llvm-6502/lib/Transforms/Scalar/LoopUnroll.cpp
Reid Spencer 3ed469ccd7 For PR786:
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting
fall out by removing unused variables. Remaining warnings have to do with
unused functions (I didn't want to delete code without review) and unused
variables in generated code. Maintainers should clean up the remaining
issues when they see them. All changes pass DejaGnu tests and Olden.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31380 91177308-0d34-0410-b5e6-96231b3b80d8
2006-11-02 20:25:50 +00:00

380 lines
14 KiB
C++

//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller. It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//
// This pass will multi-block loops only if they contain no non-unrolled
// subloops. The process of unrolling can produce extraneous basic blocks
// linked with unconditional branches. This will be corrected in the future.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IntrinsicInst.h"
#include <cstdio>
#include <set>
#include <algorithm>
#include <iostream>
using namespace llvm;
namespace {
Statistic<> NumUnrolled("loop-unroll", "Number of loops completely unrolled");
cl::opt<unsigned>
UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
cl::desc("The cut-off point for loop unrolling"));
class LoopUnroll : public FunctionPass {
LoopInfo *LI; // The current loop information
public:
virtual bool runOnFunction(Function &F);
bool visitLoop(Loop *L);
BasicBlock* FoldBlockIntoPredecessor(BasicBlock* BB);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG...
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<LoopInfo>();
AU.addPreservedID(LCSSAID);
AU.addPreserved<LoopInfo>();
}
};
RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
}
FunctionPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
bool LoopUnroll::runOnFunction(Function &F) {
bool Changed = false;
LI = &getAnalysis<LoopInfo>();
// Transform all the top-level loops. Copy the loop list so that the child
// can update the loop tree if it needs to delete the loop.
std::vector<Loop*> SubLoops(LI->begin(), LI->end());
for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
Changed |= visitLoop(SubLoops[i]);
return Changed;
}
/// ApproximateLoopSize - Approximate the size of the loop after it has been
/// unrolled.
static unsigned ApproximateLoopSize(const Loop *L) {
unsigned Size = 0;
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
BasicBlock *BB = L->getBlocks()[i];
Instruction *Term = BB->getTerminator();
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
if (isa<PHINode>(I) && BB == L->getHeader()) {
// Ignore PHI nodes in the header.
} else if (I->hasOneUse() && I->use_back() == Term) {
// Ignore instructions only used by the loop terminator.
} else if (isa<DbgInfoIntrinsic>(I)) {
// Ignore debug instructions
} else {
++Size;
}
// TODO: Ignore expressions derived from PHI and constants if inval of phi
// is a constant, or if operation is associative. This will get induction
// variables.
}
}
return Size;
}
// RemapInstruction - Convert the instruction operands from referencing the
// current values into those specified by ValueMap.
//
static inline void RemapInstruction(Instruction *I,
std::map<const Value *, Value*> &ValueMap) {
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
Value *Op = I->getOperand(op);
std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
if (It != ValueMap.end()) Op = It->second;
I->setOperand(op, Op);
}
}
// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
// only has one predecessor, and that predecessor only has one successor.
// Returns the new combined block.
BasicBlock* LoopUnroll::FoldBlockIntoPredecessor(BasicBlock* BB) {
// Merge basic blocks into their predecessor if there is only one distinct
// pred, and if there is only one distinct successor of the predecessor, and
// if there are no PHI nodes.
//
BasicBlock *OnlyPred = BB->getSinglePredecessor();
if (!OnlyPred) return 0;
if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
return 0;
DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
// Resolve any PHI nodes at the start of the block. They are all
// guaranteed to have exactly one entry if they exist, unless there are
// multiple duplicate (but guaranteed to be equal) entries for the
// incoming edges. This occurs when there are multiple edges from
// OnlyPred to OnlySucc.
//
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
PN->replaceAllUsesWith(PN->getIncomingValue(0));
BB->getInstList().pop_front(); // Delete the phi node...
}
// Delete the unconditional branch from the predecessor...
OnlyPred->getInstList().pop_back();
// Move all definitions in the successor to the predecessor...
OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
// Make all PHI nodes that referred to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(OnlyPred);
std::string OldName = BB->getName();
// Erase basic block from the function...
LI->removeBlock(BB);
BB->eraseFromParent();
// Inherit predecessors name if it exists...
if (!OldName.empty() && !OnlyPred->hasName())
OnlyPred->setName(OldName);
return OnlyPred;
}
bool LoopUnroll::visitLoop(Loop *L) {
bool Changed = false;
// Recurse through all subloops before we process this loop. Copy the loop
// list so that the child can update the loop tree if it needs to delete the
// loop.
std::vector<Loop*> SubLoops(L->begin(), L->end());
for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
Changed |= visitLoop(SubLoops[i]);
BasicBlock* Header = L->getHeader();
BasicBlock* LatchBlock = L->getLoopLatch();
BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
if (BI == 0) return Changed; // Must end in a conditional branch
ConstantInt *TripCountC = dyn_cast_or_null<ConstantInt>(L->getTripCount());
if (!TripCountC) return Changed; // Must have constant trip count!
uint64_t TripCountFull = TripCountC->getZExtValue();
if (TripCountFull != TripCountC->getZExtValue() || TripCountFull == 0)
return Changed; // More than 2^32 iterations???
