mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 22:07:27 +00:00
b87f91b063
Apply twice the negative bias on transparent blocks when computing the compact regions. This excludes loop backedges from the region when only one of the loop blocks uses the register. Previously, we would include the backedge in the region if the loop preheader and the loop latch both used the register, but the loop header didn't. When both the header and latch blocks use the register, we still keep it live on the backedge. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136832 91177308-0d34-0410-b5e6-96231b3b80d8
370 lines
12 KiB
C++
370 lines
12 KiB
C++
//===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the spill code placement analysis.
|
|
//
|
|
// Each edge bundle corresponds to a node in a Hopfield network. Constraints on
|
|
// basic blocks are weighted by the block frequency and added to become the node
|
|
// bias.
|
|
//
|
|
// Transparent basic blocks have the variable live through, but don't care if it
|
|
// is spilled or in a register. These blocks become connections in the Hopfield
|
|
// network, again weighted by block frequency.
|
|
//
|
|
// The Hopfield network minimizes (possibly locally) its energy function:
|
|
//
|
|
// E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
|
|
//
|
|
// The energy function represents the expected spill code execution frequency,
|
|
// or the cost of spilling. This is a Lyapunov function which never increases
|
|
// when a node is updated. It is guaranteed to converge to a local minimum.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "spillplacement"
|
|
#include "SpillPlacement.h"
|
|
#include "llvm/CodeGen/EdgeBundles.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
|
|
using namespace llvm;
|
|
|
|
char SpillPlacement::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
|
|
"Spill Code Placement Analysis", true, true)
|
|
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
|
|
"Spill Code Placement Analysis", true, true)
|
|
|
|
char &llvm::SpillPlacementID = SpillPlacement::ID;
|
|
|
|
void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredTransitive<EdgeBundles>();
|
|
AU.addRequiredTransitive<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Node - Each edge bundle corresponds to a Hopfield node.
|
|
///
|
|
/// The node contains precomputed frequency data that only depends on the CFG,
|
|
/// but Bias and Links are computed each time placeSpills is called.
|
|
///
|
|
/// The node Value is positive when the variable should be in a register. The
|
|
/// value can change when linked nodes change, but convergence is very fast
|
|
/// because all weights are positive.
|
|
///
|
|
struct SpillPlacement::Node {
|
|
/// Scale - Inverse block frequency feeding into[0] or out of[1] the bundle.
|
|
/// Ideally, these two numbers should be identical, but inaccuracies in the
|
|
/// block frequency estimates means that we need to normalize ingoing and
|
|
/// outgoing frequencies separately so they are commensurate.
|
|
float Scale[2];
|
|
|
|
/// Bias - Normalized contributions from non-transparent blocks.
|
|
/// A bundle connected to a MustSpill block has a huge negative bias,
|
|
/// otherwise it is a number in the range [-2;2].
|
|
float Bias;
|
|
|
|
/// Value - Output value of this node computed from the Bias and links.
|
|
/// This is always in the range [-1;1]. A positive number means the variable
|
|
/// should go in a register through this bundle.
|
|
float Value;
|
|
|
|
typedef SmallVector<std::pair<float, unsigned>, 4> LinkVector;
|
|
|
|
/// Links - (Weight, BundleNo) for all transparent blocks connecting to other
|
|
/// bundles. The weights are all positive and add up to at most 2, weights
|
|
/// from ingoing and outgoing nodes separately add up to a most 1. The weight
|
|
/// sum can be less than 2 when the variable is not live into / out of some
|
|
/// connected basic blocks.
|
|
LinkVector Links;
|
|
|
|
/// preferReg - Return true when this node prefers to be in a register.
|
|
bool preferReg() const {
|
|
// Undecided nodes (Value==0) go on the stack.
|
|
return Value > 0;
|
|
}
|
|
|
|
/// mustSpill - Return True if this node is so biased that it must spill.
|
|
bool mustSpill() const {
|
|
// Actually, we must spill if Bias < sum(weights).
|
|
// It may be worth it to compute the weight sum here?
|
|
return Bias < -2.0f;
|
|
}
|
|
|
|
/// Node - Create a blank Node.
|
|
Node() {
|
|
Scale[0] = Scale[1] = 0;
|
|
}
|
|
|
|
/// clear - Reset per-query data, but preserve frequencies that only depend on
|
|
// the CFG.
|
|
void clear() {
|
|
Bias = Value = 0;
|
|
Links.clear();
|
|
}
|
|
|
|
/// addLink - Add a link to bundle b with weight w.
|
|
/// out=0 for an ingoing link, and 1 for an outgoing link.
|
|
void addLink(unsigned b, float w, bool out) {
|
|
// Normalize w relative to all connected blocks from that direction.
