llvm-6502/lib/Object/COFFObjectFile.cpp
Nico Rieck 0a91f48308 Relax COFF string table check
COFF object files with 0 as string table size are currently rejected. This
prevents us from reading object files written by tools like cvtres that
violate the PECOFF spec and write 0 instead of 4 for the size of an empty
string table.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202292 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-26 19:51:44 +00:00

1076 lines
37 KiB
C++

//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the COFFObjectFile class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/COFF.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <limits>
using namespace llvm;
using namespace object;
using support::ulittle8_t;
using support::ulittle16_t;
using support::ulittle32_t;
using support::little16_t;
// Returns false if size is greater than the buffer size. And sets ec.
static bool checkSize(const MemoryBuffer *M, error_code &EC, uint64_t Size) {
if (M->getBufferSize() < Size) {
EC = object_error::unexpected_eof;
return false;
}
return true;
}
// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
// Returns unexpected_eof if error.
template<typename T>
static error_code getObject(const T *&Obj, const MemoryBuffer *M,
const uint8_t *Ptr, const size_t Size = sizeof(T)) {
uintptr_t Addr = uintptr_t(Ptr);
if (Addr + Size < Addr ||
Addr + Size < Size ||
Addr + Size > uintptr_t(M->getBufferEnd())) {
return object_error::unexpected_eof;
}
Obj = reinterpret_cast<const T *>(Addr);
return object_error::success;
}
// Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
// prefixed slashes.
static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
assert(Str.size() <= 6 && "String too long, possible overflow.");
if (Str.size() > 6)
return true;
uint64_t Value = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
CharVal = Str[0] - 'A';
else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
CharVal = Str[0] - 'a' + 26;
else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
CharVal = Str[0] - '0' + 52;
else if (Str[0] == '+') // 62
CharVal = 62;
else if (Str[0] == '/') // 63
CharVal = 63;
else
return true;
Value = (Value * 64) + CharVal;
Str = Str.substr(1);
}
if (Value > std::numeric_limits<uint32_t>::max())
return true;
Result = static_cast<uint32_t>(Value);
return false;
}
const coff_symbol *COFFObjectFile::toSymb(DataRefImpl Ref) const {
const coff_symbol *Addr = reinterpret_cast<const coff_symbol*>(Ref.p);
# ifndef NDEBUG
// Verify that the symbol points to a valid entry in the symbol table.
uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
if (Offset < COFFHeader->PointerToSymbolTable
|| Offset >= COFFHeader->PointerToSymbolTable
+ (COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
report_fatal_error("Symbol was outside of symbol table.");
assert((Offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol)
== 0 && "Symbol did not point to the beginning of a symbol");
# endif
return Addr;
}
const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
# ifndef NDEBUG
// Verify that the section points to a valid entry in the section table.
if (Addr < SectionTable
|| Addr >= (SectionTable + COFFHeader->NumberOfSections))
report_fatal_error("Section was outside of section table.");
uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
assert(Offset % sizeof(coff_section) == 0 &&
"Section did not point to the beginning of a section");
# endif
return Addr;
}
void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
const coff_symbol *Symb = toSymb(Ref);
Symb += 1 + Symb->NumberOfAuxSymbols;
Ref.p = reinterpret_cast<uintptr_t>(Symb);
}
error_code COFFObjectFile::getSymbolName(DataRefImpl Ref,
StringRef &Result) const {
const coff_symbol *Symb = toSymb(Ref);
return getSymbolName(Symb, Result);
}
error_code COFFObjectFile::getSymbolFileOffset(DataRefImpl Ref,
uint64_t &Result) const {
const coff_symbol *Symb = toSymb(Ref);
const coff_section *Section = NULL;
if (error_code EC = getSection(Symb->SectionNumber, Section))
return EC;
if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result = UnknownAddressOrSize;
else if (Section)
Result = Section->PointerToRawData + Symb->Value;
else
Result = Symb->Value;
return object_error::success;
}
error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref,
uint64_t &Result) const {
const coff_symbol *Symb = toSymb(Ref);
const coff_section *Section = NULL;
if (error_code EC = getSection(Symb->SectionNumber, Section))
return EC;
if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result = UnknownAddressOrSize;
else if (Section)
Result = Section->VirtualAddress + Symb->Value;
else
Result = Symb->Value;
return object_error::success;
}
error_code COFFObjectFile::getSymbolType(DataRefImpl Ref,
SymbolRef::Type &Result) const {
const coff_symbol *Symb = toSymb(Ref);
Result = SymbolRef::ST_Other;
if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL &&
Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) {
Result = SymbolRef::ST_Unknown;
} else if (Symb->getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
Result = SymbolRef::ST_Function;
} else {
uint32_t Characteristics = 0;
if (Symb->SectionNumber > 0) {
const coff_section *Section = NULL;
if (error_code EC = getSection(Symb->SectionNumber, Section))
return EC;
Characteristics = Section->Characteristics;
}
if (Characteristics & COFF::IMAGE_SCN_MEM_READ &&
~Characteristics & COFF::IMAGE_SCN_MEM_WRITE) // Read only.
