llvm-6502/lib/Target/ARM/ARMISelLowering.h
Chandler Carruth aeef83c6af Switch TargetTransformInfo from an immutable analysis pass that requires
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.

The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.

The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.

The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.

The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.

The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.

The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.

The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.

Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.

Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.

Commits to update DragonEgg and Clang will be made presently.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171681 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-07 01:37:14 +00:00

579 lines
24 KiB
C++

//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that ARM uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef ARMISELLOWERING_H
#define ARMISELLOWERING_H
#include "ARM.h"
#include "ARMSubtarget.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <vector>
namespace llvm {
class ARMConstantPoolValue;
namespace ARMISD {
// ARM Specific DAG Nodes
enum NodeType {
// Start the numbering where the builtin ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
Wrapper, // Wrapper - A wrapper node for TargetConstantPool,
// TargetExternalSymbol, and TargetGlobalAddress.
WrapperDYN, // WrapperDYN - A wrapper node for TargetGlobalAddress in
// DYN mode.
WrapperPIC, // WrapperPIC - A wrapper node for TargetGlobalAddress in
// PIC mode.
WrapperJT, // WrapperJT - A wrapper node for TargetJumpTable
// Add pseudo op to model memcpy for struct byval.
COPY_STRUCT_BYVAL,
CALL, // Function call.
CALL_PRED, // Function call that's predicable.
CALL_NOLINK, // Function call with branch not branch-and-link.
tCALL, // Thumb function call.
BRCOND, // Conditional branch.
BR_JT, // Jumptable branch.
BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump).
RET_FLAG, // Return with a flag operand.
PIC_ADD, // Add with a PC operand and a PIC label.
CMP, // ARM compare instructions.
CMN, // ARM CMN instructions.
CMPZ, // ARM compare that sets only Z flag.
CMPFP, // ARM VFP compare instruction, sets FPSCR.
CMPFPw0, // ARM VFP compare against zero instruction, sets FPSCR.
FMSTAT, // ARM fmstat instruction.
CMOV, // ARM conditional move instructions.
BCC_i64,
RBIT, // ARM bitreverse instruction
FTOSI, // FP to sint within a FP register.
FTOUI, // FP to uint within a FP register.
SITOF, // sint to FP within a FP register.
UITOF, // uint to FP within a FP register.
SRL_FLAG, // V,Flag = srl_flag X -> srl X, 1 + save carry out.
SRA_FLAG, // V,Flag = sra_flag X -> sra X, 1 + save carry out.
RRX, // V = RRX X, Flag -> srl X, 1 + shift in carry flag.
ADDC, // Add with carry
ADDE, // Add using carry
SUBC, // Sub with carry
SUBE, // Sub using carry
VMOVRRD, // double to two gprs.
VMOVDRR, // Two gprs to double.
EH_SJLJ_SETJMP, // SjLj exception handling setjmp.
EH_SJLJ_LONGJMP, // SjLj exception handling longjmp.
TC_RETURN, // Tail call return pseudo.
THREAD_POINTER,
DYN_ALLOC, // Dynamic allocation on the stack.
MEMBARRIER, // Memory barrier (DMB)
MEMBARRIER_MCR, // Memory barrier (MCR)
PRELOAD, // Preload
VCEQ, // Vector compare equal.
VCEQZ, // Vector compare equal to zero.
VCGE, // Vector compare greater than or equal.
VCGEZ, // Vector compare greater than or equal to zero.
VCLEZ, // Vector compare less than or equal to zero.
VCGEU, // Vector compare unsigned greater than or equal.
VCGT, // Vector compare greater than.
VCGTZ, // Vector compare greater than zero.
VCLTZ, // Vector compare less than zero.
VCGTU, // Vector compare unsigned greater than.
VTST, // Vector test bits.
// Vector shift by immediate:
VSHL, // ...left
VSHRs, // ...right (signed)
VSHRu, // ...right (unsigned)
VSHLLs, // ...left long (signed)
VSHLLu, // ...left long (unsigned)
VSHLLi, // ...left long (with maximum shift count)
VSHRN, // ...right narrow
// Vector rounding shift by immediate:
VRSHRs, // ...right (signed)
VRSHRu, // ...right (unsigned)
VRSHRN, // ...right narrow
// Vector saturating shift by immediate:
VQSHLs, // ...left (signed)
VQSHLu, // ...left (unsigned)
VQSHLsu, // ...left (signed to unsigned)
VQSHRNs, // ...right narrow (signed)
VQSHRNu, // ...right narrow (unsigned)