unsigned LoopSize = ApproximateLoopSize(L);
DEBUG(std::cerr << "Loop Unroll: F[" << Header->getParent()->getName()
<< "] Loop %" << Header->getName() << " Loop Size = "
<< LoopSize << " Trip Count = " << TripCountFull << " - ");
uint64_t Size = (uint64_t)LoopSize*TripCountFull;
if (Size > UnrollThreshold) {
DEBUG(std::cerr << "TOO LARGE: " << Size << ">" << UnrollThreshold << "\n");
return Changed;
}
DEBUG(std::cerr << "UNROLLING!\n");
std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
unsigned TripCount = (unsigned)TripCountFull;
BasicBlock *LoopExit = BI->getSuccessor(L->contains(BI->getSuccessor(0)));
// For the first iteration of the loop, we should use the precloned values for
// PHI nodes. Insert associations now.
std::map<const Value*, Value*> LastValueMap;
std::vector<PHINode*> OrigPHINode;
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
OrigPHINode.push_back(PN);
if (Instruction *I =
dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
if (L->contains(I->getParent()))
LastValueMap[I] = I;
}
// Remove the exit branch from the loop
LatchBlock->getInstList().erase(BI);
std::vector<BasicBlock*> Headers;
std::vector<BasicBlock*> Latches;
Headers.push_back(Header);
Latches.push_back(LatchBlock);
assert(TripCount != 0 && "Trip count of 0 is impossible!");
for (unsigned It = 1; It != TripCount; ++It) {
char SuffixBuffer[100];
sprintf(SuffixBuffer, ".%d", It);
std::vector<BasicBlock*> NewBlocks;
for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
E = LoopBlocks.end(); BB != E; ++BB) {
std::map<const Value*, Value*> ValueMap;
BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
Header->getParent()->getBasicBlockList().push_back(New);
// Loop over all of the PHI nodes in the block, changing them to use the
// incoming values from the previous block.
if (*BB == Header)
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
if (Instruction *InValI = dyn_cast<Instruction>(InVal))
if (It > 1 && L->contains(InValI->getParent()))
InVal = LastValueMap[InValI];
ValueMap[OrigPHINode[i]] = InVal;
New->getInstList().erase(NewPHI);
}
// Update our running map of newest clones
LastValueMap[*BB] = New;
for (std::map<const Value*, Value*>::iterator VI = ValueMap.begin(),
VE = ValueMap.end(); VI != VE; ++VI)
LastValueMap[VI->first] = VI->second;
L->addBasicBlockToLoop(New, *LI);
// Add phi entries for newly created values to all exit blocks except
// the successor of the latch block. The successor of the exit block will
// be updated specially after unrolling all the way.
if (*BB != LatchBlock)
for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
UI != UE; ++UI) {
Instruction* UseInst = cast<Instruction>(*UI);
if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
PHINode* phi = cast<PHINode>(UseInst);
Value* Incoming = phi->getIncomingValueForBlock(*BB);
if (isa<Instruction>(Incoming))
Incoming = LastValueMap[Incoming];
phi->addIncoming(Incoming, New);
}
}
// Keep track of new headers and latches as we create them, so that
// we can insert the proper branches later.
if (*BB == Header)
Headers.push_back(New);
if (*BB == LatchBlock)
Latches.push_back(New);
NewBlocks.push_back(New);
}
// Remap all instructions in the most recent iteration
for (unsigned i = 0; i < NewBlocks.size(); ++i)
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I)
RemapInstruction(I, LastValueMap);
}
// Update PHI nodes that reference the final latch block
if (TripCount > 1) {
std::set<PHINode*> Users;
for (Value::use_iterator UI = LatchBlock->use_begin(),
UE = LatchBlock->use_end(); UI != UE; ++UI)
if (PHINode* phi = dyn_cast<PHINode>(*UI))
Users.insert(phi);
for (std::set<PHINode*>::iterator SI = Users.begin(), SE = Users.end();
SI != SE; ++SI) {
Value* InVal = (*SI)->getIncomingValueForBlock(LatchBlock);
if (isa<Instruction>(InVal))
InVal = LastValueMap[InVal];
(*SI)->removeIncomingValue(LatchBlock, false);
if (InVal)
(*SI)->addIncoming(InVal, cast<BasicBlock>(LastValueMap[LatchBlock]));
}
}
// Now loop over the PHI nodes in the original block, setting them to their
// incoming values.
BasicBlock *Preheader = L->getLoopPreheader();
for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
PHINode *PN = OrigPHINode[i];
PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
Header->getInstList().erase(PN);
}
// Insert the branches that link the different iterations together
for (unsigned i = 0; i < Latches.size()-1; ++i) {
new BranchInst(Headers[i+1], Latches[i]);
if(BasicBlock* Fold = FoldBlockIntoPredecessor(Headers[i+1])) {
std::replace(Latches.begin(), Latches.end(), Headers[i+1], Fold);
std::replace(Headers.begin(), Headers.end(), Headers[i+1], Fold);
}
}
// Finally, add an unconditional branch to the block to continue into the exit
// block.
new BranchInst(LoopExit, Latches[Latches.size()-1]);
FoldBlockIntoPredecessor(LoopExit);
// At this point, the code is well formed. We now do a quick sweep over the
// inserted code, doing constant propagation and dead code elimination as we
// go.
const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
Instruction *Inst = I++;
if (isInstructionTriviallyDead(Inst))
(*BB)->getInstList().erase(Inst);
else if (Constant *C = ConstantFoldInstruction(Inst)) {
Inst->replaceAllUsesWith(C);
(*BB)->getInstList().erase(Inst);
}
}
// Update the loop information for this loop.
Loop *Parent = L->getParentLoop();
// Move all of the basic blocks in the loop into the parent loop.
for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
E = NewLoopBlocks.end(); BB != E; ++BB)
LI->changeLoopFor(*BB, Parent);
// Remove the loop from the parent.
if (Parent)
delete Parent->removeChildLoop(std::find(Parent->begin(), Parent->end(),L));
else
delete LI->removeLoop(std::find(LI->begin(), LI->end(), L));
++NumUnrolled;
return true;
}