llvm-6502/lib/Transforms/Utils/BreakCriticalEdges.cpp
2007-04-07 05:57:09 +00:00

310 lines
12 KiB
C++

//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, the structure type is
// forward declared. This pass obviously invalidates the CFG, but can update
// forward dominator (set, immediate dominators, tree, and frontier)
// information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "break-crit-edges"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumBroken, "Number of blocks inserted");
namespace {
struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass {
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<ETForest>();
AU.addPreserved<ImmediateDominators>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addPreserved<LoopInfo>();
// No loop canonicalization guarantees are broken by this pass.
AU.addPreservedID(LoopSimplifyID);
}
};
RegisterPass<BreakCriticalEdges> X("break-crit-edges",
"Break critical edges in CFG");
}
// Publically exposed interface to pass...
const PassInfo *llvm::BreakCriticalEdgesID = X.getPassInfo();
FunctionPass *llvm::createBreakCriticalEdgesPass() {
return new BreakCriticalEdges();
}
// runOnFunction - Loop over all of the edges in the CFG, breaking critical
// edges as they are found.
//
bool BreakCriticalEdges::runOnFunction(Function &F) {
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
if (TI->getNumSuccessors() > 1)
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (SplitCriticalEdge(TI, i, this)) {
++NumBroken;
Changed = true;
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//
// isCriticalEdge - Return true if the specified edge is a critical edge.
// Critical edges are edges from a block with multiple successors to a block
// with multiple predecessors.
//
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
bool AllowIdenticalEdges) {
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
if (TI->getNumSuccessors() == 1) return false;
const BasicBlock *Dest = TI->getSuccessor(SuccNum);
pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);
// If there is more than one predecessor, this is a critical edge...
assert(I != E && "No preds, but we have an edge to the block?");
const BasicBlock *FirstPred = *I;
++I; // Skip one edge due to the incoming arc from TI.
if (!AllowIdenticalEdges)
return I != E;
// If AllowIdenticalEdges is true, then we allow this edge to be considered
// non-critical iff all preds come from TI's block.
for (; I != E; ++I)
if (*I != FirstPred) return true;
return false;
}
// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
// split the critical edge. This will update ETForest, ImmediateDominator,
// DominatorTree, and DominatorFrontier information if it is available, thus
// calling this pass will not invalidate any of them. This returns true if
// the edge was split, false otherwise. This ensures that all edges to that
// dest go to one block instead of each going to a different block.
//
bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
bool MergeIdenticalEdges) {
if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false;
BasicBlock *TIBB = TI->getParent();
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
// Create a new basic block, linking it into the CFG.
BasicBlock *NewBB = new BasicBlock(TIBB->getName() + "." +
DestBB->getName() + "_crit_edge");
// Create our unconditional branch...
new BranchInst(DestBB, NewBB);
// Branch to the new block, breaking the edge.
TI->setSuccessor(SuccNum, NewBB);
// Insert the block into the function... right after the block TI lives in.
Function &F = *TIBB->getParent();
F.getBasicBlockList().insert(TIBB->getNext(), NewBB);
// If there are any PHI nodes in DestBB, we need to update them so that they
// merge incoming values from NewBB instead of from TIBB.
//
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// We no longer enter through TIBB, now we come in through NewBB. Revector
// exactly one entry in the PHI node that used to come from TIBB to come
// from NewBB.
int BBIdx = PN->getBasicBlockIndex(TIBB);
PN->setIncomingBlock(BBIdx, NewBB);
}
// If there are any other edges from TIBB to DestBB, update those to go
// through the split block, making those edges non-critical as well (and
// reducing the number of phi entries in the DestBB if relevant).
if (MergeIdenticalEdges) {
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
if (TI->getSuccessor(i) != DestBB) continue;
// Remove an entry for TIBB from DestBB phi nodes.
DestBB->removePredecessor(TIBB);
// We found another edge to DestBB, go to NewBB instead.
TI->setSuccessor(i, NewBB);
}
}
// If we don't have a pass object, we can't update anything...
if (P == 0) return true;
// Now update analysis information. Since the only predecessor of NewBB is
// the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
// anything, as there are other successors of DestBB. However, if all other
// predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
// loop header) then NewBB dominates DestBB.
SmallVector<BasicBlock*, 8> OtherPreds;
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I)
if (*I != NewBB)
OtherPreds.push_back(*I);
bool NewBBDominatesDestBB = true;
// Update the forest?
if (ETForest *EF = P->getAnalysisToUpdate<ETForest>()) {
// NewBB is dominated by TIBB.