Result = SymbolRef::ST_Data;
}
return object_error::success;
}
uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
const coff_symbol *Symb = toSymb(Ref);
uint32_t Result = SymbolRef::SF_None;
// TODO: Correctly set SF_FormatSpecific, SF_Common
if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED) {
if (Symb->Value == 0)
Result |= SymbolRef::SF_Undefined;
else
Result |= SymbolRef::SF_Common;
}
// TODO: This are certainly too restrictive.
if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_EXTERNAL)
Result |= SymbolRef::SF_Global;
if (Symb->StorageClass == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL)
Result |= SymbolRef::SF_Weak;
if (Symb->SectionNumber == COFF::IMAGE_SYM_ABSOLUTE)
Result |= SymbolRef::SF_Absolute;
return Result;
}
error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref,
uint64_t &Result) const {
// FIXME: Return the correct size. This requires looking at all the symbols
// in the same section as this symbol, and looking for either the next
// symbol, or the end of the section.
const coff_symbol *Symb = toSymb(Ref);
const coff_section *Section = NULL;
if (error_code EC = getSection(Symb->SectionNumber, Section))
return EC;
if (Symb->SectionNumber == COFF::IMAGE_SYM_UNDEFINED)
Result = UnknownAddressOrSize;
else if (Section)
Result = Section->SizeOfRawData - Symb->Value;
else
Result = 0;
return object_error::success;
}
error_code COFFObjectFile::getSymbolSection(DataRefImpl Ref,
section_iterator &Result) const {
const coff_symbol *Symb = toSymb(Ref);
if (Symb->SectionNumber <= COFF::IMAGE_SYM_UNDEFINED)
Result = section_end();
else {
const coff_section *Sec = 0;
if (error_code EC = getSection(Symb->SectionNumber, Sec)) return EC;
DataRefImpl Ref;
Ref.p = reinterpret_cast<uintptr_t>(Sec);
Result = section_iterator(SectionRef(Ref, this));
}
return object_error::success;
}
error_code COFFObjectFile::getSymbolValue(DataRefImpl Ref,
uint64_t &Val) const {
report_fatal_error("getSymbolValue unimplemented in COFFObjectFile");
}
void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
const coff_section *Sec = toSec(Ref);
Sec += 1;
Ref.p = reinterpret_cast<uintptr_t>(Sec);
}
error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
StringRef &Result) const {
const coff_section *Sec = toSec(Ref);
return getSectionName(Sec, Result);
}
error_code COFFObjectFile::getSectionAddress(DataRefImpl Ref,
uint64_t &Result) const {
const coff_section *Sec = toSec(Ref);
Result = Sec->VirtualAddress;
return object_error::success;
}
error_code COFFObjectFile::getSectionSize(DataRefImpl Ref,
uint64_t &Result) const {
const coff_section *Sec = toSec(Ref);
Result = Sec->SizeOfRawData;
return object_error::success;
}
error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
StringRef &Result) const {
const coff_section *Sec = toSec(Ref);
ArrayRef<uint8_t> Res;
error_code EC = getSectionContents(Sec, Res);
Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
return EC;
}
error_code COFFObjectFile::getSectionAlignment(DataRefImpl Ref,
uint64_t &Res) const {
const coff_section *Sec = toSec(Ref);
if (!Sec)
return object_error::parse_failed;
Res = uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1);
return object_error::success;
}
error_code COFFObjectFile::isSectionText(DataRefImpl Ref,
bool &Result) const {
const coff_section *Sec = toSec(Ref);
Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
return object_error::success;
}
error_code COFFObjectFile::isSectionData(DataRefImpl Ref,
bool &Result) const {
const coff_section *Sec = toSec(Ref);
Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
return object_error::success;
}
error_code COFFObjectFile::isSectionBSS(DataRefImpl Ref,
bool &Result) const {
const coff_section *Sec = toSec(Ref);
Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
return object_error::success;
}
error_code COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref,
bool &Result) const {
// FIXME: Unimplemented
Result = true;
return object_error::success;
}
error_code COFFObjectFile::isSectionVirtual(DataRefImpl Ref,
bool &Result) const {
const coff_section *Sec = toSec(Ref);
Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
return object_error::success;
}
error_code COFFObjectFile::isSectionZeroInit(DataRefImpl Ref,
bool &Result) const {
// FIXME: Unimplemented.
