediate, given an opcode that takes all registers. This is required because sometimes it is not known at construction time which opcode is used because opcodes are passed around between functions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6375 91177308-0d34-0410-b5e6-96231b3b80d8
2434 lines
94 KiB
C++
2434 lines
94 KiB
C++
//===-- SparcInstrSelection.cpp -------------------------------------------===//
|
|
//
|
|
// BURS instruction selection for SPARC V9 architecture.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SparcInternals.h"
|
|
#include "SparcInstrSelectionSupport.h"
|
|
#include "SparcRegClassInfo.h"
|
|
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineInstrAnnot.h"
|
|
#include "llvm/CodeGen/InstrForest.h"
|
|
#include "llvm/CodeGen/InstrSelection.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/ConstantHandling.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "Support/MathExtras.h"
|
|
#include <math.h>
|
|
|
|
static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
|
|
std::vector<MachineInstr*>& mvec) {
|
|
mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
|
|
.addReg(Node->rightChild()->getValue())
|
|
.addRegDef(Node->getValue()));
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Function: GetMemInstArgs
|
|
//
|
|
// Purpose:
|
|
// Get the pointer value and the index vector for a memory operation
|
|
// (GetElementPtr, Load, or Store). If all indices of the given memory
|
|
// operation are constant, fold in constant indices in a chain of
|
|
// preceding GetElementPtr instructions (if any), and return the
|
|
// pointer value of the first instruction in the chain.
|
|
// All folded instructions are marked so no code is generated for them.
|
|
//
|
|
// Return values:
|
|
// Returns the pointer Value to use.
|
|
// Returns the resulting IndexVector in idxVec.
|
|
// Returns true/false in allConstantIndices if all indices are/aren't const.
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Function: FoldGetElemChain
|
|
//
|
|
// Purpose:
|
|
// Fold a chain of GetElementPtr instructions containing only
|
|
// constant offsets into an equivalent (Pointer, IndexVector) pair.
|
|
// Returns the pointer Value, and stores the resulting IndexVector
|
|
// in argument chainIdxVec. This is a helper function for
|
|
// FoldConstantIndices that does the actual folding.
|
|
//---------------------------------------------------------------------------
|
|
|
|
|
|
// Check for a constant 0.
|
|
inline bool
|
|
IsZero(Value* idx)
|
|
{
|
|
return (idx == ConstantSInt::getNullValue(idx->getType()));
|
|
}
|
|
|
|
static Value*
|
|
FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
|
|
bool lastInstHasLeadingNonZero)
|
|
{
|
|
InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
|
|
GetElementPtrInst* gepInst =
|
|
dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
|
|
|
|
// ptr value is not computed in this tree or ptr value does not come from GEP
|
|
// instruction
|
|
if (gepInst == NULL)
|
|
return NULL;
|
|
|
|
// Return NULL if we don't fold any instructions in.
|
|
Value* ptrVal = NULL;
|
|
|
|
// Now chase the chain of getElementInstr instructions, if any.
|
|
// Check for any non-constant indices and stop there.
|
|
// Also, stop if the first index of child is a non-zero array index
|
|
// and the last index of the current node is a non-array index:
|
|
// in that case, a non-array declared type is being accessed as an array
|
|
// which is not type-safe, but could be legal.
|
|
//
|
|
InstructionNode* ptrChild = gepNode;
|
|
while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
|
|
ptrChild->getOpLabel() == GetElemPtrIdx))
|
|
{
|
|
// Child is a GetElemPtr instruction
|
|
gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
|
|
User::op_iterator OI, firstIdx = gepInst->idx_begin();
|
|
User::op_iterator lastIdx = gepInst->idx_end();
|
|
bool allConstantOffsets = true;
|
|
|
|
// The first index of every GEP must be an array index.
|
|
assert((*firstIdx)->getType() == Type::LongTy &&
|
|
"INTERNAL ERROR: Structure index for a pointer type!");
|
|
|
|
// If the last instruction had a leading non-zero index, check if the
|
|
// current one references a sequential (i.e., indexable) type.
|
|
// If not, the code is not type-safe and we would create an illegal GEP
|
|
// by folding them, so don't fold any more instructions.
|
|
//
|
|
if (lastInstHasLeadingNonZero)
|
|
if (! isa<SequentialType>(gepInst->getType()->getElementType()))
|
|
break; // cannot fold in any preceding getElementPtr instrs.
|
|
|
|
// Check that all offsets are constant for this instruction
|
|
for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
|
|
allConstantOffsets = isa<ConstantInt>(*OI);
|
|
|
|
if (allConstantOffsets) {
|
|
// Get pointer value out of ptrChild.
|
|
ptrVal = gepInst->getPointerOperand();
|
|
|
|
// Remember if it has leading zero index: it will be discarded later.
|
|
lastInstHasLeadingNonZero = ! IsZero(*firstIdx);
|
|
|
|
// Insert its index vector at the start, skipping any leading [0]
|
|
chainIdxVec.insert(chainIdxVec.begin(),
|
|
firstIdx + !lastInstHasLeadingNonZero, lastIdx);
|
|
|
|
// Mark the folded node so no code is generated for it.
|
|
((InstructionNode*) ptrChild)->markFoldedIntoParent();
|
|
|
|
// Get the previous GEP instruction and continue trying to fold
|
|
ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
|
|
} else // cannot fold this getElementPtr instr. or any preceding ones
|
|
break;
|
|
}
|
|
|
|
// If the first getElementPtr instruction had a leading [0], add it back.
|
|
// Note that this instruction is the *last* one successfully folded above.
|
|
if (ptrVal && ! lastInstHasLeadingNonZero)
|
|
chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
|
|
|
|
return ptrVal;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Function: GetGEPInstArgs
|
|
//
|
|
// Purpose:
|
|
// Helper function for GetMemInstArgs that handles the final getElementPtr
|
|
// instruction used by (or same as) the memory operation.
|
|
// Extracts the indices of the current instruction and tries to fold in
|
|
// preceding ones if all indices of the current one are constant.
|
|
//---------------------------------------------------------------------------
|
|
|
|
static Value *
|
|
GetGEPInstArgs(InstructionNode* gepNode,
|
|
std::vector<Value*>& idxVec,
|
|
bool& allConstantIndices)
|
|
{
|
|
allConstantIndices = true;
|
|
GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
|
|
|
|
// Default pointer is the one from the current instruction.
|
|
Value* ptrVal = gepI->getPointerOperand();
|
|
InstrTreeNode* ptrChild = gepNode->leftChild();
|
|
|
|
// Extract the index vector of the GEP instructin.
|
|
// If all indices are constant and first index is zero, try to fold
|
|
// in preceding GEPs with all constant indices.
|
|
for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end();
|
|
allConstantIndices && OI != OE; ++OI)
|
|
if (! isa<Constant>(*OI))
|
|
allConstantIndices = false; // note: this also terminates loop!
|
|
|
|
// If we have only constant indices, fold chains of constant indices
|
|
// in this and any preceding GetElemPtr instructions.
|
|
bool foldedGEPs = false;
|
|
bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
|
|
if (allConstantIndices)
|
|
if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
|
|
ptrVal = newPtr;
|
|
foldedGEPs = true;
|
|
}
|
|
|
|
// Append the index vector of the current instruction.
|
|
// Skip the leading [0] index if preceding GEPs were folded into this.
|
|
idxVec.insert(idxVec.end(),
|
|
gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
|
|
gepI->idx_end());
|
|
|
|
return ptrVal;
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Function: GetMemInstArgs
|
|
//
|
|
// Purpose:
|
|
// Get the pointer value and the index vector for a memory operation
|
|
// (GetElementPtr, Load, or Store). If all indices of the given memory
|
|
// operation are constant, fold in constant indices in a chain of
|
|
// preceding GetElementPtr instructions (if any), and return the
|
|
// pointer value of the first instruction in the chain.
|
|
// All folded instructions are marked so no code is generated for them.
|
|
//
|
|
// Return values:
|
|
// Returns the pointer Value to use.
|
|
// Returns the resulting IndexVector in idxVec.
|
|
// Returns true/false in allConstantIndices if all indices are/aren't const.
|
|
//---------------------------------------------------------------------------
|
|
|
|
static Value*
|
|
GetMemInstArgs(InstructionNode* memInstrNode,
|
|
std::vector<Value*>& idxVec,
|
|
bool& allConstantIndices)
|
|
{
|
|
allConstantIndices = false;
|
|
Instruction* memInst = memInstrNode->getInstruction();
|
|
assert(idxVec.size() == 0 && "Need empty vector to return indices");
|
|
|
|
// If there is a GetElemPtr instruction to fold in to this instr,
|
|
// it must be in the left child for Load and GetElemPtr, and in the
|
|
// right child for Store instructions.
|
|
InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
|
|
? memInstrNode->rightChild()
|
|
: memInstrNode->leftChild());
|
|
|
|
// Default pointer is the one from the current instruction.
|
|
Value* ptrVal = ptrChild->getValue();
|
|
|
|
// Find the "last" GetElemPtr instruction: this one or the immediate child.
|
|
// There will be none if this is a load or a store from a scalar pointer.
|
|
InstructionNode* gepNode = NULL;
|
|
if (isa<GetElementPtrInst>(memInst))
|
|
gepNode = memInstrNode;
|
|
else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
|
|
// Child of load/store is a GEP and memInst is its only use.
|
|
// Use its indices and mark it as folded.
|
|
gepNode = cast<InstructionNode>(ptrChild);
|
|
gepNode->markFoldedIntoParent();
|
|
}
|
|
|
|
// If there are no indices, return the current pointer.
|
|
// Else extract the pointer from the GEP and fold the indices.
|
|
return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
|
|
: ptrVal;
|
|
}
|
|
|
|
|
|
//************************ Internal Functions ******************************/
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBprInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode;
|
|
|
|
Instruction* setCCInstr =
|
|
((InstructionNode*) instrNode->leftChild())->getInstruction();
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = V9::BRZ; break;
|
|
case Instruction::SetNE: opCode = V9::BRNZ; break;
|
|
case Instruction::SetLE: opCode = V9::BRLEZ; break;
|
|
case Instruction::SetGE: opCode = V9::BRGEZ; break;
|
|
case Instruction::SetLT: opCode = V9::BRLZ; break;
|
|
case Instruction::SetGT: opCode = V9::BRGZ; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
opCode = V9::INVALID_OPCODE;
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
|
|
|
|
if (isSigned) {
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = V9::BE; break;
|
|
case Instruction::SetNE: opCode = V9::BNE; break;
|
|
case Instruction::SetLE: opCode = V9::BLE; break;
|
|
case Instruction::SetGE: opCode = V9::BGE; break;
|
|
case Instruction::SetLT: opCode = V9::BL; break;
|
|
case Instruction::SetGT: opCode = V9::BG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
} else {
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = V9::BE; break;
|
|
case Instruction::SetNE: opCode = V9::BNE; break;
|
|
case Instruction::SetLE: opCode = V9::BLEU; break;
|
|
case Instruction::SetGE: opCode = V9::BCC; break;
|
|
case Instruction::SetLT: opCode = V9::BCS; break;
|
|
case Instruction::SetGT: opCode = V9::BGU; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseBFpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = V9::FBE; break;
|
|
case Instruction::SetNE: opCode = V9::FBNE; break;
|
|
case Instruction::SetLE: opCode = V9::FBLE; break;
|
|
case Instruction::SetGE: opCode = V9::FBGE; break;
|
|
case Instruction::SetLT: opCode = V9::FBL; break;
|
|
case Instruction::SetGT: opCode = V9::FBG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Create a unique TmpInstruction for a boolean value,
|
|
// representing the CC register used by a branch on that value.
