llvm-6502/lib/Target/AArch64/AArch64RegisterInfo.cpp
Eli Bendersky 700ed80d3d Move the eliminateCallFramePseudoInstr method from TargetRegisterInfo
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.

There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.

The refactoring was OK'd by Anton Korobeynikov on llvmdev.

Note: this touches the target interfaces, so out-of-tree targets may
be affected.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
2013-02-21 20:05:00 +00:00

172 lines
5.5 KiB
C++

//===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#include "AArch64RegisterInfo.h"
#include "AArch64FrameLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/ADT/BitVector.h"
#define GET_REGINFO_TARGET_DESC
#include "AArch64GenRegisterInfo.inc"
using namespace llvm;
AArch64RegisterInfo::AArch64RegisterInfo(const AArch64InstrInfo &tii,
const AArch64Subtarget &sti)
: AArch64GenRegisterInfo(AArch64::X30), TII(tii) {
}
const uint16_t *
AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
return CSR_PCS_SaveList;
}
const uint32_t*
AArch64RegisterInfo::getCallPreservedMask(CallingConv::ID) const {
return CSR_PCS_RegMask;
}
const uint32_t *AArch64RegisterInfo::getTLSDescCallPreservedMask() const {
return TLSDesc_RegMask;
}
const TargetRegisterClass *
AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
if (RC == &AArch64::FlagClassRegClass)
return &AArch64::GPR64RegClass;
return RC;
}
BitVector
AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
Reserved.set(AArch64::XSP);
Reserved.set(AArch64::WSP);
Reserved.set(AArch64::XZR);
Reserved.set(AArch64::WZR);
if (TFI->hasFP(MF)) {
Reserved.set(AArch64::X29);
Reserved.set(AArch64::W29);
}
return Reserved;
}
void
AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator MBBI,
int SPAdj,
unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Cannot deal with nonzero SPAdj yet");
MachineInstr &MI = *MBBI;
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo *MFI = MF.getFrameInfo();
const AArch64FrameLowering *TFI =
static_cast<const AArch64FrameLowering *>(MF.getTarget().getFrameLowering());
// In order to work out the base and offset for addressing, the FrameLowering
// code needs to know (sometimes) whether the instruction is storing/loading a
// callee-saved register, or whether it's a more generic
// operation. Fortunately the frame indices are used *only* for that purpose
// and are contiguous, so we can check here.
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
int MinCSFI = 0;
int MaxCSFI = -1;
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
bool IsCalleeSaveOp = FrameIndex >= MinCSFI && FrameIndex <= MaxCSFI;
unsigned FrameReg;
int64_t Offset;
Offset = TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj,
IsCalleeSaveOp);
Offset += MI.getOperand(FIOperandNum + 1).getImm();
// DBG_VALUE instructions have no real restrictions so they can be handled
// easily.
if (MI.isDebugValue()) {
MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, /*isDef=*/ false);
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
return;
}
int MinOffset, MaxOffset, OffsetScale;
if (MI.getOpcode() == AArch64::ADDxxi_lsl0_s) {
MinOffset = 0;
MaxOffset = 0xfff;
OffsetScale = 1;
} else {
// Load/store of a stack object
TII.getAddressConstraints(MI, OffsetScale, MinOffset, MaxOffset);
}
// The frame lowering has told us a base and offset it thinks we should use to
// access this variable, but it's still up to us to make sure the values are
// legal for the instruction in question.
if (Offset % OffsetScale != 0 || Offset < MinOffset || Offset > MaxOffset) {
unsigned BaseReg =
MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
emitRegUpdate(MBB, MBBI, MBBI->getDebugLoc(), TII,
BaseReg, FrameReg, BaseReg, Offset);
FrameReg = BaseReg;
Offset = 0;
}
// Negative offsets are expected if we address from FP, but for
// now this checks nothing has gone horribly wrong.
assert(Offset >= 0 && "Unexpected negative offset from SP");
MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, true);
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset / OffsetScale);
}
unsigned
AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (TFI->hasFP(MF))
return AArch64::X29;
else
return AArch64::XSP;
}
bool
AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
const AArch64FrameLowering *AFI
= static_cast<const AArch64FrameLowering*>(TFI);
return AFI->useFPForAddressing(MF);
}