Result = false;
return object_error::success;
}
error_code COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref,
bool &Result) const {
// FIXME: Unimplemented.
Result = false;
return object_error::success;
}
error_code COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef,
DataRefImpl SymbRef,
bool &Result) const {
const coff_section *Sec = toSec(SecRef);
const coff_symbol *Symb = toSymb(SymbRef);
const coff_section *SymbSec = 0;
if (error_code EC = getSection(Symb->SectionNumber, SymbSec)) return EC;
if (SymbSec == Sec)
Result = true;
else
Result = false;
return object_error::success;
}
relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
DataRefImpl Ret;
if (Sec->NumberOfRelocations == 0)
Ret.p = 0;
else
Ret.p = reinterpret_cast<uintptr_t>(base() + Sec->PointerToRelocations);
return relocation_iterator(RelocationRef(Ret, this));
}
relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
DataRefImpl Ret;
if (Sec->NumberOfRelocations == 0)
Ret.p = 0;
else
Ret.p = reinterpret_cast<uintptr_t>(
reinterpret_cast<const coff_relocation*>(
base() + Sec->PointerToRelocations)
+ Sec->NumberOfRelocations);
return relocation_iterator(RelocationRef(Ret, this));
}
// Initialize the pointer to the symbol table.
error_code COFFObjectFile::initSymbolTablePtr() {
if (error_code EC = getObject(
SymbolTable, Data, base() + COFFHeader->PointerToSymbolTable,
COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
return EC;
// Find string table. The first four byte of the string table contains the
// total size of the string table, including the size field itself. If the
// string table is empty, the value of the first four byte would be 4.
const uint8_t *StringTableAddr =
base() + COFFHeader->PointerToSymbolTable +
COFFHeader->NumberOfSymbols * sizeof(coff_symbol);
const ulittle32_t *StringTableSizePtr;
if (error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
return EC;
StringTableSize = *StringTableSizePtr;
if (error_code EC =
getObject(StringTable, Data, StringTableAddr, StringTableSize))
return EC;
// Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
// tools like cvtres write a size of 0 for an empty table instead of 4.
if (StringTableSize < 4)
StringTableSize = 4;
// Check that the string table is null terminated if has any in it.
if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
return object_error::parse_failed;
return object_error::success;
}
// Returns the file offset for the given VA.
error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase
: (uint64_t)PE32PlusHeader->ImageBase;
uint64_t Rva = Addr - ImageBase;
assert(Rva <= UINT32_MAX);
return getRvaPtr((uint32_t)Rva, Res);
}
// Returns the file offset for the given RVA.
error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
for (section_iterator I = section_begin(), E = section_end(); I != E;
++I) {
const coff_section *Section = getCOFFSection(I);
uint32_t SectionStart = Section->VirtualAddress;
uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
if (SectionStart <= Addr && Addr < SectionEnd) {
uint32_t Offset = Addr - SectionStart;
Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
return object_error::success;
}
}
return object_error::parse_failed;
}
// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
// table entry.
error_code COFFObjectFile::
getHintName(uint32_t Rva, uint16_t &Hint, StringRef &Name) const {
uintptr_t IntPtr = 0;
if (error_code EC = getRvaPtr(Rva, IntPtr))
return EC;
const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
return object_error::success;
}
// Find the import table.
error_code COFFObjectFile::initImportTablePtr() {
// First, we get the RVA of the import table. If the file lacks a pointer to
// the import table, do nothing.
const data_directory *DataEntry;
if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
return object_error::success;
// Do nothing if the pointer to import table is NULL.