|
|
// For now, hack this using a little static cache of TmpInstructions.
|
|
// Eventually the entire BURG instruction selection should be put
|
|
// into a separate class that can hold such information.
|
|
// The static cache is not too bad because the memory for these
|
|
// TmpInstructions will be freed along with the rest of the Function anyway.
|
|
//
|
|
static TmpInstruction*
|
|
GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType)
|
|
{
|
|
typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
|
|
static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
|
|
static const Function *lastFunction = 0;// Use to flush cache between funcs
|
|
|
|
assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
|
|
|
|
if (lastFunction != F) {
|
|
lastFunction = F;
|
|
boolToTmpCache.clear();
|
|
}
|
|
|
|
// Look for tmpI and create a new one otherwise. The new value is
|
|
// directly written to map using the ref returned by operator[].
|
|
TmpInstruction*& tmpI = boolToTmpCache[boolVal];
|
|
if (tmpI == NULL)
|
|
tmpI = new TmpInstruction(ccType, boolVal);
|
|
|
|
return tmpI;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBccInstruction(const InstructionNode* instrNode,
|
|
bool& isFPBranch)
|
|
{
|
|
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
|
|
assert(setCCNode->getOpLabel() == SetCCOp);
|
|
BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
|
|
const Type* setCCType = setCCInstr->getOperand(0)->getType();
|
|
|
|
isFPBranch = setCCType->isFloatingPoint(); // Return value: don't delete!
|
|
|
|
if (isFPBranch)
|
|
return ChooseBFpccInstruction(instrNode, setCCInstr);
|
|
else
|
|
return ChooseBpccInstruction(instrNode, setCCInstr);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMovFpccInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = V9::MOVFE; break;
|
|
case Instruction::SetNE: opCode = V9::MOVFNE; break;
|
|
case Instruction::SetLE: opCode = V9::MOVFLE; break;
|
|
case Instruction::SetGE: opCode = V9::MOVFGE; break;
|
|
case Instruction::SetLT: opCode = V9::MOVFL; break;
|
|
case Instruction::SetGT: opCode = V9::MOVFG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that SUBcc v1, v2 -> v3 has been executed.
|
|
// In most cases, we want to clear v3 and then follow it by instruction
|
|
// MOVcc 1 -> v3.
|
|
// Set mustClearReg=false if v3 need not be cleared before conditional move.
|
|
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
|
|
// (i.e., we want to test inverse of a condition)
|
|
// (The latter two cases do not seem to arise because SetNE needs nothing.)
|
|
//
|
|
static MachineOpCode
|
|
ChooseMovpccAfterSub(const InstructionNode* instrNode,
|
|
bool& mustClearReg,
|
|
int& valueToMove)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = V9::MOVE; break;
|
|
case Instruction::SetLE: opCode = V9::MOVLE; break;
|
|
case Instruction::SetGE: opCode = V9::MOVGE; break;
|
|
case Instruction::SetLT: opCode = V9::MOVL; break;
|
|
case Instruction::SetGT: opCode = V9::MOVG; break;
|
|
case Instruction::SetNE: assert(0 && "No move required!"); break;
|
|
default: assert(0 && "Unrecognized VM instr!"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertToFloatInstr(OpLabel vopCode, const Type* opType)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
switch(vopCode)
|
|
{
|
|
case ToFloatTy:
|
|
if (opType == Type::SByteTy || opType == Type::ShortTy ||
|
|
opType == Type::IntTy)
|
|
opCode = V9::FITOS;
|
|
else if (opType == Type::LongTy)
|
|
opCode = V9::FXTOS;
|
|
else if (opType == Type::DoubleTy)
|
|
opCode = V9::FDTOS;
|
|
else if (opType == Type::FloatTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to FLOAT on SPARC");
|
|
break;
|
|
|
|
case ToDoubleTy:
|
|
// This is usually used in conjunction with CreateCodeToCopyIntToFloat().
|
|
// Both functions should treat the integer as a 32-bit value for types
|
|
// of 4 bytes or less, and as a 64-bit value otherwise.
|
|
if (opType == Type::SByteTy || opType == Type::UByteTy ||
|
|
opType == Type::ShortTy || opType == Type::UShortTy ||
|
|
opType == Type::IntTy || opType == Type::UIntTy)
|
|
opCode = V9::FITOD;
|
|
else if (opType == Type::LongTy || opType == Type::ULongTy)
|
|
opCode = V9::FXTOD;
|
|
else if (opType == Type::FloatTy)
|
|
opCode = V9::FSTOD;
|
|
else if (opType == Type::DoubleTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to DOUBLE on SPARC");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertFPToIntInstr(Type::PrimitiveID tid, const Type* opType)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;;
|
|
|
|
assert((opType == Type::FloatTy || opType == Type::DoubleTy)
|
|
&& "This function should only be called for FLOAT or DOUBLE");
|
|
|
|
if (tid == Type::UIntTyID) {
|
|
assert(tid != Type::UIntTyID && "FP-to-uint conversions must be expanded"
|
|
" into FP->long->uint for SPARC v9: SO RUN PRESELECTION PASS!");
|
|
} else if (tid == Type::SByteTyID || tid == Type::ShortTyID ||
|
|
tid == Type::IntTyID || tid == Type::UByteTyID ||
|
|
tid == Type::UShortTyID) {
|
|
opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
|
|
} else if (tid == Type::LongTyID || tid == Type::ULongTyID) {
|
|
opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
|
|
} else
|
|
assert(0 && "Should not get here, Mo!");
|
|
|
|
return opCode;
|
|
}
|
|
|
|
MachineInstr*
|
|
CreateConvertFPToIntInstr(Type::PrimitiveID destTID,
|
|
Value* srcVal, Value* destVal)
|
|
{
|
|
MachineOpCode opCode = ChooseConvertFPToIntInstr(destTID, srcVal->getType());
|
|
assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
|
|
return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
|
|
}
|
|
|
|
// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
|
|
// The FP value must be converted to the dest type in an FP register,
|
|
// and the result is then copied from FP to int register via memory.
|
|
//
|
|
// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
|
|
// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly
|
|
// *only* when converting to an unsigned. (Unsigned byte, short or long
|
|
// don't have this problem.)
|
|
// For unsigned int, we therefore have to generate the code sequence:
|
|
//
|
|
// if (V > (float) MAXINT) {
|
|
// unsigned result = (unsigned) (V - (float) MAXINT);
|
|
// result = result + (unsigned) MAXINT;
|
|
// }
|
|
// else
|
|
// result = (unsigned) V;
|
|
//
|
|
static void
|
|
CreateCodeToConvertFloatToInt(const TargetMachine& target,
|
|
Value* opVal,
|
|
Instruction* destI,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
// Create a temporary to represent the FP register into which the
|
|
// int value will placed after conversion. The type of this temporary
|
|
// depends on the type of FP register to use: single-prec for a 32-bit
|
|
// int or smaller; double-prec for a 64-bit int.
|
|
//
|
|
size_t destSize = target.getTargetData().getTypeSize(destI->getType());
|
|
const Type* destTypeToUse = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
|
|
TmpInstruction* destForCast = new TmpInstruction(destTypeToUse, opVal);
|
|
mcfi.addTemp(destForCast);
|
|
|
|
// Create the fp-to-int conversion code
|
|
MachineInstr* M =CreateConvertFPToIntInstr(destI->getType()->getPrimitiveID(),
|
|
opVal, destForCast);
|
|
mvec.push_back(M);
|
|
|
|
// Create the fpreg-to-intreg copy code
|
|
target.getInstrInfo().
|
|
CreateCodeToCopyFloatToInt(target, destI->getParent()->getParent(),
|
|
destForCast, destI, mvec, mcfi);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseAddInstruction(const InstructionNode* instrNode)
|
|
{
|
|
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateMovFloatInstruction(const InstructionNode* instrNode,
|
|
const Type* resultType)
|
|
{
|
|
return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
|
|
.addReg(instrNode->leftChild()->getValue())
|
|
.addRegDef(instrNode->getValue());
|
|
}
|
|
|
|
static inline MachineInstr*
|
|
CreateAddConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
|
|
double dval = FPC->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode,
|
|
instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseSubInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
if (resultType->isInteger() || isa<PointerType>(resultType)) {
|
|
opCode = V9::SUBr;
|
|
} else {
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = V9::FSUBS; break;
|
|
case Type::DoubleTyID: opCode = V9::FSUBD; break;
|
|
default: assert(0 && "Invalid type for SUB instruction"); break;
|
|
}
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateSubConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
|
|
double dval = FPC->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode,
|
|
instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseFcmpInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
|
|
switch(operand->getType()->getPrimitiveID()) {
|
|
case Type::FloatTyID: opCode = V9::FCMPS; break;
|
|
case Type::DoubleTyID: opCode = V9::FCMPD; break;
|
|
default: assert(0 && "Invalid type for FCMP instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that leftArg and rightArg are both cast instructions.
|
|
//
|
|
static inline bool
|
|
BothFloatToDouble(const InstructionNode* instrNode)
|
|
{
|
|
InstrTreeNode* leftArg = instrNode->leftChild();
|
|
InstrTreeNode* rightArg = instrNode->rightChild();
|
|
InstrTreeNode* leftArgArg = leftArg->leftChild();
|
|
InstrTreeNode* rightArgArg = rightArg->leftChild();
|
|
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
|
|
|
|
// Check if both arguments are floats cast to double
|
|
return (leftArg->getValue()->getType() == Type::DoubleTy &&
|
|
leftArgArg->getValue()->getType() == Type::FloatTy &&
|
|
rightArgArg->getValue()->getType() == Type::FloatTy);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMulInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
if (resultType->isInteger())
|
|
opCode = V9::MULXr;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = V9::FMULS; break;
|
|
case Type::DoubleTyID: opCode = V9::FMULD; break;
|
|
default: assert(0 && "Invalid type for MUL instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateIntNegInstruction(const TargetMachine& target,
|
|
Value* vreg)
|
|
{
|
|
return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum())
|
|
.addReg(vreg).addRegDef(vreg);
|
|
}
|
|
|
|
|
|
// Create instruction sequence for any shift operation.
