llvm-6502/lib/Transforms/TransformInternals.cpp
2003-11-11 22:41:34 +00:00

200 lines
8.1 KiB
C++

//===- TransformInternals.cpp - Implement shared functions for transforms -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines shared functions used by the different components of the
// Transforms library.
//
//===----------------------------------------------------------------------===//
#include "TransformInternals.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
namespace llvm {
static const Type *getStructOffsetStep(const StructType *STy, uint64_t &Offset,
std::vector<Value*> &Indices,
const TargetData &TD) {
assert(Offset < TD.getTypeSize(STy) && "Offset not in composite!");
const StructLayout *SL = TD.getStructLayout(STy);
// This loop terminates always on a 0 <= i < MemberOffsets.size()
unsigned i;
for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1])
break;
assert(Offset >= SL->MemberOffsets[i] &&
(i == SL->MemberOffsets.size()-1 || Offset < SL->MemberOffsets[i+1]));
// Make sure to save the current index...
Indices.push_back(ConstantUInt::get(Type::UByteTy, i));
Offset = SL->MemberOffsets[i];
return STy->getContainedType(i);
}
// getStructOffsetType - Return a vector of offsets that are to be used to index
// into the specified struct type to get as close as possible to index as we
// can. Note that it is possible that we cannot get exactly to Offset, in which
// case we update offset to be the offset we actually obtained. The resultant
// leaf type is returned.
//
// If StopEarly is set to true (the default), the first object with the
// specified type is returned, even if it is a struct type itself. In this
// case, this routine will not drill down to the leaf type. Set StopEarly to
// false if you want a leaf
//
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
std::vector<Value*> &Indices,
const TargetData &TD, bool StopEarly) {
if (Offset == 0 && StopEarly && !Indices.empty())
return Ty; // Return the leaf type
uint64_t ThisOffset;
const Type *NextType;
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
if (STy->getElementTypes().empty()) {
Offset = 0;
return STy;
}
ThisOffset = Offset;
NextType = getStructOffsetStep(STy, ThisOffset, Indices, TD);
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
assert(Offset == 0 || Offset < TD.getTypeSize(ATy) &&
"Offset not in composite!");
NextType = ATy->getElementType();
unsigned ChildSize = TD.getTypeSize(NextType);
Indices.push_back(ConstantSInt::get(Type::LongTy, Offset/ChildSize));
ThisOffset = (Offset/ChildSize)*ChildSize;
} else {
Offset = 0; // Return the offset that we were able to achieve
return Ty; // Return the leaf type
}
unsigned SubOffs = Offset - ThisOffset;
const Type *LeafTy = getStructOffsetType(NextType, SubOffs,
Indices, TD, StopEarly);
Offset = ThisOffset + SubOffs;
return LeafTy;
}
// ConvertibleToGEP - This function returns true if the specified value V is
// a valid index into a pointer of type Ty. If it is valid, Idx is filled in
// with the values that would be appropriate to make this a getelementptr
// instruction. The type returned is the root type that the GEP would point to
//
const Type *ConvertibleToGEP(const Type *Ty, Value *OffsetVal,
std::vector<Value*> &Indices,
const TargetData &TD,
BasicBlock::iterator *BI) {
const CompositeType *CompTy = dyn_cast<CompositeType>(Ty);
if (CompTy == 0) return 0;
// See if the cast is of an integer expression that is either a constant,
// or a value scaled by some amount with a possible offset.
//
ExprType Expr = ClassifyExpression(OffsetVal);
// Get the offset and scale values if they exists...
// A scale of zero with Expr.Var != 0 means a scale of 1.
//
int64_t Offset = Expr.Offset ? getConstantValue(Expr.Offset) : 0;
int64_t Scale = Expr.Scale ? getConstantValue(Expr.Scale) : 0;
if (Expr.Var && Scale == 0) Scale = 1; // Scale != 0 if Expr.Var != 0
// Loop over the Scale and Offset values, filling in the Indices vector for
// our final getelementptr instruction.
//
const Type *NextTy = CompTy;
do {
if (!isa<CompositeType>(NextTy))
return 0; // Type must not be ready for processing...
CompTy = cast<CompositeType>(NextTy);
if (const StructType *StructTy = dyn_cast<StructType>(CompTy)) {
// Step into the appropriate element of the structure...
uint64_t ActualOffset = (Offset < 0) ? 0 : (uint64_t)Offset;
NextTy = getStructOffsetStep(StructTy, ActualOffset, Indices, TD);
Offset -= ActualOffset;
} else {
const Type *ElTy = cast<SequentialType>(CompTy)->getElementType();
if (!ElTy->isSized() || (isa<PointerType>(CompTy) && !Indices.empty()))
return 0; // Type is unreasonable... escape!
unsigned ElSize = TD.getTypeSize(ElTy);
if (ElSize == 0) return 0; // Avoid division by zero...
int64_t ElSizeS = ElSize;
// See if the user is indexing into a different cell of this array...
if (Scale && (Scale >= ElSizeS || -Scale >= ElSizeS)) {
// A scale n*ElSize might occur if we are not stepping through
// array by one. In this case, we will have to insert math to munge
// the index.
//
int64_t ScaleAmt = Scale/ElSizeS;
if (Scale-ScaleAmt*ElSizeS)
return 0; // Didn't scale by a multiple of element size, bail out
Scale = 0; // Scale is consumed
int64_t Index = Offset/ElSize; // is zero unless Offset > ElSize
Offset -= Index*ElSize; // Consume part of the offset
if (BI) { // Generate code?
BasicBlock *BB = (*BI)->getParent();
if (Expr.Var->getType() != Type::LongTy)
Expr.Var = new CastInst(Expr.Var, Type::LongTy,
Expr.Var->getName()+"-idxcast", *BI);
if (ScaleAmt && ScaleAmt != 1) {
// If we have to scale up our index, do so now
Value *ScaleAmtVal = ConstantSInt::get(Type::LongTy, ScaleAmt);
Expr.Var = BinaryOperator::create(Instruction::Mul, Expr.Var,
ScaleAmtVal,
Expr.Var->getName()+"-scale",*BI);
}
if (Index) { // Add an offset to the index
Value *IndexAmt = ConstantSInt::get(Type::LongTy, Index);
Expr.Var = BinaryOperator::create(Instruction::Add, Expr.Var,
IndexAmt,
Expr.Var->getName()+"-offset",
*BI);
}
}
Indices.push_back(Expr.Var);
Expr.Var = 0;
} else if (Offset >= (int64_t)ElSize || -Offset >= (int64_t)ElSize) {
// Calculate the index that we are entering into the array cell with
uint64_t Index = Offset/ElSize;
Indices.push_back(ConstantSInt::get(Type::LongTy, Index));
Offset -= (int64_t)(Index*ElSize); // Consume part of the offset
} else if (isa<ArrayType>(CompTy) || Indices.empty()) {
// Must be indexing a small amount into the first cell of the array
// Just index into element zero of the array here.
//
Indices.push_back(ConstantSInt::get(Type::LongTy, 0));
} else {
return 0; // Hrm. wierd, can't handle this case. Bail
}
NextTy = ElTy;
}
} while (Offset || Scale); // Go until we're done!
return NextTy;
}
} // End llvm namespace