llvm-6502/lib/Transforms/Scalar/LoopRotation.cpp
Dan Gohman fc8042a122 When rotating loops, put the original header at the bottom of the
loop, making the resulting loop significantly less ugly.  Also, zap
its trivial PHI nodes, since it's easy.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111255 91177308-0d34-0410-b5e6-96231b3b80d8
2010-08-17 17:39:21 +00:00

424 lines
15 KiB
C++

//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Loop Rotation Pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-rotate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
#define MAX_HEADER_SIZE 16
STATISTIC(NumRotated, "Number of loops rotated");
namespace {
class LoopRotate : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopRotate() : LoopPass(ID) {}
// Rotate Loop L as many times as possible. Return true if
// loop is rotated at least once.
bool runOnLoop(Loop *L, LPPassManager &LPM);
// LCSSA form makes instruction renaming easier.
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<ScalarEvolution>();
}
// Helper functions
/// Do actual work
bool rotateLoop(Loop *L, LPPassManager &LPM);
/// Initialize local data
void initialize();
/// After loop rotation, loop pre-header has multiple sucessors.
/// Insert one forwarding basic block to ensure that loop pre-header
/// has only one successor.
void preserveCanonicalLoopForm(LPPassManager &LPM);
private:
Loop *L;
BasicBlock *OrigHeader;
BasicBlock *OrigPreHeader;
BasicBlock *OrigLatch;
BasicBlock *NewHeader;
BasicBlock *Exit;
LPPassManager *LPM_Ptr;
};
}
char LoopRotate::ID = 0;
INITIALIZE_PASS(LoopRotate, "loop-rotate", "Rotate Loops", false, false);
Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
/// Rotate Loop L as many times as possible. Return true if
/// the loop is rotated at least once.
bool LoopRotate::runOnLoop(Loop *Lp, LPPassManager &LPM) {
bool RotatedOneLoop = false;
initialize();
LPM_Ptr = &LPM;
// One loop can be rotated multiple times.
while (rotateLoop(Lp,LPM)) {
RotatedOneLoop = true;
initialize();
}
return RotatedOneLoop;
}
/// Rotate loop LP. Return true if the loop is rotated.
bool LoopRotate::rotateLoop(Loop *Lp, LPPassManager &LPM) {
L = Lp;
OrigPreHeader = L->getLoopPreheader();
if (!OrigPreHeader) return false;
OrigLatch = L->getLoopLatch();
if (!OrigLatch) return false;
OrigHeader = L->getHeader();
// If the loop has only one block then there is not much to rotate.
if (L->getBlocks().size() == 1)
return false;
// If the loop header is not one of the loop exiting blocks then
// either this loop is already rotated or it is not
// suitable for loop rotation transformations.
if (!L->isLoopExiting(OrigHeader))
return false;
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
if (!BI)
return false;
assert(BI->isConditional() && "Branch Instruction is not conditional");
// Updating PHInodes in loops with multiple exits adds complexity.
// Keep it simple, and restrict loop rotation to loops with one exit only.
// In future, lift this restriction and support for multiple exits if
// required.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() > 1)
return false;
// Check size of original header and reject
// loop if it is very big.
unsigned Size = 0;
// FIXME: Use common api to estimate size.
for (BasicBlock::const_iterator OI = OrigHeader->begin(),
OE = OrigHeader->end(); OI != OE; ++OI) {
if (isa<PHINode>(OI))
continue; // PHI nodes don't count.
if (isa<DbgInfoIntrinsic>(OI))
continue; // Debug intrinsics don't count as size.
++Size;
}
if (Size > MAX_HEADER_SIZE)
return false;
// Now, this loop is suitable for rotation.
// Anything ScalarEvolution may know about this loop or the PHI nodes
// in its header will soon be invalidated.
if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
SE->forgetLoop(L);
// Find new Loop header. NewHeader is a Header's one and only successor
// that is inside loop. Header's other successor is outside the
// loop. Otherwise loop is not suitable for rotation.
Exit = BI->getSuccessor(0);
NewHeader = BI->getSuccessor(1);
if (L->contains(Exit))
std::swap(Exit, NewHeader);
assert(NewHeader && "Unable to determine new loop header");
assert(L->contains(NewHeader) && !L->contains(Exit) &&
"Unable to determine loop header and exit blocks");
// This code assumes that the new header has exactly one predecessor.