|
|
// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
|
|
// requires a second instruction for explicit sign-extension.
|
|
// Note that we only have to worry about a sign-bit appearing in the
|
|
// most significant bit of the operand after shifting (e.g., bit 32 of
|
|
// Int or bit 16 of Short), so we do not have to worry about results
|
|
// that are as large as a normal integer register.
|
|
//
|
|
static inline void
|
|
CreateShiftInstructions(const TargetMachine& target,
|
|
Function* F,
|
|
MachineOpCode shiftOpCode,
|
|
Value* argVal1,
|
|
Value* optArgVal2, /* Use optArgVal2 if not NULL */
|
|
unsigned optShiftNum, /* else use optShiftNum */
|
|
Instruction* destVal,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
assert((optArgVal2 != NULL || optShiftNum <= 64) &&
|
|
"Large shift sizes unexpected, but can be handled below: "
|
|
"You need to check whether or not it fits in immed field below");
|
|
|
|
// If this is a logical left shift of a type smaller than the standard
|
|
// integer reg. size, we have to extend the sign-bit into upper bits
|
|
// of dest, so we need to put the result of the SLL into a temporary.
|
|
//
|
|
Value* shiftDest = destVal;
|
|
unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
|
|
if ((shiftOpCode == V9::SLLr6 || shiftOpCode == V9::SLLXr6) && opSize < 8)
|
|
{ // put SLL result into a temporary
|
|
shiftDest = new TmpInstruction(argVal1, optArgVal2, "sllTmp");
|
|
mcfi.addTemp(shiftDest);
|
|
}
|
|
|
|
MachineInstr* M = (optArgVal2 != NULL)
|
|
? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
|
|
.addReg(shiftDest, MOTy::Def)
|
|
: BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
|
|
.addReg(shiftDest, MOTy::Def);
|
|
mvec.push_back(M);
|
|
|
|
if (shiftDest != destVal)
|
|
{ // extend the sign-bit of the result into all upper bits of dest
|
|
assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
|
|
target.getInstrInfo().
|
|
CreateSignExtensionInstructions(target, F, shiftDest, destVal,
|
|
8*opSize, mvec, mcfi);
|
|
}
|
|
}
|
|
|
|
|
|
// Does not create any instructions if we cannot exploit constant to
|
|
// create a cheaper instruction.
|
|
// This returns the approximate cost of the instructions generated,
|
|
// which is used to pick the cheapest when both operands are constant.
|
|
static unsigned
|
|
CreateMulConstInstruction(const TargetMachine &target, Function* F,
|
|
Value* lval, Value* rval, Instruction* destVal,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
/* Use max. multiply cost, viz., cost of MULX */
|
|
unsigned cost = target.getInstrInfo().minLatency(V9::MULXr);
|
|
unsigned firstNewInstr = mvec.size();
|
|
|
|
Value* constOp = rval;
|
|
if (! isa<Constant>(constOp))
|
|
return cost;
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Multiply by 2^x for integer types: replace with Shift
|
|
//
|
|
const Type* resultType = destVal->getType();
|
|
|
|
if (resultType->isInteger() || isa<PointerType>(resultType)) {
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst) {
|
|
unsigned pow;
|
|
bool needNeg = false;
|
|
if (C < 0) {
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 0 || C == 1) {
|
|
cost = target.getInstrInfo().minLatency(V9::ADDr);
|
|
unsigned Zero = target.getRegInfo().getZeroRegNum();
|
|
MachineInstr* M;
|
|
if (C == 0)
|
|
M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
|
|
else
|
|
M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
|
|
mvec.push_back(M);
|
|
}
|
|
else if (isPowerOf2(C, pow)) {
|
|
unsigned opSize = target.getTargetData().getTypeSize(resultType);
|
|
MachineOpCode opCode = (opSize <= 32)? V9::SLLr6 : V9::SLLXr6;
|
|
CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
|
|
destVal, mvec, mcfi);
|
|
}
|
|
|
|
if (mvec.size() > 0 && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
MachineInstr* M = CreateIntNegInstruction(target, destVal);
|
|
mvec.push_back(M);
|
|
}
|
|
}
|
|
} else {
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
|
|
double dval = FPC->getValue();
|
|
if (fabs(dval) == 1) {
|
|
MachineOpCode opCode = (dval < 0)
|
|
? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
|
|
: (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
|
|
mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (firstNewInstr < mvec.size()) {
|
|
cost = 0;
|
|
for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
|
|
cost += target.getInstrInfo().minLatency(mvec[i]->getOpCode());
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
|
|
// Does not create any instructions if we cannot exploit constant to
|
|
// create a cheaper instruction.
|
|
//
|
|
static inline void
|
|
CreateCheapestMulConstInstruction(const TargetMachine &target,
|
|
Function* F,
|
|
Value* lval, Value* rval,
|
|
Instruction* destVal,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi)
|
|
{
|
|
Value* constOp;
|
|
if (isa<Constant>(lval) && isa<Constant>(rval))
|
|
{ // both operands are constant: evaluate and "set" in dest
|
|
Constant* P = ConstantFoldBinaryInstruction(Instruction::Mul,
|
|
cast<Constant>(lval), cast<Constant>(rval));
|
|
target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi);
|
|
}
|
|
else if (isa<Constant>(rval)) // rval is constant, but not lval
|
|
CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
|
|
else if (isa<Constant>(lval)) // lval is constant, but not rval
|
|
CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
|
|
|
|
// else neither is constant
|
|
return;
|
|
}
|
|
|
|
// Return NULL if we cannot exploit constant to create a cheaper instruction
|
|
static inline void
|
|
CreateMulInstruction(const TargetMachine &target, Function* F,
|
|
Value* lval, Value* rval, Instruction* destVal,
|
|
std::vector<MachineInstr*>& mvec,
|
|
MachineCodeForInstruction& mcfi,
|
|
MachineOpCode forceMulOp = INVALID_MACHINE_OPCODE)
|
|
{
|
|
unsigned L = mvec.size();
|
|
CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
|
|
if (mvec.size() == L) {
|
|
// no instructions were added so create MUL reg, reg, reg.
|
|
// Use FSMULD if both operands are actually floats cast to doubles.
|
|
// Otherwise, use the default opcode for the appropriate type.
|
|
MachineOpCode mulOp = ((forceMulOp != INVALID_MACHINE_OPCODE)
|
|
? forceMulOp
|
|
: ChooseMulInstructionByType(destVal->getType()));
|
|
mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
|
|
.addRegDef(destVal));
|
|
}
|
|
}
|
|
|
|
|
|
// Generate a divide instruction for Div or Rem.
|
|
// For Rem, this assumes that the operand type will be signed if the result
|
|
// type is signed. This is correct because they must have the same sign.
|
|
//
|
|
static inline MachineOpCode
|
|
ChooseDivInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = V9::INVALID_OPCODE;
|
|
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isInteger())
|
|
opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = V9::FDIVS; break;
|
|
case Type::DoubleTyID: opCode = V9::FDIVD; break;
|
|
default: assert(0 && "Invalid type for DIV instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Return if we cannot exploit constant to create a cheaper instruction
|
|
static void
|
|
CreateDivConstInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode,
|
|
std::vector<MachineInstr*>& mvec)
|
|
{
|
|
Value* LHS = instrNode->leftChild()->getValue();
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
if (!isa<Constant>(constOp))
|
|
return;
|
|
|
|
Instruction* destVal = instrNode->getInstruction();
|
|
unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isInteger())
|
|
{
|
|
unsigned pow;
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst) {
|
|
bool needNeg = false;
|
|
if (C < 0) {
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 1) {
|
|
mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
|
|
.addRegDef(destVal));
|
|
} else if (isPowerOf2(C, pow)) {
|
|
unsigned opCode;
|
|
Value* shiftOperand;
|
|
|
|
if (resultType->isSigned()) {
|
|
// The result may be negative and we need to add one before shifting
|
|
// a negative value. Use:
|
|
// srl i0, 31, x0; add x0, i0, i1 (if i0 is <= 32 bits)
|
|
// or
|
|
// srlx i0, 63, x0; add x0, i0, i1 (if i0 is 64 bits)
|
|
// to compute i1=i0+1 if i0 < 0 and i1=i0 otherwise.
|
|
//
|
|
TmpInstruction *srlTmp, *addTmp;
|
|
MachineCodeForInstruction& mcfi
|
|
= MachineCodeForInstruction::get(destVal);
|
|
srlTmp = new TmpInstruction(resultType, LHS, 0, "getSign");
|
|
addTmp = new TmpInstruction(resultType, LHS, srlTmp, "incIfNeg");
|
|
mcfi.addTemp(srlTmp);
|
|
mcfi.addTemp(addTmp);
|
|
|
|
// Create the SRL or SRLX instruction to get the sign bit
|
|
mvec.push_back(BuildMI((resultType==Type::LongTy) ?
|
|
V9::SRLXi6 : V9::SRLi6, 3)
|
|
.addReg(LHS)
|
|
.addSImm((resultType==Type::LongTy)? 63 : 31)
|
|
.addRegDef(srlTmp));
|
|
|
|
// Create the ADD instruction to add 1 for negative values
|
|
mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
|
|
.addRegDef(addTmp));
|
|
|
|
// Get the shift operand and "right-shift" opcode to do the divide
|
|
shiftOperand = addTmp;
|
|
opCode = (resultType==Type::LongTy) ? V9::SRAXi6 : V9::SRAi6;
|
|
}
|
|
else {
|
|
// Get the shift operand and "right-shift" opcode to do the divide
|
|
shiftOperand = LHS;
|
|
opCode = (resultType==Type::LongTy) ? V9::SRLXi6 : V9::SRLi6;
|
|
}
|
|
|
|
// Now do the actual shift!
|
|
mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
|
|
.addRegDef(destVal));
|
|
}
|
|
|
|
if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
|
|
// insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
mvec.push_back(CreateIntNegInstruction(target, destVal));
|
|
}
|
|
}
|
|
} else {
|
|
if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
|
|
double dval = FPC->getValue();
|
|
if (fabs(dval) == 1) {
|
|
unsigned opCode =
|
|
(dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
|
|
: (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
|
|
|
|
mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
CreateCodeForVariableSizeAlloca(const TargetMachine& target,
|
|
Instruction* result,
|
|
unsigned tsize,
|
|
Value* numElementsVal,
|
|
std::vector<MachineInstr*>& getMvec)
|
|
{
|
|
Value* totalSizeVal;
|
|
MachineInstr* M;
|
|
MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
|
|
Function *F = result->getParent()->getParent();
|
|
|
|
// Enforce the alignment constraints on the stack pointer at
|
|
// compile time if the total size is a known constant.