if (DataEntry->RelativeVirtualAddress == 0)
return object_error::success;
uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
NumberOfImportDirectory = DataEntry->Size /
sizeof(import_directory_table_entry);
// Find the section that contains the RVA. This is needed because the RVA is
// the import table's memory address which is different from its file offset.
uintptr_t IntPtr = 0;
if (error_code EC = getRvaPtr(ImportTableRva, IntPtr))
return EC;
ImportDirectory = reinterpret_cast<
const import_directory_table_entry *>(IntPtr);
return object_error::success;
}
// Find the export table.
error_code COFFObjectFile::initExportTablePtr() {
// First, we get the RVA of the export table. If the file lacks a pointer to
// the export table, do nothing.
const data_directory *DataEntry;
if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
return object_error::success;
// Do nothing if the pointer to export table is NULL.
if (DataEntry->RelativeVirtualAddress == 0)
return object_error::success;
uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
uintptr_t IntPtr = 0;
if (error_code EC = getRvaPtr(ExportTableRva, IntPtr))
return EC;
ExportDirectory =
reinterpret_cast<const export_directory_table_entry *>(IntPtr);
return object_error::success;
}
COFFObjectFile::COFFObjectFile(MemoryBuffer *Object, error_code &EC,
bool BufferOwned)
: ObjectFile(Binary::ID_COFF, Object, BufferOwned), COFFHeader(0),
PE32Header(0), PE32PlusHeader(0), DataDirectory(0), SectionTable(0),
SymbolTable(0), StringTable(0), StringTableSize(0), ImportDirectory(0),
NumberOfImportDirectory(0), ExportDirectory(0) {
// Check that we at least have enough room for a header.
if (!checkSize(Data, EC, sizeof(coff_file_header))) return;
// The current location in the file where we are looking at.
uint64_t CurPtr = 0;
// PE header is optional and is present only in executables. If it exists,
// it is placed right after COFF header.
bool HasPEHeader = false;
// Check if this is a PE/COFF file.
if (base()[0] == 0x4d && base()[1] == 0x5a) {
// PE/COFF, seek through MS-DOS compatibility stub and 4-byte
// PE signature to find 'normal' COFF header.
if (!checkSize(Data, EC, 0x3c + 8)) return;
CurPtr = *reinterpret_cast<const ulittle16_t *>(base() + 0x3c);
// Check the PE magic bytes. ("PE\0\0")
if (std::memcmp(base() + CurPtr, "PE\0\0", 4) != 0) {
EC = object_error::parse_failed;
return;
}
CurPtr += 4; // Skip the PE magic bytes.
HasPEHeader = true;
}
if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
return;
CurPtr += sizeof(coff_file_header);
if (HasPEHeader) {
const pe32_header *Header;
if ((EC = getObject(Header, Data, base() + CurPtr)))
return;
const uint8_t *DataDirAddr;
uint64_t DataDirSize;
if (Header->Magic == 0x10b) {
PE32Header = Header;
DataDirAddr = base() + CurPtr + sizeof(pe32_header);
DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
} else if (Header->Magic == 0x20b) {
PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
} else {
// It's neither PE32 nor PE32+.
EC = object_error::parse_failed;
return;
}
if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
return;
CurPtr += COFFHeader->SizeOfOptionalHeader;
}
if (COFFHeader->isImportLibrary())
return;
if ((EC = getObject(SectionTable, Data, base() + CurPtr,
COFFHeader->NumberOfSections * sizeof(coff_section))))
return;
// Initialize the pointer to the symbol table.
if (COFFHeader->PointerToSymbolTable != 0)
if ((EC = initSymbolTablePtr()))
return;
// Initialize the pointer to the beginning of the import table.
if ((EC = initImportTablePtr()))
return;
// Initialize the pointer to the export table.
if ((EC = initExportTablePtr()))
return;
EC = object_error::success;
}
basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(SymbolTable);
return basic_symbol_iterator(SymbolRef(Ret, this));
}
basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
// The symbol table ends where the string table begins.