|
|
w *= Scale[out];
|
|
|
|
// There can be multiple links to the same bundle, add them up.
|
|
for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
|
|
if (I->second == b) {
|
|
I->first += w;
|
|
return;
|
|
}
|
|
// This must be the first link to b.
|
|
Links.push_back(std::make_pair(w, b));
|
|
}
|
|
|
|
/// addBias - Bias this node from an ingoing[0] or outgoing[1] link.
|
|
/// Return the change to the total number of positive biases.
|
|
void addBias(float w, bool out) {
|
|
// Normalize w relative to all connected blocks from that direction.
|
|
w *= Scale[out];
|
|
Bias += w;
|
|
}
|
|
|
|
/// update - Recompute Value from Bias and Links. Return true when node
|
|
/// preference changes.
|
|
bool update(const Node nodes[]) {
|
|
// Compute the weighted sum of inputs.
|
|
float Sum = Bias;
|
|
for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
|
|
Sum += I->first * nodes[I->second].Value;
|
|
|
|
// The weighted sum is going to be in the range [-2;2]. Ideally, we should
|
|
// simply set Value = sign(Sum), but we will add a dead zone around 0 for
|
|
// two reasons:
|
|
// 1. It avoids arbitrary bias when all links are 0 as is possible during
|
|
// initial iterations.
|
|
// 2. It helps tame rounding errors when the links nominally sum to 0.
|
|
const float Thres = 1e-4f;
|
|
bool Before = preferReg();
|
|
if (Sum < -Thres)
|
|
Value = -1;
|
|
else if (Sum > Thres)
|
|
Value = 1;
|
|
else
|
|
Value = 0;
|
|
return Before != preferReg();
|
|
}
|
|
};
|
|
|
|
bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
|
|
MF = &mf;
|
|
bundles = &getAnalysis<EdgeBundles>();
|
|
loops = &getAnalysis<MachineLoopInfo>();
|
|
|
|
assert(!nodes && "Leaking node array");
|
|
nodes = new Node[bundles->getNumBundles()];
|
|
|
|
// Compute total ingoing and outgoing block frequencies for all bundles.
|
|
BlockFrequency.resize(mf.getNumBlockIDs());
|
|
for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) {
|
|
float Freq = LiveIntervals::getSpillWeight(true, false,
|
|
loops->getLoopDepth(I));
|
|
unsigned Num = I->getNumber();
|
|
BlockFrequency[Num] = Freq;
|
|
nodes[bundles->getBundle(Num, 1)].Scale[0] += Freq;
|
|
nodes[bundles->getBundle(Num, 0)].Scale[1] += Freq;
|
|
}
|
|
|
|
// Scales are reciprocal frequencies.
|
|
for (unsigned i = 0, e = bundles->getNumBundles(); i != e; ++i)
|
|
for (unsigned d = 0; d != 2; ++d)
|
|
if (nodes[i].Scale[d] > 0)
|
|
nodes[i].Scale[d] = 1 / nodes[i].Scale[d];
|
|
|
|
// We never change the function.
|
|
return false;
|
|
}
|
|
|
|
void SpillPlacement::releaseMemory() {
|
|
delete[] nodes;
|
|
nodes = 0;
|
|
}
|
|
|
|
/// activate - mark node n as active if it wasn't already.
|
|
void SpillPlacement::activate(unsigned n) {
|
|
if (ActiveNodes->test(n))
|
|
return;
|
|
ActiveNodes->set(n);
|
|
nodes[n].clear();
|
|
}
|
|
|
|
|
|
/// addConstraints - Compute node biases and weights from a set of constraints.
|
|
/// Set a bit in NodeMask for each active node.
|
|
void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
|
|
for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
|
|
E = LiveBlocks.end(); I != E; ++I) {
|
|
float Freq = getBlockFrequency(I->Number);
|
|
const float Bias[] = {
|
|
0, // DontCare,
|
|
1, // PrefReg,
|
|
-1, // PrefSpill
|
|
0, // PrefBoth
|
|
-HUGE_VALF // MustSpill
|
|
};
|
|
|
|
// Live-in to block?
|
|
if (I->Entry != DontCare) {
|
|
unsigned ib = bundles->getBundle(I->Number, 0);
|
|
activate(ib);
|
|
nodes[ib].addBias(Freq * Bias[I->Entry], 1);
|
|
}
|
|
|
|
// Live-out from block?