|
|
if (isa<Constant>(numElementsVal))
|
|
{
|
|
bool isValid;
|
|
int64_t numElem = GetConstantValueAsSignedInt(numElementsVal, isValid);
|
|
assert(isValid && "Unexpectedly large array dimension in alloca!");
|
|
int64_t total = numElem * tsize;
|
|
if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment())
|
|
total += target.getFrameInfo().getStackFrameSizeAlignment() - extra;
|
|
totalSizeVal = ConstantSInt::get(Type::IntTy, total);
|
|
}
|
|
else
|
|
{
|
|
// The size is not a constant. Generate code to compute it and
|
|
// code to pad the size for stack alignment.
|
|
// Create a Value to hold the (constant) element size
|
|
Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
|
|
|
|
// Create temporary values to hold the result of MUL, SLL, SRL
|
|
// THIS CASE IS INCOMPLETE AND WILL BE FIXED SHORTLY.
|
|
TmpInstruction* tmpProd = new TmpInstruction(numElementsVal, tsizeVal);
|
|
TmpInstruction* tmpSLL = new TmpInstruction(numElementsVal, tmpProd);
|
|
TmpInstruction* tmpSRL = new TmpInstruction(numElementsVal, tmpSLL);
|
|
mcfi.addTemp(tmpProd);
|
|
mcfi.addTemp(tmpSLL);
|
|
mcfi.addTemp(tmpSRL);
|
|
|
|
// Instruction 1: mul numElements, typeSize -> tmpProd
|
|
// This will optimize the MUL as far as possible.
|
|
CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd,getMvec,
|
|
mcfi, INVALID_MACHINE_OPCODE);
|
|
|
|
assert(0 && "Need to insert padding instructions here!");
|
|
|
|
totalSizeVal = tmpProd;
|
|
}
|
|
|
|
// Get the constant offset from SP for dynamically allocated storage
|
|
// and create a temporary Value to hold it.
|
|
MachineFunction& mcInfo = MachineFunction::get(F);
|
|
bool growUp;
|
|
ConstantSInt* dynamicAreaOffset =
|
|
ConstantSInt::get(Type::IntTy,
|
|
target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
|
|
assert(! growUp && "Has SPARC v9 stack frame convention changed?");
|
|
|
|
unsigned SPReg = target.getRegInfo().getStackPointer();
|
|
|
|
// Instruction 2: sub %sp, totalSizeVal -> %sp
|
|
getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
|
|
.addMReg(SPReg,MOTy::Def));
|
|
|
|
// Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
|
|
getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
|
|
.addRegDef(result));
|
|
}
|
|
|
|
|
|
static void
|
|
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
|
|
Instruction* result,
|
|
unsigned tsize,
|
|
unsigned numElements,
|
|
std::vector<MachineInstr*>& getMvec)
|
|
{
|
|
assert(tsize > 0 && "Illegal (zero) type size for alloca");
|
|
assert(result && result->getParent() &&
|
|
"Result value is not part of a function?");
|
|
Function *F = result->getParent()->getParent();
|
|
MachineFunction &mcInfo = MachineFunction::get(F);
|
|
|
|
// Check if the offset would small enough to use as an immediate in
|
|
// load/stores (check LDX because all load/stores have the same-size immediate
|
|
// field). If not, put the variable in the dynamically sized area of the
|
|
// frame.
|
|
unsigned paddedSizeIgnored;
|
|
int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
|
|
paddedSizeIgnored,
|
|
tsize * numElements);
|
|
if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
|
|
CreateCodeForVariableSizeAlloca(target, result, tsize,
|
|
ConstantSInt::get(Type::IntTy,numElements),
|
|
getMvec);
|
|
return;
|
|
}
|
|
|
|
// else offset fits in immediate field so go ahead and allocate it.
|
|
offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
|
|
|
|
// Create a temporary Value to hold the constant offset.
|
|
// This is needed because it may not fit in the immediate field.
|
|
ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
|
|
|
|
// Instruction 1: add %fp, offsetFromFP -> result
|
|
unsigned FPReg = target.getRegInfo().getFramePointer();
|
|
getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
|
|
.addRegDef(result));
|
|
}
|
|
|
|
|
|
static unsigned
|
|
convertOpcodeFromRegToImm(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case V9::ADDr: return V9::ADDi;
|
|
|
|
/* load opcodes */
|
|
case V9::LDUBr: return V9::LDUBi;
|
|
case V9::LDSBr: return V9::LDSBi;
|
|
case V9::LDUHr: return V9::LDUHi;
|
|
case V9::LDSHr: return V9::LDSHi;
|
|
case V9::LDUWr: return V9::LDUWi;
|
|
case V9::LDSWr: return V9::LDSWi;
|
|
case V9::LDXr: return V9::LDXi;
|
|
case V9::LDFr: return V9::LDFi;
|
|
case V9::LDDFr: return V9::LDDFi;
|
|
|
|
/* store opcodes */
|
|
case V9::STBr: return V9::STBi;
|
|
case V9::STHr: return V9::STHi;
|
|
case V9::STWr: return V9::STWi;
|
|
case V9::STXr: return V9::STXi;
|
|
case V9::STFr: return V9::STFi;
|
|
case V9::STDFr: return V9::STDFi;
|
|
|
|
default:
|
|
std::cerr << "Not handled opcode in convert from reg to imm: " << Opcode
|
|
<< "\n";
|
|
abort();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// Function SetOperandsForMemInstr
|
|
//
|
|
// Choose addressing mode for the given load or store instruction.
|
|
// Use [reg+reg] if it is an indexed reference, and the index offset is
|
|
// not a constant or if it cannot fit in the offset field.
|
|
// Use [reg+offset] in all other cases.
|
|
//
|
|
// This assumes that all array refs are "lowered" to one of these forms:
|
|
// %x = load (subarray*) ptr, constant ; single constant offset
|
|
// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
|
|
// Generally, this should happen via strength reduction + LICM.
|
|
// Also, strength reduction should take care of using the same register for
|
|
// the loop index variable and an array index, when that is profitable.
|
|
//------------------------------------------------------------------------
|
|
|
|
static void
|
|
SetOperandsForMemInstr(unsigned Opcode,
|
|
std::vector<MachineInstr*>& mvec,
|
|
InstructionNode* vmInstrNode,
|
|
const TargetMachine& target)
|
|
{
|
|
Instruction* memInst = vmInstrNode->getInstruction();
|
|
// Index vector, ptr value, and flag if all indices are const.
|
|
std::vector<Value*> idxVec;
|
|
bool allConstantIndices;
|
|
Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
|
|
|
|
// Now create the appropriate operands for the machine instruction.
|
|
// First, initialize so we default to storing the offset in a register.
|
|
int64_t smallConstOffset = 0;
|
|
Value* valueForRegOffset = NULL;
|
|
MachineOperand::MachineOperandType offsetOpType =
|
|
MachineOperand::MO_VirtualRegister;
|
|
|
|
// Check if there is an index vector and if so, compute the
|
|
// right offset for structures and for arrays
|
|
//
|
|
if (!idxVec.empty())
|
|
{
|
|
const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
|
|
|
|
// If all indices are constant, compute the combined offset directly.
|
|
if (allConstantIndices)
|
|
{
|
|
// Compute the offset value using the index vector. Create a
|
|
// virtual reg. for it since it may not fit in the immed field.
|
|
uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
|
|
valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
|
|
}
|
|
else
|
|
{
|
|
// There is at least one non-constant offset. Therefore, this must
|
|
// be an array ref, and must have been lowered to a single non-zero
|
|
// offset. (An extra leading zero offset, if any, can be ignored.)
|
|
// Generate code sequence to compute address from index.
|
|
//
|
|
bool firstIdxIsZero = IsZero(idxVec[0]);
|
|
assert(idxVec.size() == 1U + firstIdxIsZero
|
|
&& "Array refs must be lowered before Instruction Selection");
|
|
|
|
Value* idxVal = idxVec[firstIdxIsZero];
|
|
|
|
std::vector<MachineInstr*> mulVec;
|
|
Instruction* addr = new TmpInstruction(Type::ULongTy, memInst);
|
|
MachineCodeForInstruction::get(memInst).addTemp(addr);
|
|
|
|
// Get the array type indexed by idxVal, and compute its element size.
|
|
// The call to getTypeSize() will fail if size is not constant.
|
|
const Type* vecType = (firstIdxIsZero
|
|
? GetElementPtrInst::getIndexedType(ptrType,
|
|
std::vector<Value*>(1U, idxVec[0]),
|
|
/*AllowCompositeLeaf*/ true)
|
|
: ptrType);
|
|
const Type* eltType = cast<SequentialType>(vecType)->getElementType();
|
|
ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
|
|
target.getTargetData().getTypeSize(eltType));
|
|
|
|
// CreateMulInstruction() folds constants intelligently enough.
|
|
CreateMulInstruction(target, memInst->getParent()->getParent(),
|
|
idxVal, /* lval, not likely to be const*/
|
|
eltSizeVal, /* rval, likely to be constant */
|
|
addr, /* result */
|
|
mulVec, MachineCodeForInstruction::get(memInst),
|
|
INVALID_MACHINE_OPCODE);
|
|
|
|
assert(mulVec.size() > 0 && "No multiply code created?");
|
|
mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
|
|
|
|
valueForRegOffset = addr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
offsetOpType = MachineOperand::MO_SignExtendedImmed;
|
|
smallConstOffset = 0;
|
|
}
|
|
|
|
// For STORE:
|
|
// Operand 0 is value, operand 1 is ptr, operand 2 is offset
|
|
// For LOAD or GET_ELEMENT_PTR,
|
|
// Operand 0 is ptr, operand 1 is offset, operand 2 is result.
|
|
//
|
|
unsigned offsetOpNum, ptrOpNum;
|
|
MachineInstr *MI;
|
|
if (memInst->getOpcode() == Instruction::Store) {
|
|
if (offsetOpType == MachineOperand::MO_VirtualRegister)
|
|
MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
|
|
.addReg(ptrVal).addReg(valueForRegOffset);
|
|
else {
|
|
Opcode = convertOpcodeFromRegToImm(Opcode);
|
|
MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
|
|
.addReg(ptrVal).addSImm(smallConstOffset);
|
|
}
|
|
} else {
|
|
if (offsetOpType == MachineOperand::MO_VirtualRegister)
|
|
MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
|
|
.addRegDef(memInst);
|
|
else {
|
|
Opcode = convertOpcodeFromRegToImm(Opcode);
|
|
MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
|
|
.addRegDef(memInst);
|
|
}
|
|
}
|
|
mvec.push_back(MI);
|
|
}
|
|
|
|
|
|
//
|
|
// Substitute operand `operandNum' of the instruction in node `treeNode'
|
|
// in place of the use(s) of that instruction in node `parent'.