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(StringTable);
return basic_symbol_iterator(SymbolRef(Ret, this));
}
library_iterator COFFObjectFile::needed_library_begin() const {
// TODO: implement
report_fatal_error("Libraries needed unimplemented in COFFObjectFile");
}
library_iterator COFFObjectFile::needed_library_end() const {
// TODO: implement
report_fatal_error("Libraries needed unimplemented in COFFObjectFile");
}
StringRef COFFObjectFile::getLoadName() const {
// COFF does not have this field.
return "";
}
import_directory_iterator COFFObjectFile::import_directory_begin() const {
return import_directory_iterator(
ImportDirectoryEntryRef(ImportDirectory, 0, this));
}
import_directory_iterator COFFObjectFile::import_directory_end() const {
return import_directory_iterator(
ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this));
}
export_directory_iterator COFFObjectFile::export_directory_begin() const {
return export_directory_iterator(
ExportDirectoryEntryRef(ExportDirectory, 0, this));
}
export_directory_iterator COFFObjectFile::export_directory_end() const {
if (ExportDirectory == 0)
return export_directory_iterator(ExportDirectoryEntryRef(0, 0, this));
ExportDirectoryEntryRef Ref(ExportDirectory,
ExportDirectory->AddressTableEntries, this);
return export_directory_iterator(Ref);
}
section_iterator COFFObjectFile::section_begin() const {
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
return section_iterator(SectionRef(Ret, this));
}
section_iterator COFFObjectFile::section_end() const {
DataRefImpl Ret;
int NumSections = COFFHeader->isImportLibrary()
? 0 : COFFHeader->NumberOfSections;
Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
return section_iterator(SectionRef(Ret, this));
}
uint8_t COFFObjectFile::getBytesInAddress() const {
return getArch() == Triple::x86_64 ? 8 : 4;
}
StringRef COFFObjectFile::getFileFormatName() const {
switch(COFFHeader->Machine) {
case COFF::IMAGE_FILE_MACHINE_I386:
return "COFF-i386";
case COFF::IMAGE_FILE_MACHINE_AMD64:
return "COFF-x86-64";
default:
return "COFF-<unknown arch>";
}
}
unsigned COFFObjectFile::getArch() const {
switch(COFFHeader->Machine) {
case COFF::IMAGE_FILE_MACHINE_I386:
return Triple::x86;
case COFF::IMAGE_FILE_MACHINE_AMD64:
return Triple::x86_64;
default:
return Triple::UnknownArch;
}
}
// This method is kept here because lld uses this. As soon as we make
// lld to use getCOFFHeader, this method will be removed.
error_code COFFObjectFile::getHeader(const coff_file_header *&Res) const {
return getCOFFHeader(Res);
}
error_code COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const {
Res = COFFHeader;
return object_error::success;
}
error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
Res = PE32Header;
return object_error::success;
}
error_code
COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
Res = PE32PlusHeader;
return object_error::success;
}
error_code COFFObjectFile::getDataDirectory(uint32_t Index,
const data_directory *&Res) const {
// Error if if there's no data directory or the index is out of range.
if (!DataDirectory)
return object_error::parse_failed;
assert(PE32Header || PE32PlusHeader);
uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
: PE32PlusHeader->NumberOfRvaAndSize;
if (Index > NumEnt)
return object_error::parse_failed;
Res = &DataDirectory[Index];
return object_error::success;
}
error_code COFFObjectFile::getSection(int32_t Index,
const coff_section *&Result) const {
// Check for special index values.
if (Index == COFF::IMAGE_SYM_UNDEFINED ||
Index == COFF::IMAGE_SYM_ABSOLUTE ||
Index == COFF::IMAGE_SYM_DEBUG)
Result = NULL;
else if (Index > 0 && Index <= COFFHeader->NumberOfSections)
// We already verified the section table data, so no need to check again.
Result = SectionTable + (Index - 1);
else
return object_error::parse_failed;
return object_error::success;
}
error_code COFFObjectFile::getString(uint32_t Offset,
StringRef &Result) const {
if (StringTableSize <= 4)
// Tried to get a string from an empty string table.
return object_error::parse_failed;
if (Offset >= StringTableSize)
return object_error::unexpected_eof;
Result = StringRef(StringTable + Offset);
return object_error::success;
}
error_code COFFObjectFile::getSymbol(uint32_t Index,
const coff_symbol *&Result) const {
if (Index < COFFHeader->NumberOfSymbols)
Result = SymbolTable + Index;
else
return object_error::parse_failed;
return object_error::success;
}
error_code COFFObjectFile::getSymbolName(const coff_symbol *Symbol,
StringRef &Res) const {
// Check for string table entry. First 4 bytes are 0.
if (Symbol->Name.Offset.Zeroes == 0) {
uint32_t Offset = Symbol->Name.Offset.Offset;
if (error_code EC = getString(Offset, Res))
return EC;
return object_error::success;
}
if (Symbol->Name.ShortName[7] == 0)
// Null terminated, let ::strlen figure out the length.
