llvm-6502/lib/Target/Blackfin/README.txt
Jakob Stoklund Olesen d950941e13 Analog Devices Blackfin back-end.
Generate code for the Blackfin family of DSPs from Analog Devices:

  http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/index.html
  
We aim to be compatible with the exsisting GNU toolchain found at:

  http://blackfin.uclinux.org/gf/project/toolchain
  
The back-end is experimental.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77897 91177308-0d34-0410-b5e6-96231b3b80d8
2009-08-02 17:32:10 +00:00

123 lines
4.4 KiB
Org Mode

//===-- README.txt - Notes for Blackfin Target ------------------*- org -*-===//
* Condition codes
** DONE Problem with asymmetric SETCC operations
The instruction
CC = R0 < 2
is not symmetric - there is no R0 > 2 instruction. On the other hand, IF CC
JUMP can take both CC and !CC as a condition. We cannot pattern-match (brcond
(not cc), target), the DAG optimizer removes that kind of thing.
This is handled by creating a pseudo-register NCC that aliases CC. Register
classes JustCC and NotCC are used to control the inversion of CC.
** DONE CC as an i32 register
The AnyCC register class pretends to hold i32 values. It can only represent the
values 0 and 1, but we can copy to and from the D class. This hack makes it
possible to represent the setcc instruction without having i1 as a legal type.
In most cases, the CC register is set by a "CC = .." or BITTST instruction, and
then used in a conditional branch or move. The code generator thinks it is
moving 32 bits, but the value stays in CC. In other cases, the result of a
comparison is actually used as am i32 number, and CC will be copied to a D
register.
* Stack frames
** TODO Use Push/Pop instructions
We should use the push/pop instructions when saving callee-saved
registers. The are smaller, and we may even use push multiple instructions.
** TODO requiresRegisterScavenging
We need more intelligence in determining when the scavenger is needed. We
should keep track of:
- Spilling D16 registers
- Spilling AnyCC registers
* Assembler
** TODO Implement PrintGlobalVariable
** TODO Remove LOAD32sym
It's a hack combining two instructions by concatenation.
* Inline Assembly
** TODO Support all register classes
* DAG combiner
** Create test case for each Illegal SETCC case
The DAG combiner may someimes produce illegal i16 SETCC instructions.
*** TODO SETCC (ctlz x), 5) == const
*** TODO SETCC (and load, const) == const
*** DONE SETCC (zext x) == const
*** TODO SETCC (sext x) == const
* Instruction selection
** TODO Better imediate constants
Like ARM, build constants as small imm + shift.
** TODO Implement cycle counter
We have CYCLES and CYCLES2 registers, but the readcyclecounter intrinsic wants
to return i64, and the code generator doesn't know how to legalize that.
** TODO Instruction alternatives
Some instructions come in different variants for example:
D = D + D
P = P + P
Cross combinations are not allowed:
P = D + D (bad)
Similarly for the subreg pseudo-instructions:
D16L = EXTRACT_SUBREG D16, bfin_subreg_lo16
P16L = EXTRACT_SUBREG P16, bfin_subreg_lo16
We want to take advantage of the alternative instructions. This could be done by
changing the DAG after instruction selection.
** Multipatterns for load/store
We should try to identify multipatterns for load and store instructions. The
available instruction matrix is a bit irregular.
Loads:
| Addr | D | P | D 16z | D 16s | D16 | D 8z | D 8s |
|------------+---+---+-------+-------+-----+------+------|
| P | * | * | * | * | * | * | * |
| P++ | * | * | * | * | | * | * |
| P-- | * | * | * | * | | * | * |
| P+uimm5m2 | | | * | * | | | |
| P+uimm6m4 | * | * | | | | | |
| P+imm16 | | | | | | * | * |
| P+imm17m2 | | | * | * | | | |
| P+imm18m4 | * | * | | | | | |
| P++P | * | | * | * | * | | |
| FP-uimm7m4 | * | * | | | | | |
| I | * | | | | * | | |
| I++ | * | | | | * | | |
| I-- | * | | | | * | | |
| I++M | * | | | | | | |
Stores:
| Addr | D | P | D16H | D16L | D 8 |
|------------+---+---+------+------+-----|
| P | * | * | * | * | * |
| P++ | * | * | | * | * |
| P-- | * | * | | * | * |
| P+uimm5m2 | | | | * | |
| P+uimm6m4 | * | * | | | |
| P+imm16 | | | | | * |
| P+imm17m2 | | | | * | |
| P+imm18m4 | * | * | | | |
| P++P | * | | * | * | |
| FP-uimm7m4 | * | * | | | |
| I | * | | * | * | |
| I++ | * | | * | * | |
| I-- | * | | * | * | |
| I++M | * | | | | |