|
|
// Check both explicit and implicit operands!
|
|
// Also make sure to skip over a parent who:
|
|
// (1) is a list node in the Burg tree, or
|
|
// (2) itself had its results forwarded to its parent
|
|
//
|
|
static void
|
|
ForwardOperand(InstructionNode* treeNode,
|
|
InstrTreeNode* parent,
|
|
int operandNum)
|
|
{
|
|
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
|
|
|
|
Instruction* unusedOp = treeNode->getInstruction();
|
|
Value* fwdOp = unusedOp->getOperand(operandNum);
|
|
|
|
// The parent itself may be a list node, so find the real parent instruction
|
|
while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
|
|
{
|
|
parent = parent->parent();
|
|
assert(parent && "ERROR: Non-instruction node has no parent in tree.");
|
|
}
|
|
InstructionNode* parentInstrNode = (InstructionNode*) parent;
|
|
|
|
Instruction* userInstr = parentInstrNode->getInstruction();
|
|
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
|
|
|
|
// The parent's mvec would be empty if it was itself forwarded.
|
|
// Recursively call ForwardOperand in that case...
|
|
//
|
|
if (mvec.size() == 0)
|
|
{
|
|
assert(parent->parent() != NULL &&
|
|
"Parent could not have been forwarded, yet has no instructions?");
|
|
ForwardOperand(treeNode, parent->parent(), operandNum);
|
|
}
|
|
else
|
|
{
|
|
for (unsigned i=0, N=mvec.size(); i < N; i++)
|
|
{
|
|
MachineInstr* minstr = mvec[i];
|
|
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
|
|
{
|
|
const MachineOperand& mop = minstr->getOperand(i);
|
|
if (mop.getType() == MachineOperand::MO_VirtualRegister &&
|
|
mop.getVRegValue() == unusedOp)
|
|
minstr->SetMachineOperandVal(i,
|
|
MachineOperand::MO_VirtualRegister, fwdOp);
|
|
}
|
|
|
|
for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
|
|
if (minstr->getImplicitRef(i) == unusedOp)
|
|
minstr->setImplicitRef(i, fwdOp,
|
|
minstr->getImplicitOp(i).opIsDefOnly(),
|
|
minstr->getImplicitOp(i).opIsDefAndUse());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline bool
|
|
AllUsesAreBranches(const Instruction* setccI)
|
|
{
|
|
for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
|
|
UI != UE; ++UI)
|
|
if (! isa<TmpInstruction>(*UI) // ignore tmp instructions here
|
|
&& cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Generate code for any intrinsic that needs a special code sequence
|
|
// instead of a regular call. If not that kind of intrinsic, do nothing.
|
|
// Returns true if code was generated, otherwise false.
|
|
//
|
|
bool CodeGenIntrinsic(LLVMIntrinsic::ID iid, CallInst &callInstr,
|
|
TargetMachine &target,
|
|
std::vector<MachineInstr*>& mvec)
|
|
{
|
|
switch (iid) {
|
|
case LLVMIntrinsic::va_start: {
|
|
// Get the address of the first vararg value on stack and copy it to
|
|
// the argument of va_start(va_list* ap).
|
|
bool ignore;
|
|
Function* func = cast<Function>(callInstr.getParent()->getParent());
|
|
int numFixedArgs = func->getFunctionType()->getNumParams();
|
|
int fpReg = target.getFrameInfo().getIncomingArgBaseRegNum();
|
|
int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
|
|
int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo().
|
|
getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
|
|
mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
|
|
addReg(callInstr.getOperand(1)));
|
|
return true;
|
|
}
|
|
|
|
case LLVMIntrinsic::va_end:
|
|
return true; // no-op on Sparc
|
|
|
|
case LLVMIntrinsic::va_copy:
|
|
// Simple copy of current va_list (arg2) to new va_list (arg1)
|
|
mvec.push_back(BuildMI(V9::ORr, 3).
|
|
addMReg(target.getRegInfo().getZeroRegNum()).
|
|
addReg(callInstr.getOperand(2)).
|
|
addReg(callInstr.getOperand(1)));
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//******************* Externally Visible Functions *************************/
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: ThisIsAChainRule
|
|
//
|
|
// Purpose:
|
|
// Check if a given BURG rule is a chain rule.
|
|
//------------------------------------------------------------------------
|
|
|
|
extern bool
|
|
ThisIsAChainRule(int eruleno)
|
|
{
|
|
switch(eruleno)
|
|
{
|
|
case 111: // stmt: reg
|
|
case 123:
|
|
case 124:
|
|
case 125:
|
|
case 126:
|
|
case 127:
|
|
case 128:
|
|
case 129:
|
|
case 130:
|
|
case 131:
|
|
case 132:
|
|
case 133:
|
|
case 155:
|
|
case 221:
|
|
case 222:
|
|
case 241:
|
|
case 242:
|
|
case 243:
|
|
case 244:
|
|
case 245:
|
|
case 321:
|
|
return true; break;
|
|
|
|
default:
|
|
return false; break;
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: GetInstructionsByRule
|
|
//
|
|
// Purpose:
|
|
// Choose machine instructions for the SPARC according to the
|
|
// patterns chosen by the BURG-generated parser.
|
|
//------------------------------------------------------------------------
|
|
|
|
void
|
|
GetInstructionsByRule(InstructionNode* subtreeRoot,
|
|
int ruleForNode,
|
|
short* nts,
|
|
TargetMachine &target,
|
|
std::vector<MachineInstr*>& mvec)
|
|
{
|
|
bool checkCast = false; // initialize here to use fall-through
|
|
bool maskUnsignedResult = false;
|
|
int nextRule;
|
|
int forwardOperandNum = -1;
|
|
unsigned allocaSize = 0;
|
|
MachineInstr* M, *M2;
|
|
unsigned L;
|
|
|
|
mvec.clear();
|
|
|
|
// If the code for this instruction was folded into the parent (user),
|
|
// then do nothing!
|
|
if (subtreeRoot->isFoldedIntoParent())
|
|
return;
|
|
|
|
//
|
|
// Let's check for chain rules outside the switch so that we don't have
|
|
// to duplicate the list of chain rule production numbers here again
|
|
//
|
|
if (ThisIsAChainRule(ruleForNode))
|
|
{
|
|
// Chain rules have a single nonterminal on the RHS.
|
|
// Get the rule that matches the RHS non-terminal and use that instead.
|
|
//
|
|
assert(nts[0] && ! nts[1]
|
|
&& "A chain rule should have only one RHS non-terminal!");
|
|
nextRule = burm_rule(subtreeRoot->state, nts[0]);
|
|
nts = burm_nts[nextRule];
|
|
GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
|
|
}
|
|
else
|
|
{
|
|
switch(ruleForNode) {
|
|
case 1: // stmt: Ret
|
|
case 2: // stmt: RetValue(reg)
|
|
{ // NOTE: Prepass of register allocation is responsible
|
|
// for moving return value to appropriate register.
|
|
// Mark the return-address register as a hidden virtual reg.
|
|
// Mark the return value register as an implicit ref of
|
|
// the machine instruction.
|
|
// Finally put a NOP in the delay slot.
|
|
ReturnInst *returnInstr =
|
|
cast<ReturnInst>(subtreeRoot->getInstruction());
|
|
assert(returnInstr->getOpcode() == Instruction::Ret);
|
|
|
|
Instruction* returnReg = new TmpInstruction(returnInstr);
|
|
MachineCodeForInstruction::get(returnInstr).addTemp(returnReg);
|
|
|
|
M = BuildMI(V9::JMPLRETi, 3).addReg(returnReg).addSImm(8)
|
|
.addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def);
|
|
|
|
if (returnInstr->getReturnValue() != NULL)
|
|
M->addImplicitRef(returnInstr->getReturnValue());
|
|
|
|
mvec.push_back(M);
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
|
|
break;
|
|
}
|
|
|
|
case 3: // stmt: Store(reg,reg)
|
|
case 4: // stmt: Store(reg,ptrreg)
|
|
SetOperandsForMemInstr(ChooseStoreInstruction(
|
|
subtreeRoot->leftChild()->getValue()->getType()),
|
|
mvec, subtreeRoot, target);
|
|
break;
|
|
|
|
case 5: // stmt: BrUncond
|
|
{
|
|
BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
|
|
mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
break;
|
|
}
|
|
|
|
case 206: // stmt: BrCond(setCCconst)
|
|
{ // setCCconst => boolean was computed with `%b = setCC type reg1 const'
|
|
// If the constant is ZERO, we can use the branch-on-integer-register
|
|
// instructions and avoid the SUBcc instruction entirely.
|
|
// Otherwise this is just the same as case 5, so just fall through.
|
|
//
|
|
InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
|
|
assert(constNode &&
|
|
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
|
|
Constant *constVal = cast<Constant>(constNode->getValue());
|
|
bool isValidConst;
|
|
|
|
if ((constVal->getType()->isInteger()
|
|
|| isa<PointerType>(constVal->getType()))
|
|
&& GetConstantValueAsSignedInt(constVal, isValidConst) == 0
|
|
&& isValidConst)
|
|
{
|
|
// That constant is a zero after all...
|
|
// Use the left child of setCC as the first argument!
|
|
// Mark the setCC node so that no code is generated for it.
|
|
InstructionNode* setCCNode = (InstructionNode*)
|
|
subtreeRoot->leftChild();
|
|
assert(setCCNode->getOpLabel() == SetCCOp);
|
|
setCCNode->markFoldedIntoParent();
|
|
|
|
BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
|
|
|
|
M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
|
|
.addReg(setCCNode->leftChild()->getValue())
|
|
.addPCDisp(brInst->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
|
|
// false branch
|
|
mvec.push_back(BuildMI(V9::BA, 1)
|
|
.addPCDisp(brInst->getSuccessor(1)));
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
}
|
|
|
|
case 6: // stmt: BrCond(setCC)
|
|
{ // bool => boolean was computed with SetCC.
|
|
// The branch to use depends on whether it is FP, signed, or unsigned.
|
|
// If it is an integer CC, we also need to find the unique
|
|
// TmpInstruction representing that CC.
|
|
//
|
|
BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
|
|
bool isFPBranch;
|
|
unsigned Opcode = ChooseBccInstruction(subtreeRoot, isFPBranch);
|
|
Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
|
|
brInst->getParent()->getParent(),
|
|
isFPBranch? Type::FloatTy : Type::IntTy);
|
|
M = BuildMI(Opcode, 2).addCCReg(ccValue)
|
|
.addPCDisp(brInst->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
|
|
// false branch
|
|
mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
break;
|
|
}
|
|
|
|
case 208: // stmt: BrCond(boolconst)
|
|
{
|
|
// boolconst => boolean is a constant; use BA to first or second label
|
|
Constant* constVal =
|
|
cast<Constant>(subtreeRoot->leftChild()->getValue());
|
|
unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
|
|
|
|
M = BuildMI(V9::BA, 1).addPCDisp(
|
|
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
break;
|
|
}
|
|
|
|
case 8: // stmt: BrCond(boolreg)
|
|
{ // boolreg => boolean is stored in an existing register.
|
|
// Just use the branch-on-integer-register instruction!
|
|
//
|
|
BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
|
|
M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
|
|
.addPCDisp(BI->getSuccessor(0));
|
|
mvec.push_back(M);
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
|
|
// false branch
|
|
mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
break;
|
|
}
|
|
|
|
case 9: // stmt: Switch(reg)
|
|
assert(0 && "*** SWITCH instruction is not implemented yet.");
|
|
break;
|
|
|
|
case 10: // reg: VRegList(reg, reg)
|
|
assert(0 && "VRegList should never be the topmost non-chain rule");
|
|
break;
|
|
|
|
case 21: // bool: Not(bool,reg): Both these are implemented as:
|
|
case 421: // reg: BNot(reg,reg): reg = reg XOR-NOT 0
|
|
{ // First find the unary operand. It may be left or right, usually right.