Res = StringRef(Symbol->Name.ShortName);
else
// Not null terminated, use all 8 bytes.
Res = StringRef(Symbol->Name.ShortName, 8);
return object_error::success;
}
ArrayRef<uint8_t> COFFObjectFile::getSymbolAuxData(
const coff_symbol *Symbol) const {
const uint8_t *Aux = NULL;
if (Symbol->NumberOfAuxSymbols > 0) {
// AUX data comes immediately after the symbol in COFF
Aux = reinterpret_cast<const uint8_t *>(Symbol + 1);
# ifndef NDEBUG
// Verify that the Aux symbol points to a valid entry in the symbol table.
uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
if (Offset < COFFHeader->PointerToSymbolTable
|| Offset >= COFFHeader->PointerToSymbolTable
+ (COFFHeader->NumberOfSymbols * sizeof(coff_symbol)))
report_fatal_error("Aux Symbol data was outside of symbol table.");
assert((Offset - COFFHeader->PointerToSymbolTable) % sizeof(coff_symbol)
== 0 && "Aux Symbol data did not point to the beginning of a symbol");
# endif
}
return ArrayRef<uint8_t>(Aux,
Symbol->NumberOfAuxSymbols * sizeof(coff_symbol));
}
error_code COFFObjectFile::getSectionName(const coff_section *Sec,
StringRef &Res) const {
StringRef Name;
if (Sec->Name[7] == 0)
// Null terminated, let ::strlen figure out the length.
Name = Sec->Name;
else
// Not null terminated, use all 8 bytes.
Name = StringRef(Sec->Name, 8);
// Check for string table entry. First byte is '/'.
if (Name[0] == '/') {
uint32_t Offset;
if (Name[1] == '/') {
if (decodeBase64StringEntry(Name.substr(2), Offset))
return object_error::parse_failed;
} else {
if (Name.substr(1).getAsInteger(10, Offset))
return object_error::parse_failed;
}
if (error_code EC = getString(Offset, Name))
return EC;
}
Res = Name;
return object_error::success;
}
error_code COFFObjectFile::getSectionContents(const coff_section *Sec,
ArrayRef<uint8_t> &Res) const {
// The only thing that we need to verify is that the contents is contained
// within the file bounds. We don't need to make sure it doesn't cover other
// data, as there's nothing that says that is not allowed.
uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
uintptr_t ConEnd = ConStart + Sec->SizeOfRawData;
if (ConEnd > uintptr_t(Data->getBufferEnd()))
return object_error::parse_failed;
Res = ArrayRef<uint8_t>(reinterpret_cast<const unsigned char*>(ConStart),
Sec->SizeOfRawData);
return object_error::success;
}
const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
return reinterpret_cast<const coff_relocation*>(Rel.p);
}
void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
Rel.p = reinterpret_cast<uintptr_t>(
reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
}
error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel,
uint64_t &Res) const {
report_fatal_error("getRelocationAddress not implemented in COFFObjectFile");
}
error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel,
uint64_t &Res) const {
Res = toRel(Rel)->VirtualAddress;
return object_error::success;
}
symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
const coff_relocation* R = toRel(Rel);
DataRefImpl Ref;
Ref.p = reinterpret_cast<uintptr_t>(SymbolTable + R->SymbolTableIndex);
return symbol_iterator(SymbolRef(Ref, this));
}
error_code COFFObjectFile::getRelocationType(DataRefImpl Rel,
uint64_t &Res) const {
const coff_relocation* R = toRel(Rel);
Res = R->Type;
return object_error::success;
}
const coff_section *COFFObjectFile::getCOFFSection(section_iterator &It) const {
return toSec(It->getRawDataRefImpl());
}
const coff_symbol *COFFObjectFile::getCOFFSymbol(symbol_iterator &It) const {
return toSymb(It->getRawDataRefImpl());
}
const coff_relocation *
COFFObjectFile::getCOFFRelocation(relocation_iterator &It) const {
return toRel(It->getRawDataRefImpl());
}
#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(enum) \
case COFF::enum: Res = #enum; break;
error_code COFFObjectFile::getRelocationTypeName(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const coff_relocation *Reloc = toRel(Rel);
StringRef Res;
switch (COFFHeader->Machine) {
case COFF::IMAGE_FILE_MACHINE_AMD64:
switch (Reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
default:
Res = "Unknown";
}
break;
case COFF::IMAGE_FILE_MACHINE_I386:
switch (Reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