// Remove any single-entry PHI nodes in it.
assert(NewHeader->getSinglePredecessor() &&
"New header doesn't have one pred!");
FoldSingleEntryPHINodes(NewHeader);
// Begin by walking OrigHeader and populating ValueMap with an entry for
// each Instruction.
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
DenseMap<const Value *, Value *> ValueMap;
// For PHI nodes, the value available in OldPreHeader is just the
// incoming value from OldPreHeader.
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
// For the rest of the instructions, create a clone in the OldPreHeader.
TerminatorInst *LoopEntryBranch = OrigPreHeader->getTerminator();
for (; I != E; ++I) {
Instruction *C = I->clone();
C->setName(I->getName());
C->insertBefore(LoopEntryBranch);
ValueMap[I] = C;
}
// Along with all the other instructions, we just cloned OrigHeader's
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
// successors by duplicating their incoming values for OrigHeader.
TerminatorInst *TI = OrigHeader->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreHeader);
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
// OrigPreHeader's old terminator (the original branch into the loop), and
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
LoopEntryBranch->eraseFromParent();
for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreHeader));
// Now fix up users of the instructions in OrigHeader, inserting PHI nodes
// as necessary.
SSAUpdater SSA;
for (I = OrigHeader->begin(); I != E; ++I) {
Value *OrigHeaderVal = I;
Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
// The value now exits in two versions: the initial value in the preheader
// and the loop "next" value in the original header.
SSA.Initialize(OrigHeaderVal);
SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
SSA.AddAvailableValue(OrigPreHeader, OrigPreHeaderVal);
// Visit each use of the OrigHeader instruction.
for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
UE = OrigHeaderVal->use_end(); UI != UE; ) {
// Grab the use before incrementing the iterator.
Use &U = UI.getUse();
// Increment the iterator before removing the use from the list.
++UI;
// SSAUpdater can't handle a non-PHI use in the same block as an
// earlier def. We can easily handle those cases manually.
Instruction *UserInst = cast<Instruction>(U.getUser());
if (!isa<PHINode>(UserInst)) {
BasicBlock *UserBB = UserInst->getParent();
// The original users in the OrigHeader are already using the
// original definitions.
if (UserBB == OrigHeader)
continue;
// Users in the OrigPreHeader need to use the value to which the
// original definitions are mapped.
if (UserBB == OrigPreHeader) {
U = OrigPreHeaderVal;
continue;
}
}
// Anything else can be handled by SSAUpdater.
SSA.RewriteUse(U);
}
}
// NewHeader is now the header of the loop.
L->moveToHeader(NewHeader);
// Move the original header to the bottom of the loop, where it now more
// naturally belongs. This isn't necessary for correctness, and CodeGen can
// usually reorder blocks on its own to fix things like this up, but it's
// still nice to keep the IR readable.
//
// The original header should have only one predecessor at this point, since
// we checked that the loop had a proper preheader and unique backedge before
// we started.
assert(OrigHeader->getSinglePredecessor() &&
"Original loop header has too many predecessors after loop rotation!");
OrigHeader->moveAfter(OrigHeader->getSinglePredecessor());
// Also, since this original header only has one predecessor, zap its
// PHI nodes, which are now trivial.
FoldSingleEntryPHINodes(OrigHeader);
// TODO: We could just go ahead and merge OrigHeader into its predecessor
// at this point, if we don't mind updating dominator info.
// Establish a new preheader, update dominators, etc.
preserveCanonicalLoopForm(LPM);
++NumRotated;
return true;
}
/// Initialize local data
void LoopRotate::initialize() {
L = NULL;
OrigHeader = NULL;
OrigPreHeader = NULL;
NewHeader = NULL;
Exit = NULL;
}
/// After loop rotation, loop pre-header has multiple sucessors.
/// Insert one forwarding basic block to ensure that loop pre-header
/// has only one successor.
void LoopRotate::preserveCanonicalLoopForm(LPPassManager &LPM) {
// Right now original pre-header has two successors, new header and
// exit block. Insert new block between original pre-header and
// new header such that loop's new pre-header has only one successor.