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(subtreeRoot->getInstruction()));
|
|
unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
|
|
mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
|
|
.addRegDef(subtreeRoot->getValue()));
|
|
break;
|
|
}
|
|
|
|
case 22: // reg: ToBoolTy(reg):
|
|
{
|
|
const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral() || isa<PointerType>(opType));
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
break;
|
|
}
|
|
|
|
case 23: // reg: ToUByteTy(reg)
|
|
case 24: // reg: ToSByteTy(reg)
|
|
case 25: // reg: ToUShortTy(reg)
|
|
case 26: // reg: ToShortTy(reg)
|
|
case 27: // reg: ToUIntTy(reg)
|
|
case 28: // reg: ToIntTy(reg)
|
|
{
|
|
//======================================================================
|
|
// Rules for integer conversions:
|
|
//
|
|
//--------
|
|
// From ISO 1998 C++ Standard, Sec. 4.7:
|
|
//
|
|
// 2. If the destination type is unsigned, the resulting value is
|
|
// the least unsigned integer congruent to the source integer
|
|
// (modulo 2n where n is the number of bits used to represent the
|
|
// unsigned type). [Note: In a two s complement representation,
|
|
// this conversion is conceptual and there is no change in the
|
|
// bit pattern (if there is no truncation). ]
|
|
//
|
|
// 3. If the destination type is signed, the value is unchanged if
|
|
// it can be represented in the destination type (and bitfield width);
|
|
// otherwise, the value is implementation-defined.
|
|
//--------
|
|
//
|
|
// Since we assume 2s complement representations, this implies:
|
|
//
|
|
// -- if operand is smaller than destination, zero-extend or sign-extend
|
|
// according to the signedness of the *operand*: source decides.
|
|
// ==> we have to do nothing here!
|
|
//
|
|
// -- if operand is same size as or larger than destination, and the
|
|
// destination is *unsigned*, zero-extend the operand: dest. decides
|
|
//
|
|
// -- if operand is same size as or larger than destination, and the
|
|
// destination is *signed*, the choice is implementation defined:
|
|
// we sign-extend the operand: i.e., again dest. decides.
|
|
// Note: this matches both Sun's cc and gcc3.2.
|
|
//======================================================================
|
|
|
|
Instruction* destI = subtreeRoot->getInstruction();
|
|
Value* opVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = opVal->getType();
|
|
if (opType->isIntegral() || isa<PointerType>(opType))
|
|
{
|
|
unsigned opSize = target.getTargetData().getTypeSize(opType);
|
|
unsigned destSize = target.getTargetData().getTypeSize(destI->getType());
|
|
if (opSize >= destSize)
|
|
{ // Operand is same size as or larger than dest:
|
|
// zero- or sign-extend, according to the signeddness of
|
|
// the destination (see above).
|
|
if (destI->getType()->isSigned())
|
|
target.getInstrInfo().CreateSignExtensionInstructions(target,
|
|
destI->getParent()->getParent(), opVal, destI, 8*destSize,
|
|
mvec, MachineCodeForInstruction::get(destI));
|
|
else
|
|
target.getInstrInfo().CreateZeroExtensionInstructions(target,
|
|
destI->getParent()->getParent(), opVal, destI, 8*destSize,
|
|
mvec, MachineCodeForInstruction::get(destI));
|
|
}
|
|
else
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
}
|
|
else if (opType->isFloatingPoint())
|
|
{
|
|
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
|
|
MachineCodeForInstruction::get(destI));
|
|
if (destI->getType()->isUnsigned())
|
|
maskUnsignedResult = true; // not handled by fp->int code
|
|
}
|
|
else
|
|
assert(0 && "Unrecognized operand type for convert-to-unsigned");
|
|
|
|
break;
|
|
}
|
|
|
|
case 29: // reg: ToULongTy(reg)
|
|
case 30: // reg: ToLongTy(reg)
|
|
{
|
|
Value* opVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = opVal->getType();
|
|
if (opType->isIntegral() || isa<PointerType>(opType))
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
else if (opType->isFloatingPoint())
|
|
{
|
|
Instruction* destI = subtreeRoot->getInstruction();
|
|
CreateCodeToConvertFloatToInt(target, opVal, destI, mvec,
|
|
MachineCodeForInstruction::get(destI));
|
|
}
|
|
else
|
|
assert(0 && "Unrecognized operand type for convert-to-signed");
|
|
break;
|
|
}
|
|
|
|
case 31: // reg: ToFloatTy(reg):
|
|
case 32: // reg: ToDoubleTy(reg):
|
|
case 232: // reg: ToDoubleTy(Constant):
|
|
|
|
// If this instruction has a parent (a user) in the tree
|
|
// and the user is translated as an FsMULd instruction,
|
|
// then the cast is unnecessary. So check that first.
|
|
// In the future, we'll want to do the same for the FdMULq instruction,
|
|
// so do the check here instead of only for ToFloatTy(reg).
|
|
//
|
|
if (subtreeRoot->parent() != NULL)
|
|
{
|
|
const MachineCodeForInstruction& mcfi =
|
|
MachineCodeForInstruction::get(
|
|
cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
|
|
if (mcfi.size() == 0 || mcfi.front()->getOpCode() == V9::FSMULD)
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
}
|
|
|
|
if (forwardOperandNum != 0) // we do need the cast
|
|
{
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = leftVal->getType();
|
|
MachineOpCode opCode=ChooseConvertToFloatInstr(
|
|
subtreeRoot->getOpLabel(), opType);
|
|
if (opCode == V9::INVALID_OPCODE) // no conversion needed
|
|
{
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
}
|
|
else
|
|
{
|
|
// If the source operand is a non-FP type it must be
|
|
// first copied from int to float register via memory!
|
|
Instruction *dest = subtreeRoot->getInstruction();
|
|
Value* srcForCast;
|
|
int n = 0;
|
|
if (! opType->isFloatingPoint())
|
|
{
|
|
// Create a temporary to represent the FP register
|
|
// into which the integer will be copied via memory.
|
|
// The type of this temporary will determine the FP
|
|
// register used: single-prec for a 32-bit int or smaller,
|
|
// double-prec for a 64-bit int.
|
|
//
|
|
uint64_t srcSize =
|
|
target.getTargetData().getTypeSize(leftVal->getType());
|
|
Type* tmpTypeToUse =
|
|
(srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
|
|
srcForCast = new TmpInstruction(tmpTypeToUse, dest);
|
|
MachineCodeForInstruction &destMCFI =
|
|
MachineCodeForInstruction::get(dest);
|
|
destMCFI.addTemp(srcForCast);
|
|
|
|
target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
|
|
dest->getParent()->getParent(),
|
|
leftVal, cast<Instruction>(srcForCast),
|
|
mvec, destMCFI);
|
|
}
|
|
else
|
|
srcForCast = leftVal;
|
|
|
|
M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
|
|
mvec.push_back(M);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 19: // reg: ToArrayTy(reg):
|
|
case 20: // reg: ToPointerTy(reg):
|
|
forwardOperandNum = 0; // forward first operand to user
|
|
break;
|
|
|
|
case 233: // reg: Add(reg, Constant)
|
|
maskUnsignedResult = true;
|
|
M = CreateAddConstInstruction(subtreeRoot);
|
|
if (M != NULL)
|
|
{
|
|
mvec.push_back(M);
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
|
|
case 33: // reg: Add(reg, reg)
|
|
maskUnsignedResult = true;
|
|
Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
|
|
break;
|
|
|
|
case 234: // reg: Sub(reg, Constant)
|
|
maskUnsignedResult = true;
|
|
M = CreateSubConstInstruction(subtreeRoot);
|
|
if (M != NULL)
|
|
{
|
|
mvec.push_back(M);
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
|
|
case 34: // reg: Sub(reg, reg)
|
|
maskUnsignedResult = true;
|
|
Add3OperandInstr(ChooseSubInstructionByType(
|
|
subtreeRoot->getInstruction()->getType()),
|
|
subtreeRoot, mvec);
|
|
break;
|
|
|
|
case 135: // reg: Mul(todouble, todouble)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 35: // reg: Mul(reg, reg)
|
|
{
|
|
maskUnsignedResult = true;
|
|
MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
|
|
? V9::FSMULD
|
|
: INVALID_MACHINE_OPCODE);
|
|
Instruction* mulInstr = subtreeRoot->getInstruction();
|
|
CreateMulInstruction(target, mulInstr->getParent()->getParent(),
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue(),
|
|
mulInstr, mvec,
|
|
MachineCodeForInstruction::get(mulInstr),forceOp);
|
|
break;
|
|
}
|
|
case 335: // reg: Mul(todouble, todoubleConst)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 235: // reg: Mul(reg, Constant)
|
|
{
|
|
maskUnsignedResult = true;
|
|
MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
|
|
? V9::FSMULD
|
|
: INVALID_MACHINE_OPCODE);
|
|
Instruction* mulInstr = subtreeRoot->getInstruction();
|
|
CreateMulInstruction(target, mulInstr->getParent()->getParent(),
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue(),
|
|
mulInstr, mvec,
|
|
MachineCodeForInstruction::get(mulInstr),
|
|
forceOp);
|
|
break;
|
|
}
|
|
case 236: // reg: Div(reg, Constant)
|
|
maskUnsignedResult = true;
|
|
L = mvec.size();
|
|
CreateDivConstInstruction(target, subtreeRoot, mvec);
|
|
if (mvec.size() > L)
|
|
break;
|
|
// ELSE FALL THROUGH
|
|
|
|
case 36: // reg: Div(reg, reg)
|
|
maskUnsignedResult = true;
|
|
Add3OperandInstr(ChooseDivInstruction(target, subtreeRoot),
|
|
subtreeRoot, mvec);
|
|
break;
|
|
|
|
case 37: // reg: Rem(reg, reg)
|
|
case 237: // reg: Rem(reg, Constant)
|
|
{
|
|
maskUnsignedResult = true;
|
|
Instruction* remInstr = subtreeRoot->getInstruction();
|
|
|
|
TmpInstruction* quot = new TmpInstruction(
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue());
|
|
TmpInstruction* prod = new TmpInstruction(
|
|
quot,
|
|
subtreeRoot->rightChild()->getValue());
|
|
MachineCodeForInstruction::get(remInstr).addTemp(quot).addTemp(prod);
|
|
|
|
M = BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
|
|
.addReg(subtreeRoot->leftChild()->getValue())
|
|
.addReg(subtreeRoot->rightChild()->getValue())
|
|
.addRegDef(quot);
|
|
mvec.push_back(M);
|
|
|
|
unsigned MulOpcode =
|
|
ChooseMulInstructionByType(subtreeRoot->getInstruction()->getType());
|
|
Value *MulRHS = subtreeRoot->rightChild()->getValue();
|
|
M = BuildMI(MulOpcode, 3).addReg(quot).addReg(MulRHS).addReg(prod,
|
|
MOTy::Def);
|
|
mvec.push_back(M);
|
|
|
|
unsigned Opcode = ChooseSubInstructionByType(
|
|
subtreeRoot->getInstruction()->getType());
|
|
M = BuildMI(Opcode, 3).addReg(subtreeRoot->leftChild()->getValue())
|
|
.addReg(prod).addRegDef(subtreeRoot->getValue());
|
|
mvec.push_back(M);
|
|
break;
|
|
}
|
|
|
|
case 38: // bool: And(bool, bool)
|
|
case 238: // bool: And(bool, boolconst)
|
|
case 338: // reg : BAnd(reg, reg)
|
|
case 538: // reg : BAnd(reg, Constant)
|
|
Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
|
|
break;
|
|
|
|
case 138: // bool: And(bool, not)
|
|
case 438: // bool: BAnd(bool, bnot)
|
|
{ // Use the argument of NOT as the second argument!