default:
Res = "Unknown";
}
break;
default:
Res = "Unknown";
}
Result.append(Res.begin(), Res.end());
return object_error::success;
}
#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
error_code COFFObjectFile::getRelocationValueString(DataRefImpl Rel,
SmallVectorImpl<char> &Result) const {
const coff_relocation *Reloc = toRel(Rel);
const coff_symbol *Symb = 0;
if (error_code EC = getSymbol(Reloc->SymbolTableIndex, Symb)) return EC;
DataRefImpl Sym;
Sym.p = reinterpret_cast<uintptr_t>(Symb);
StringRef SymName;
if (error_code EC = getSymbolName(Sym, SymName)) return EC;
Result.append(SymName.begin(), SymName.end());
return object_error::success;
}
error_code COFFObjectFile::getLibraryNext(DataRefImpl LibData,
LibraryRef &Result) const {
report_fatal_error("getLibraryNext not implemented in COFFObjectFile");
}
error_code COFFObjectFile::getLibraryPath(DataRefImpl LibData,
StringRef &Result) const {
report_fatal_error("getLibraryPath not implemented in COFFObjectFile");
}
bool ImportDirectoryEntryRef::
operator==(const ImportDirectoryEntryRef &Other) const {
return ImportTable == Other.ImportTable && Index == Other.Index;
}
void ImportDirectoryEntryRef::moveNext() {
++Index;
}
error_code ImportDirectoryEntryRef::
getImportTableEntry(const import_directory_table_entry *&Result) const {
Result = ImportTable;
return object_error::success;
}
error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (error_code EC = OwningObject->getRvaPtr(ImportTable->NameRVA, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return object_error::success;
}
error_code ImportDirectoryEntryRef::getImportLookupEntry(
const import_lookup_table_entry32 *&Result) const {
uintptr_t IntPtr = 0;
if (error_code EC =
OwningObject->getRvaPtr(ImportTable->ImportLookupTableRVA, IntPtr))
return EC;
Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
return object_error::success;
}
bool ExportDirectoryEntryRef::
operator==(const ExportDirectoryEntryRef &Other) const {
return ExportTable == Other.ExportTable && Index == Other.Index;
}
void ExportDirectoryEntryRef::moveNext() {
++Index;
}
// Returns the name of the current export symbol. If the symbol is exported only
// by ordinal, the empty string is set as a result.
error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (error_code EC = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return object_error::success;
}
// Returns the starting ordinal number.
error_code ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
Result = ExportTable->OrdinalBase;
return object_error::success;
}
// Returns the export ordinal of the current export symbol.
error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
Result = ExportTable->OrdinalBase + Index;
return object_error::success;
}
// Returns the address of the current export symbol.
error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
uintptr_t IntPtr = 0;
if (error_code EC = OwningObject->getRvaPtr(
ExportTable->ExportAddressTableRVA, IntPtr))
return EC;
const export_address_table_entry *entry =
reinterpret_cast<const export_address_table_entry *>(IntPtr);
Result = entry[Index].ExportRVA;
return object_error::success;
}
// Returns the name of the current export symbol. If the symbol is exported only
// by ordinal, the empty string is set as a result.
error_code ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (error_code EC = OwningObject->getRvaPtr(
ExportTable->OrdinalTableRVA, IntPtr))
return EC;
const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
uint32_t NumEntries = ExportTable->NumberOfNamePointers;
int Offset = 0;
for (const ulittle16_t *I = Start, *E = Start + NumEntries;
I < E; ++I, ++Offset) {
if (*I != Index)
continue;
if (error_code EC = OwningObject->getRvaPtr(
ExportTable->NamePointerRVA, IntPtr))
return EC;
const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
if (error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return object_error::success;
}
Result = "";
return object_error::success;
}
ErrorOr<ObjectFile *> ObjectFile::createCOFFObjectFile(MemoryBuffer *Object,
bool BufferOwned) {
error_code EC;
OwningPtr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC, BufferOwned));
if (EC)
return EC;
return Ret.take();
}