EF->addNewBlock(NewBB, TIBB);
// If NewBBDominatesDestBB hasn't been computed yet, do so with EF.
if (!OtherPreds.empty()) {
while (!OtherPreds.empty() && NewBBDominatesDestBB) {
NewBBDominatesDestBB = EF->dominates(DestBB, OtherPreds.back());
OtherPreds.pop_back();
}
OtherPreds.clear();
}
// If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
// doesn't dominate anything.
if (NewBBDominatesDestBB)
EF->setImmediateDominator(DestBB, NewBB);
}
// Should we update ImmediateDominator information?
if (ImmediateDominators *ID = P->getAnalysisToUpdate<ImmediateDominators>()) {
// Only do this if TIBB is reachable.
if (ID->get(TIBB) || &TIBB->getParent()->getEntryBlock() == TIBB) {
// TIBB is the new immediate dominator for NewBB.
ID->addNewBlock(NewBB, TIBB);
// If NewBBDominatesDestBB hasn't been computed yet, do so with ID.
if (!OtherPreds.empty()) {
while (!OtherPreds.empty() && NewBBDominatesDestBB) {
NewBBDominatesDestBB = ID->dominates(DestBB, OtherPreds.back());
OtherPreds.pop_back();
}
OtherPreds.clear();
}
// If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
// doesn't dominate anything.
if (NewBBDominatesDestBB)
ID->setImmediateDominator(DestBB, NewBB);
}
}
// Should we update DominatorTree information?
if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>()) {
DominatorTree::Node *TINode = DT->getNode(TIBB);
// The new block is not the immediate dominator for any other nodes, but
// TINode is the immediate dominator for the new node.
//
if (TINode) { // Don't break unreachable code!
DominatorTree::Node *NewBBNode = DT->createNewNode(NewBB, TINode);
DominatorTree::Node *DestBBNode = 0;
// If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
if (!OtherPreds.empty()) {
DestBBNode = DT->getNode(DestBB);
while (!OtherPreds.empty() && NewBBDominatesDestBB) {
if (DominatorTree::Node *OPNode = DT->getNode(OtherPreds.back()))
NewBBDominatesDestBB = DestBBNode->dominates(OPNode);
OtherPreds.pop_back();
}
OtherPreds.clear();
}
// If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
// doesn't dominate anything.
if (NewBBDominatesDestBB) {
if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
DT->changeImmediateDominator(DestBBNode, NewBBNode);
}
}
}
// Should we update DominanceFrontier information?
if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>()) {
// If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
if (!OtherPreds.empty()) {
// FIXME: IMPLEMENT THIS!
assert(0 && "Requiring domfrontiers but not idom/domtree/domset."
" not implemented yet!");
}
// Since the new block is dominated by its only predecessor TIBB,
// it cannot be in any block's dominance frontier. If NewBB dominates
// DestBB, its dominance frontier is the same as DestBB's, otherwise it is
// just {DestBB}.
DominanceFrontier::DomSetType NewDFSet;
if (NewBBDominatesDestBB) {
DominanceFrontier::iterator I = DF->find(DestBB);
if (I != DF->end())
DF->addBasicBlock(NewBB, I->second);
else
DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
} else {
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(DestBB);
DF->addBasicBlock(NewBB, NewDFSet);
}
}
// Update LoopInfo if it is around.
if (LoopInfo *LI = P->getAnalysisToUpdate<LoopInfo>()) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (Loop *TIL = LI->getLoopFor(TIBB))
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
DestLoop->addBasicBlockToLoop(NewBB, *LI);
} else if (TIL->contains(DestLoop->getHeader())) {
// Edge from an outer loop to an inner loop. Add to the outer loop.
TIL->addBasicBlockToLoop(NewBB, *LI);
} else if (DestLoop->contains(TIL->getHeader())) {
// Edge from an inner loop to an outer loop. Add to the outer loop.
DestLoop->addBasicBlockToLoop(NewBB, *LI);
} else {
// Edge from two loops with no containment relation. Because these
// are natural loops, we know that the destination block must be the
// header of its loop (adding a branch into a loop elsewhere would
// create an irreducible loop).
assert(DestLoop->getHeader() == DestBB &&
"Should not create irreducible loops!");
if (Loop *P = DestLoop->getParentLoop())
P->addBasicBlockToLoop(NewBB, *LI);
}
}
}
return true;
}