|
|
// Mark the NOT node so that no code is generated for it.
|
|
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(notNode->getInstruction()));
|
|
notNode->markFoldedIntoParent();
|
|
Value *LHS = subtreeRoot->leftChild()->getValue();
|
|
Value *Dest = subtreeRoot->getValue();
|
|
mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(LHS).addReg(notArg)
|
|
.addReg(Dest, MOTy::Def));
|
|
break;
|
|
}
|
|
|
|
case 39: // bool: Or(bool, bool)
|
|
case 239: // bool: Or(bool, boolconst)
|
|
case 339: // reg : BOr(reg, reg)
|
|
case 539: // reg : BOr(reg, Constant)
|
|
Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
|
|
break;
|
|
|
|
case 139: // bool: Or(bool, not)
|
|
case 439: // bool: BOr(bool, bnot)
|
|
{ // Use the argument of NOT as the second argument!
|
|
// Mark the NOT node so that no code is generated for it.
|
|
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(notNode->getInstruction()));
|
|
notNode->markFoldedIntoParent();
|
|
Value *LHS = subtreeRoot->leftChild()->getValue();
|
|
Value *Dest = subtreeRoot->getValue();
|
|
mvec.push_back(BuildMI(V9::ORNr, 3).addReg(LHS).addReg(notArg)
|
|
.addReg(Dest, MOTy::Def));
|
|
break;
|
|
}
|
|
|
|
case 40: // bool: Xor(bool, bool)
|
|
case 240: // bool: Xor(bool, boolconst)
|
|
case 340: // reg : BXor(reg, reg)
|
|
case 540: // reg : BXor(reg, Constant)
|
|
Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
|
|
break;
|
|
|
|
case 140: // bool: Xor(bool, not)
|
|
case 440: // bool: BXor(bool, bnot)
|
|
{ // Use the argument of NOT as the second argument!
|
|
// Mark the NOT node so that no code is generated for it.
|
|
InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
|
|
Value* notArg = BinaryOperator::getNotArgument(
|
|
cast<BinaryOperator>(notNode->getInstruction()));
|
|
notNode->markFoldedIntoParent();
|
|
Value *LHS = subtreeRoot->leftChild()->getValue();
|
|
Value *Dest = subtreeRoot->getValue();
|
|
mvec.push_back(BuildMI(V9::XNORr, 3).addReg(LHS).addReg(notArg)
|
|
.addReg(Dest, MOTy::Def));
|
|
break;
|
|
}
|
|
|
|
case 41: // boolconst: SetCC(reg, Constant)
|
|
//
|
|
// If the SetCC was folded into the user (parent), it will be
|
|
// caught above. All other cases are the same as case 42,
|
|
// so just fall through.
|
|
//
|
|
case 42: // bool: SetCC(reg, reg):
|
|
{
|
|
// This generates a SUBCC instruction, putting the difference in
|
|
// a result register, and setting a condition code.
|
|
//
|
|
// If the boolean result of the SetCC is used by anything other
|
|
// than a branch instruction, or if it is used outside the current
|
|
// basic block, the boolean must be
|
|
// computed and stored in the result register. Otherwise, discard
|
|
// the difference (by using %g0) and keep only the condition code.
|
|
//
|
|
// To compute the boolean result in a register we use a conditional
|
|
// move, unless the result of the SUBCC instruction can be used as
|
|
// the bool! This assumes that zero is FALSE and any non-zero
|
|
// integer is TRUE.
|
|
//
|
|
InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
|
|
Instruction* setCCInstr = subtreeRoot->getInstruction();
|
|
|
|
bool keepBoolVal = parentNode == NULL ||
|
|
! AllUsesAreBranches(setCCInstr);
|
|
bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE;
|
|
bool keepSubVal = keepBoolVal && subValIsBoolVal;
|
|
bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
|
|
|
|
bool mustClearReg;
|
|
int valueToMove;
|
|
MachineOpCode movOpCode = 0;
|
|
|
|
// Mark the 4th operand as being a CC register, and as a def
|
|
// A TmpInstruction is created to represent the CC "result".
|
|
// Unlike other instances of TmpInstruction, this one is used
|
|
// by machine code of multiple LLVM instructions, viz.,
|
|
// the SetCC and the branch. Make sure to get the same one!
|
|
// Note that we do this even for FP CC registers even though they
|
|
// are explicit operands, because the type of the operand
|
|
// needs to be a floating point condition code, not an integer
|
|
// condition code. Think of this as casting the bool result to
|
|
// a FP condition code register.
|
|
//
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
bool isFPCompare = leftVal->getType()->isFloatingPoint();
|
|
|
|
TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
|
|
setCCInstr->getParent()->getParent(),
|
|
isFPCompare ? Type::FloatTy : Type::IntTy);
|
|
MachineCodeForInstruction::get(setCCInstr).addTemp(tmpForCC);
|
|
|
|
if (! isFPCompare)
|
|
{
|
|
// Integer condition: dest. should be %g0 or an integer register.
|
|
// If result must be saved but condition is not SetEQ then we need
|
|
// a separate instruction to compute the bool result, so discard
|
|
// result of SUBcc instruction anyway.
|
|
//
|
|
if (keepSubVal) {
|
|
M = BuildMI(V9::SUBccr, 4)
|
|
.addReg(subtreeRoot->leftChild()->getValue())
|
|
.addReg(subtreeRoot->rightChild()->getValue())
|
|
.addRegDef(subtreeRoot->getValue())
|
|
.addCCReg(tmpForCC, MOTy::Def);
|
|
} else {
|
|
M = BuildMI(V9::SUBccr, 4)
|
|
.addReg(subtreeRoot->leftChild()->getValue())
|
|
.addReg(subtreeRoot->rightChild()->getValue())
|
|
.addMReg(target.getRegInfo().getZeroRegNum(), MOTy::Def)
|
|
.addCCReg(tmpForCC, MOTy::Def);
|
|
}
|
|
mvec.push_back(M);
|
|
|
|
if (computeBoolVal)
|
|
{ // recompute bool using the integer condition codes
|
|
movOpCode =
|
|
ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// FP condition: dest of FCMP should be some FCCn register
|
|
M = BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
|
|
.addCCReg(tmpForCC, MOTy::Def)
|
|
.addReg(subtreeRoot->leftChild()->getValue())
|
|
.addRegDef(subtreeRoot->rightChild()->getValue());
|
|
mvec.push_back(M);
|
|
|
|
if (computeBoolVal)
|
|
{// recompute bool using the FP condition codes
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
movOpCode = ChooseMovFpccInstruction(subtreeRoot);
|
|
}
|
|
}
|
|
|
|
if (computeBoolVal)
|
|
{
|
|
if (mustClearReg)
|
|
{// Unconditionally set register to 0
|
|
M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
|
|
mvec.push_back(M);
|
|
}
|
|
|
|
// Now conditionally move `valueToMove' (0 or 1) into the register
|
|
// Mark the register as a use (as well as a def) because the old
|
|
// value should be retained if the condition is false.
|
|
M = BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(valueToMove)
|
|
.addReg(setCCInstr, MOTy::UseAndDef);
|
|
mvec.push_back(M);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 51: // reg: Load(reg)
|
|
case 52: // reg: Load(ptrreg)
|
|
SetOperandsForMemInstr(ChooseLoadInstruction(
|
|
subtreeRoot->getValue()->getType()),
|
|
mvec, subtreeRoot, target);
|
|
break;
|
|
|
|
case 55: // reg: GetElemPtr(reg)
|
|
case 56: // reg: GetElemPtrIdx(reg,reg)
|
|
// If the GetElemPtr was folded into the user (parent), it will be
|
|
// caught above. For other cases, we have to compute the address.
|
|
SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
|
|
break;
|
|
|
|
case 57: // reg: Alloca: Implement as 1 instruction:
|
|
{ // add %fp, offsetFromFP -> result
|
|
AllocationInst* instr =
|
|
cast<AllocationInst>(subtreeRoot->getInstruction());
|
|
unsigned tsize =
|
|
target.getTargetData().getTypeSize(instr->getAllocatedType());
|
|
assert(tsize != 0);
|
|
CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
|
|
break;
|
|
}
|
|
|
|
case 58: // reg: Alloca(reg): Implement as 3 instructions:
|
|
// mul num, typeSz -> tmp
|
|
// sub %sp, tmp -> %sp
|
|
{ // add %sp, frameSizeBelowDynamicArea -> result
|
|
AllocationInst* instr =
|
|
cast<AllocationInst>(subtreeRoot->getInstruction());
|
|
const Type* eltType = instr->getAllocatedType();
|
|
|
|
// If #elements is constant, use simpler code for fixed-size allocas
|
|
int tsize = (int) target.getTargetData().getTypeSize(eltType);
|
|
Value* numElementsVal = NULL;
|
|
bool isArray = instr->isArrayAllocation();
|
|
|
|
if (!isArray ||
|
|
isa<Constant>(numElementsVal = instr->getArraySize()))
|
|
{ // total size is constant: generate code for fixed-size alloca
|
|
unsigned numElements = isArray?