|
|
if (I->Exit != DontCare) {
|
|
unsigned ob = bundles->getBundle(I->Number, 1);
|
|
activate(ob);
|
|
nodes[ob].addBias(Freq * Bias[I->Exit], 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// addPrefSpill - Same as addConstraints(PrefSpill)
|
|
void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
|
|
for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
|
|
I != E; ++I) {
|
|
float Freq = getBlockFrequency(*I);
|
|
if (Strong)
|
|
Freq += Freq;
|
|
unsigned ib = bundles->getBundle(*I, 0);
|
|
unsigned ob = bundles->getBundle(*I, 1);
|
|
activate(ib);
|
|
activate(ob);
|
|
nodes[ib].addBias(-Freq, 1);
|
|
nodes[ob].addBias(-Freq, 0);
|
|
}
|
|
}
|
|
|
|
void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
|
|
for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
|
|
++I) {
|
|
unsigned Number = *I;
|
|
unsigned ib = bundles->getBundle(Number, 0);
|
|
unsigned ob = bundles->getBundle(Number, 1);
|
|
|
|
// Ignore self-loops.
|
|
if (ib == ob)
|
|
continue;
|
|
activate(ib);
|
|
activate(ob);
|
|
if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
|
|
Linked.push_back(ib);
|
|
if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
|
|
Linked.push_back(ob);
|
|
float Freq = getBlockFrequency(Number);
|
|
nodes[ib].addLink(ob, Freq, 1);
|
|
nodes[ob].addLink(ib, Freq, 0);
|
|
}
|
|
}
|
|
|
|
bool SpillPlacement::scanActiveBundles() {
|
|
Linked.clear();
|
|
RecentPositive.clear();
|
|
for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
|
|
nodes[n].update(nodes);
|
|
// A node that must spill, or a node without any links is not going to
|
|
// change its value ever again, so exclude it from iterations.
|
|
if (nodes[n].mustSpill())
|
|
continue;
|
|
if (!nodes[n].Links.empty())
|
|
Linked.push_back(n);
|
|
if (nodes[n].preferReg())
|
|
RecentPositive.push_back(n);
|
|
}
|
|
return !RecentPositive.empty();
|
|
}
|
|
|
|
/// iterate - Repeatedly update the Hopfield nodes until stability or the
|
|
/// maximum number of iterations is reached.
|
|
/// @param Linked - Numbers of linked nodes that need updating.
|
|
void SpillPlacement::iterate() {
|
|
// First update the recently positive nodes. They have likely received new
|
|
// negative bias that will turn them off.
|
|
while (!RecentPositive.empty())
|
|
nodes[RecentPositive.pop_back_val()].update(nodes);
|
|
|
|
if (Linked.empty())
|
|
return;
|
|
|
|
// Run up to 10 iterations. The edge bundle numbering is closely related to
|
|
// basic block numbering, so there is a strong tendency towards chains of
|
|
// linked nodes with sequential numbers. By scanning the linked nodes
|
|
// backwards and forwards, we make it very likely that a single node can
|
|
// affect the entire network in a single iteration. That means very fast
|
|
// convergence, usually in a single iteration.
|
|
for (unsigned iteration = 0; iteration != 10; ++iteration) {
|
|
// Scan backwards, skipping the last node which was just updated.
|
|
bool Changed = false;
|
|
for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
|
|
llvm::next(Linked.rbegin()), E = Linked.rend(); I != E; ++I) {
|
|
unsigned n = *I;
|
|
if (nodes[n].update(nodes)) {
|
|
Changed = true;
|
|
if (nodes[n].preferReg())
|
|
RecentPositive.push_back(n);
|
|
}
|
|
}
|
|
if (!Changed || !RecentPositive.empty())
|
|
return;
|
|
|
|
// Scan forwards, skipping the first node which was just updated.
|
|
Changed = false;
|
|
for (SmallVectorImpl<unsigned>::const_iterator I =
|
|
llvm::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
|
|
unsigned n = *I;
|
|
if (nodes[n].update(nodes)) {
|
|
Changed = true;
|
|
if (nodes[n].preferReg())
|
|
RecentPositive.push_back(n);
|
|
}
|
|
}
|
|
if (!Changed || !RecentPositive.empty())
|
|
return;
|
|
}
|
|
}
|
|
|
|
void SpillPlacement::prepare(BitVector &RegBundles) {
|
|
Linked.clear();
|
|
RecentPositive.clear();
|
|
// Reuse RegBundles as our ActiveNodes vector.
|
|
ActiveNodes = &RegBundles;
|
|
ActiveNodes->clear();
|
|
ActiveNodes->resize(bundles->getNumBundles());
|
|
}
|
|
|
|
bool
|
|
SpillPlacement::finish() {
|
|
assert(ActiveNodes && "Call prepare() first");
|
|
|
|
// Write preferences back to ActiveNodes.
|
|
bool Perfect = true;
|
|
for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
|
|
if (!nodes[n].preferReg()) {
|
|
ActiveNodes->reset(n);
|
|
Perfect = false;
|
|
}
|
|
ActiveNodes = 0;
|
|
return Perfect;
|
|
}
|