VQSHRNsu, // ...right narrow (signed to unsigned)
// Vector saturating rounding shift by immediate:
VQRSHRNs, // ...right narrow (signed)
VQRSHRNu, // ...right narrow (unsigned)
VQRSHRNsu, // ...right narrow (signed to unsigned)
// Vector shift and insert:
VSLI, // ...left
VSRI, // ...right
// Vector get lane (VMOV scalar to ARM core register)
// (These are used for 8- and 16-bit element types only.)
VGETLANEu, // zero-extend vector extract element
VGETLANEs, // sign-extend vector extract element
// Vector move immediate and move negated immediate:
VMOVIMM,
VMVNIMM,
// Vector move f32 immediate:
VMOVFPIMM,
// Vector duplicate:
VDUP,
VDUPLANE,
// Vector shuffles:
VEXT, // extract
VREV64, // reverse elements within 64-bit doublewords
VREV32, // reverse elements within 32-bit words
VREV16, // reverse elements within 16-bit halfwords
VZIP, // zip (interleave)
VUZP, // unzip (deinterleave)
VTRN, // transpose
VTBL1, // 1-register shuffle with mask
VTBL2, // 2-register shuffle with mask
// Vector multiply long:
VMULLs, // ...signed
VMULLu, // ...unsigned
UMLAL, // 64bit Unsigned Accumulate Multiply
SMLAL, // 64bit Signed Accumulate Multiply
// Operands of the standard BUILD_VECTOR node are not legalized, which
// is fine if BUILD_VECTORs are always lowered to shuffles or other
// operations, but for ARM some BUILD_VECTORs are legal as-is and their
// operands need to be legalized. Define an ARM-specific version of
// BUILD_VECTOR for this purpose.
BUILD_VECTOR,
// Floating-point max and min:
FMAX,
FMIN,
// Bit-field insert
BFI,
// Vector OR with immediate
VORRIMM,
// Vector AND with NOT of immediate
VBICIMM,
// Vector bitwise select
VBSL,
// Vector load N-element structure to all lanes:
VLD2DUP = ISD::FIRST_TARGET_MEMORY_OPCODE,
VLD3DUP,
VLD4DUP,
// NEON loads with post-increment base updates:
VLD1_UPD,
VLD2_UPD,
VLD3_UPD,
VLD4_UPD,
VLD2LN_UPD,
VLD3LN_UPD,
VLD4LN_UPD,
VLD2DUP_UPD,
VLD3DUP_UPD,
VLD4DUP_UPD,
// NEON stores with post-increment base updates:
VST1_UPD,
VST2_UPD,
VST3_UPD,
VST4_UPD,
VST2LN_UPD,
VST3LN_UPD,
VST4LN_UPD,
// 64-bit atomic ops (value split into two registers)
ATOMADD64_DAG,
ATOMSUB64_DAG,
ATOMOR64_DAG,
ATOMXOR64_DAG,
ATOMAND64_DAG,
ATOMNAND64_DAG,
ATOMSWAP64_DAG,
ATOMCMPXCHG64_DAG,
ATOMMIN64_DAG,
ATOMUMIN64_DAG,
ATOMMAX64_DAG,
ATOMUMAX64_DAG
};
}
/// Define some predicates that are used for node matching.
namespace ARM {
bool isBitFieldInvertedMask(unsigned v);
}
//===--------------------------------------------------------------------===//
// ARMTargetLowering - ARM Implementation of the TargetLowering interface
class ARMTargetLowering : public TargetLowering {
public:
explicit ARMTargetLowering(TargetMachine &TM);
virtual unsigned getJumpTableEncoding() const;
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const;
virtual const char *getTargetNodeName(unsigned Opcode) const;
virtual bool isSelectSupported(SelectSupportKind Kind) const {
// ARM does not support scalar condition selects on vectors.
return (Kind != ScalarCondVectorVal);
}
/// getSetCCResultType - Return the value type to use for ISD::SETCC.
virtual EVT getSetCCResultType(EVT VT) const;
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const;
virtual void
AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const;
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const;
/// allowsUnalignedMemoryAccesses - Returns true if the target allows
/// unaligned memory accesses of the specified type. Returns whether it
/// is "fast" by reference in the second argument.
virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const;
virtual EVT getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const;
using TargetLowering::isZExtFree;
virtual bool isZExtFree(SDValue Val, EVT VT2) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can
/// compare a register against the immediate without having to materialize
/// the immediate into a register.
virtual bool isLegalICmpImmediate(int64_t Imm) const;
/// isLegalAddImmediate - Return true if the specified immediate is legal
/// add immediate, that is the target has add instructions which can
/// add a register and the immediate without having to materialize
/// the immediate into a register.
virtual bool isLegalAddImmediate(int64_t Imm) const;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const;
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const;
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const;