|
|
cast<ConstantUInt>(numElementsVal)->getValue() : 1;
|
|
CreateCodeForFixedSizeAlloca(target, instr, tsize,
|
|
numElements, mvec);
|
|
}
|
|
else // total size is not constant.
|
|
CreateCodeForVariableSizeAlloca(target, instr, tsize,
|
|
numElementsVal, mvec);
|
|
break;
|
|
}
|
|
|
|
case 61: // reg: Call
|
|
{ // Generate a direct (CALL) or indirect (JMPL) call.
|
|
// Mark the return-address register, the indirection
|
|
// register (for indirect calls), the operands of the Call,
|
|
// and the return value (if any) as implicit operands
|
|
// of the machine instruction.
|
|
//
|
|
// If this is a varargs function, floating point arguments
|
|
// have to passed in integer registers so insert
|
|
// copy-float-to-int instructions for each float operand.
|
|
//
|
|
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
|
|
Value *callee = callInstr->getCalledValue();
|
|
Function* calledFunc = dyn_cast<Function>(callee);
|
|
|
|
// Check if this is an intrinsic function that needs a special code
|
|
// sequence (e.g., va_start). Indirect calls cannot be special.
|
|
//
|
|
bool specialIntrinsic = false;
|
|
LLVMIntrinsic::ID iid;
|
|
if (calledFunc && (iid=(LLVMIntrinsic::ID)calledFunc->getIntrinsicID()))
|
|
specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);
|
|
|
|
// If not, generate the normal call sequence for the function.
|
|
// This can also handle any intrinsics that are just function calls.
|
|
//
|
|
if (! specialIntrinsic)
|
|
{
|
|
// Create hidden virtual register for return address with type void*
|
|
TmpInstruction* retAddrReg =
|
|
new TmpInstruction(PointerType::get(Type::VoidTy), callInstr);
|
|
MachineCodeForInstruction::get(callInstr).addTemp(retAddrReg);
|
|
|
|
// Generate the machine instruction and its operands.
|
|
// Use CALL for direct function calls; this optimistically assumes
|
|
// the PC-relative address fits in the CALL address field (22 bits).
|
|
// Use JMPL for indirect calls.
|
|
//
|
|
if (calledFunc) // direct function call
|
|
M = BuildMI(V9::CALL, 1).addPCDisp(callee);
|
|
else // indirect function call
|
|
M = BuildMI(V9::JMPLCALLi, 3).addReg(callee).addSImm((int64_t)0)
|
|
.addRegDef(retAddrReg);
|
|
mvec.push_back(M);
|
|
|
|
const FunctionType* funcType =
|
|
cast<FunctionType>(cast<PointerType>(callee->getType())
|
|
->getElementType());
|
|
bool isVarArgs = funcType->isVarArg();
|
|
bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
|
|
|
|
// Use a descriptor to pass information about call arguments
|
|
// to the register allocator. This descriptor will be "owned"
|
|
// and freed automatically when the MachineCodeForInstruction
|
|
// object for the callInstr goes away.
|
|
CallArgsDescriptor* argDesc = new CallArgsDescriptor(callInstr,
|
|
retAddrReg, isVarArgs,noPrototype);
|
|
|
|
assert(callInstr->getOperand(0) == callee
|
|
&& "This is assumed in the loop below!");
|
|
|
|
for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i)
|
|
{
|
|
Value* argVal = callInstr->getOperand(i);
|
|
Instruction* intArgReg = NULL;
|
|
|
|
// Check for FP arguments to varargs functions.
|
|
// Any such argument in the first $K$ args must be passed in an
|
|
// integer register, where K = #integer argument registers.
|
|
if (isVarArgs && argVal->getType()->isFloatingPoint())
|
|
{
|
|
// If it is a function with no prototype, pass value
|
|
// as an FP value as well as a varargs value
|
|
if (noPrototype)
|
|
argDesc->getArgInfo(i-1).setUseFPArgReg();
|
|
|
|
// If this arg. is in the first $K$ regs, add a copy
|
|
// float-to-int instruction to pass the value as an integer.
|
|
if (i <= target.getRegInfo().getNumOfIntArgRegs())
|
|
{
|
|
MachineCodeForInstruction &destMCFI =
|
|
MachineCodeForInstruction::get(callInstr);
|
|
intArgReg = new TmpInstruction(Type::IntTy, argVal);
|
|
destMCFI.addTemp(intArgReg);
|
|
|
|
std::vector<MachineInstr*> copyMvec;
|
|
target.getInstrInfo().CreateCodeToCopyFloatToInt(target,
|
|
callInstr->getParent()->getParent(),
|
|
argVal, (TmpInstruction*) intArgReg,
|
|
copyMvec, destMCFI);
|
|
mvec.insert(mvec.begin(),copyMvec.begin(),copyMvec.end());
|
|
|
|
argDesc->getArgInfo(i-1).setUseIntArgReg();
|
|
argDesc->getArgInfo(i-1).setArgCopy(intArgReg);
|
|
}
|
|
else
|
|
// Cannot fit in first $K$ regs so pass arg on stack
|
|
argDesc->getArgInfo(i-1).setUseStackSlot();
|
|
}
|
|
|
|
if (intArgReg)
|
|
mvec.back()->addImplicitRef(intArgReg);
|
|
|
|
mvec.back()->addImplicitRef(argVal);
|
|
}
|
|
|
|
// Add the return value as an implicit ref. The call operands
|
|
// were added above.
|
|
if (callInstr->getType() != Type::VoidTy)
|
|
mvec.back()->addImplicitRef(callInstr, /*isDef*/ true);
|
|
|
|
// For the CALL instruction, the ret. addr. reg. is also implicit
|
|
if (isa<Function>(callee))
|
|
mvec.back()->addImplicitRef(retAddrReg, /*isDef*/ true);
|
|
|
|
// delay slot
|
|
mvec.push_back(BuildMI(V9::NOP, 0));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case 62: // reg: Shl(reg, reg)
|
|
{
|
|
Value* argVal1 = subtreeRoot->leftChild()->getValue();
|
|
Value* argVal2 = subtreeRoot->rightChild()->getValue();
|
|
Instruction* shlInstr = subtreeRoot->getInstruction();
|
|
|
|
const Type* opType = argVal1->getType();
|
|
assert((opType->isInteger() || isa<PointerType>(opType)) &&
|
|
"Shl unsupported for other types");
|
|
|
|
CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
|
|
(opType == Type::LongTy)? V9::SLLXr6:V9::SLLr6,
|
|
argVal1, argVal2, 0, shlInstr, mvec,
|
|
MachineCodeForInstruction::get(shlInstr));
|
|
break;
|
|
}
|
|
|
|
case 63: // reg: Shr(reg, reg)
|
|
{ const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert((opType->isInteger() || isa<PointerType>(opType)) &&
|
|
"Shr unsupported for other types");
|
|
Add3OperandInstr(opType->isSigned()
|
|
? (opType == Type::LongTy ? V9::SRAXr6 : V9::SRAr6)
|
|
: (opType == Type::LongTy ? V9::SRLXr6 : V9::SRLr6),
|
|
subtreeRoot, mvec);
|
|
break;
|
|
}
|
|
|
|
case 64: // reg: Phi(reg,reg)
|
|
break; // don't forward the value
|
|
|
|
case 65: // reg: VaArg(reg)
|
|
{
|
|
// Use value initialized by va_start as pointer to args on the stack.
|
|
// Load argument via current pointer value, then increment pointer.
|
|
int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
|
|
Instruction* vaArgI = subtreeRoot->getInstruction();
|
|
mvec.push_back(BuildMI(V9::LDXi, 3).addReg(vaArgI->getOperand(0)).
|
|
addSImm(0).addRegDef(vaArgI));
|
|
mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaArgI->getOperand(0)).
|
|
addSImm(argSize).addRegDef(vaArgI->getOperand(0)));
|
|
break;
|
|
}
|
|
|
|
case 71: // reg: VReg
|
|
case 72: // reg: Constant
|
|
break; // don't forward the value
|
|
|
|
default:
|
|
assert(0 && "Unrecognized BURG rule");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (forwardOperandNum >= 0)
|
|
{ // We did not generate a machine instruction but need to use operand.
|
|
// If user is in the same tree, replace Value in its machine operand.
|
|
// If not, insert a copy instruction which should get coalesced away
|
|
// by register allocation.
|
|
if (subtreeRoot->parent() != NULL)
|
|
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
|
|
else
|
|
{
|
|
std::vector<MachineInstr*> minstrVec;
|
|
Instruction* instr = subtreeRoot->getInstruction();
|
|
target.getInstrInfo().
|
|
CreateCopyInstructionsByType(target,
|
|
instr->getParent()->getParent(),
|
|
instr->getOperand(forwardOperandNum),
|
|
instr, minstrVec,
|
|
MachineCodeForInstruction::get(instr));
|
|
assert(minstrVec.size() > 0);
|
|
mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
|
|
}
|
|
}
|
|
|
|
if (maskUnsignedResult)
|
|
{ // If result is unsigned and smaller than int reg size,
|
|
// we need to clear high bits of result value.
|
|
assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
|
|
Instruction* dest = subtreeRoot->getInstruction();
|
|
if (dest->getType()->isUnsigned())
|
|
{
|
|
unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
|
|
if (destSize <= 4)
|
|
{ // Mask high bits. Use a TmpInstruction to represent the
|
|
// intermediate result before masking. Since those instructions
|
|
// have already been generated, go back and substitute tmpI
|
|
// for dest in the result position of each one of them.
|
|
TmpInstruction *tmpI = new TmpInstruction(dest->getType(), dest,
|
|
NULL, "maskHi");
|
|
MachineCodeForInstruction::get(dest).addTemp(tmpI);
|
|
|
|
for (unsigned i=0, N=mvec.size(); i < N; ++i)
|
|
mvec[i]->substituteValue(dest, tmpI);
|
|
|
|
M = BuildMI(V9::SRLi6, 3).addReg(tmpI).addZImm(8*(4-destSize))
|
|
.addReg(dest, MOTy::Def);
|
|
mvec.push_back(M);
|
|
}
|
|
else if (destSize < 8)
|
|
assert(0 && "Unsupported type size: 32 < size < 64 bits");
|
|
}
|
|
}
|
|
}
|