BasicBlock *NewPreHeader = BasicBlock::Create(OrigHeader->getContext(),
"bb.nph",
OrigHeader->getParent(),
NewHeader);
LoopInfo &LI = getAnalysis<LoopInfo>();
if (Loop *PL = LI.getLoopFor(OrigPreHeader))
PL->addBasicBlockToLoop(NewPreHeader, LI.getBase());
BranchInst::Create(NewHeader, NewPreHeader);
BranchInst *OrigPH_BI = cast<BranchInst>(OrigPreHeader->getTerminator());
if (OrigPH_BI->getSuccessor(0) == NewHeader)
OrigPH_BI->setSuccessor(0, NewPreHeader);
else {
assert(OrigPH_BI->getSuccessor(1) == NewHeader &&
"Unexpected original pre-header terminator");
OrigPH_BI->setSuccessor(1, NewPreHeader);
}
PHINode *PN;
for (BasicBlock::iterator I = NewHeader->begin();
(PN = dyn_cast<PHINode>(I)); ++I) {
int index = PN->getBasicBlockIndex(OrigPreHeader);
assert(index != -1 && "Expected incoming value from Original PreHeader");
PN->setIncomingBlock(index, NewPreHeader);
assert(PN->getBasicBlockIndex(OrigPreHeader) == -1 &&
"Expected only one incoming value from Original PreHeader");
}
if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
DT->addNewBlock(NewPreHeader, OrigPreHeader);
DT->changeImmediateDominator(L->getHeader(), NewPreHeader);
DT->changeImmediateDominator(Exit, OrigPreHeader);
for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
BasicBlock *B = *BI;
if (L->getHeader() != B) {
DomTreeNode *Node = DT->getNode(B);
if (Node && Node->getBlock() == OrigHeader)
DT->changeImmediateDominator(*BI, L->getHeader());
}
}
DT->changeImmediateDominator(OrigHeader, OrigLatch);
}
if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>()) {
// New Preheader's dominance frontier is Exit block.
DominanceFrontier::DomSetType NewPHSet;
NewPHSet.insert(Exit);
DF->addBasicBlock(NewPreHeader, NewPHSet);
// New Header's dominance frontier now includes itself and Exit block
DominanceFrontier::iterator HeadI = DF->find(L->getHeader());
if (HeadI != DF->end()) {
DominanceFrontier::DomSetType & HeaderSet = HeadI->second;
HeaderSet.clear();
HeaderSet.insert(L->getHeader());
HeaderSet.insert(Exit);
} else {
DominanceFrontier::DomSetType HeaderSet;
HeaderSet.insert(L->getHeader());
HeaderSet.insert(Exit);
DF->addBasicBlock(L->getHeader(), HeaderSet);
}
// Original header (new Loop Latch)'s dominance frontier is Exit.
DominanceFrontier::iterator LatchI = DF->find(L->getLoopLatch());
if (LatchI != DF->end()) {
DominanceFrontier::DomSetType &LatchSet = LatchI->second;
LatchSet = LatchI->second;
LatchSet.clear();
LatchSet.insert(Exit);
} else {
DominanceFrontier::DomSetType LatchSet;
LatchSet.insert(Exit);
DF->addBasicBlock(L->getHeader(), LatchSet);
}
// If a loop block dominates new loop latch then add to its frontiers
// new header and Exit and remove new latch (which is equal to original
// header).
BasicBlock *NewLatch = L->getLoopLatch();
assert(NewLatch == OrigHeader && "NewLatch is inequal to OrigHeader");
if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
for (Loop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
BasicBlock *B = *BI;
if (DT->dominates(B, NewLatch)) {
DominanceFrontier::iterator BDFI = DF->find(B);
if (BDFI != DF->end()) {
DominanceFrontier::DomSetType &BSet = BDFI->second;
BSet.erase(NewLatch);
BSet.insert(L->getHeader());
BSet.insert(Exit);
} else {
DominanceFrontier::DomSetType BSet;
BSet.insert(L->getHeader());
BSet.insert(Exit);
DF->addBasicBlock(B, BSet);
}
}
}
}
}
// Preserve canonical loop form, which means Exit block should
// have only one predecessor.
SplitEdge(L->getLoopLatch(), Exit, this);
assert(NewHeader && L->getHeader() == NewHeader &&
"Invalid loop header after loop rotation");
assert(NewPreHeader && L->getLoopPreheader() == NewPreHeader &&
"Invalid loop preheader after loop rotation");
assert(L->getLoopLatch() &&
"Invalid loop latch after loop rotation");
}