virtual bool ExpandInlineAsm(CallInst *CI) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
/// true it means one of the asm constraint of the inline asm instruction
/// being processed is 'm'.
virtual void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
const ARMSubtarget* getSubtarget() const {
return Subtarget;
}
/// getRegClassFor - Return the register class that should be used for the
/// specified value type.
virtual const TargetRegisterClass *getRegClassFor(MVT VT) const;
/// getMaximalGlobalOffset - Returns the maximal possible offset which can
/// be used for loads / stores from the global.
virtual unsigned getMaximalGlobalOffset() const;
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const;
Sched::Preference getSchedulingPreference(SDNode *N) const;
bool isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
unsigned Intrinsic) const;
protected:
std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(MVT VT) const;
private:
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when generating code for different targets.
const ARMSubtarget *Subtarget;
const TargetRegisterInfo *RegInfo;
const InstrItineraryData *Itins;
/// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
///
unsigned ARMPCLabelIndex;
void addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT);
void addDRTypeForNEON(MVT VT);
void addQRTypeForNEON(MVT VT);
typedef SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPassVector;
void PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
SDValue Chain, SDValue &Arg,
RegsToPassVector &RegsToPass,
CCValAssign &VA, CCValAssign &NextVA,
SDValue &StackPtr,
SmallVector<SDValue, 8> &MemOpChains,
ISD::ArgFlagsTy Flags) const;
SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG,
DebugLoc dl) const;
CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return,
bool isVarArg) const;
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
DebugLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const;
SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *Subtarget) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
TLSModel::Model model) const;
SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantFP(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
const ARMSubtarget *ST) const;
SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
DebugLoc dl, SDValue &Chain,
const Value *OrigArg,
unsigned OffsetFromOrigArg,
unsigned ArgOffset,
bool ForceMutable = false)
const;
void computeRegArea(CCState &CCInfo, MachineFunction &MF,
unsigned &VARegSize, unsigned &VARegSaveSize) const;
virtual SDValue
LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
/// HandleByVal - Target-specific cleanup for ByVal support.
virtual void HandleByVal(CCState *, unsigned &, unsigned) const;
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
bool isCalleeStructRet,
bool isCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
virtual bool CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const;
virtual SDValue
LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const;
virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &ARMcc, SelectionDAG &DAG, DebugLoc dl) const;
SDValue getVFPCmp(SDValue LHS, SDValue RHS,
SelectionDAG &DAG, DebugLoc dl) const;
SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const;
SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const;
MachineBasicBlock *EmitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const;
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size,
unsigned BinOpcode) const;
MachineBasicBlock *EmitAtomicBinary64(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Op1,
unsigned Op2,
bool NeedsCarry = false,
bool IsCmpxchg = false,
bool IsMinMax = false,
ARMCC::CondCodes CC = ARMCC::AL) const;
MachineBasicBlock * EmitAtomicBinaryMinMax(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size,
bool signExtend,
ARMCC::CondCodes Cond) const;
void SetupEntryBlockForSjLj(MachineInstr *MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB, int FI) const;
MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr *MI,
MachineBasicBlock *MBB) const;
bool RemapAddSubWithFlags(MachineInstr *MI, MachineBasicBlock *BB) const;
MachineBasicBlock *EmitStructByval(MachineInstr *MI,
MachineBasicBlock *MBB) const;
};
enum NEONModImmType {
VMOVModImm,
VMVNModImm,
OtherModImm
};
namespace ARM {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
}
}
#endif // ARMISELLOWERING_H